JPH02279537A - Ion exchange treatment of glass body - Google Patents

Ion exchange treatment of glass body

Info

Publication number
JPH02279537A
JPH02279537A JP1097739A JP9773989A JPH02279537A JP H02279537 A JPH02279537 A JP H02279537A JP 1097739 A JP1097739 A JP 1097739A JP 9773989 A JP9773989 A JP 9773989A JP H02279537 A JPH02279537 A JP H02279537A
Authority
JP
Japan
Prior art keywords
glass
ion exchange
refractive index
glass body
monovalent cations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1097739A
Other languages
Japanese (ja)
Inventor
Ryoichi Kaite
買手 良一
Shigeo Kikko
重雄 橘高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1097739A priority Critical patent/JPH02279537A/en
Publication of JPH02279537A publication Critical patent/JPH02279537A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To easily obtain a distributed refractive index-type lens to the direction of the optical axis by coating a glass body to be treated with a prescribed inorg. material except the part requiring ion exchange before the glass body is brought into contact with a molten salt contg. monovalent cations to carry out ion exchange. CONSTITUTION:A glass body 1 to be treated is coated with a coating layer 2 except the part requiring ion exchange. The layer 2 is made of glass or a inorg. material contg. no monovalent cations. The coated glass body 1 is brought into contact with a molten salt 3 contg. monovalent cations B<+> to exchange monovalent cations A<+> contained in the glass body 1 for the cations B<+> in the molten salt.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、屈折率分布型レンズ等、一般にイオン濃度分
イUを有するガラス体の中で、特に光軸方向屈折率分布
型レンズを製造する技術の改良に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is particularly applicable to the production of gradient index lenses in the optical axis direction, among glass bodies that generally have an ion concentration of iU, such as gradient index lenses. related to improvements in technology.

〔従来技術〕[Prior art]

一般に、外部からガラス体内部に特定のイオンを拡散さ
せて、このイオン分布によってガラス体の性質改変を行
う技術は広く用いられている0例えば、屈折率が相対的
に大なガラスの表面からガラスの屈折率減少に効果のあ
るナトリウムやカリウム等のイオンをガラスの内sll
に拡散させて、ガラス表面から内部に向かって屈折率が
次第に増加する屈折率分布をもつ屈折重分4ff型レン
ズを製造する方法、あるいは逆に屈折率が小なガラスか
ら成るガラスの表面から屈折率増加に効果のあるリチウ
ム、セシウム、銀、タリウム等のイオンをガラス内部に
拡散させて、ガラス表面から内部に向かって屈折率が次
第に減少する屈折率分布をもつ屈折率分布型レンズを製
造する方法がある。
In general, the technique of diffusing specific ions from the outside into the inside of a glass body and modifying the properties of the glass body through this ion distribution is widely used. Ions such as sodium and potassium, which are effective in reducing the refractive index of glass, are added to the inside of the glass.
A method of manufacturing a refractive index 4FF type lens with a refractive index distribution in which the refractive index gradually increases from the glass surface toward the inside, or conversely, a method of manufacturing a refractive index 4FF type lens made of glass with a small refractive index. By diffusing ions such as lithium, cesium, silver, and thallium, which are effective in increasing the optical index, into the glass, a gradient index lens is manufactured that has a refractive index distribution in which the refractive index gradually decreases from the glass surface toward the inside. There is a way.

屈折率分布型レンズは大別して以下の3種に分類できる
Gradient index lenses can be roughly classified into the following three types.

1)光軸方向屈折率分布型レンズ 2)半径方向屈折率分布型レンズ 3)球殻方向屈折率分布型レンズ 上記レンズの内、光軸方向屈折率分布型レンズを作製す
る方法は、まず屈折率が均一なガラス基板を作製し、こ
のガラス基板を溶融塩中に浸漬して181&塩中の一価
陽イオンとガラス体中に含まれる一価陽イオンとを交換
させ、ガラス基板の表面から内部に向かって次第に減少
、または増加する屈折率分布を、そして、その表面に平
行な面内の屈折率は−様であるレンズ素材を作製する。
1) Lens with gradient index in the optical axis direction 2) Lens with gradient index in the radial direction 3) Lens with gradient index in the spherical shell direction Among the above lenses, the method for producing the gradient index lens in the optical axis direction is to first use refraction. A glass substrate with a uniform ratio is prepared, and this glass substrate is immersed in molten salt to exchange the monovalent cations in the 181 salt with the monovalent cations contained in the glass body. A lens material is produced that has a refractive index distribution that gradually decreases or increases toward the inside, and that has a -like refractive index in a plane parallel to its surface.

このような屈折率分布を有するレンズ素材の両面を研H
し、所望の平面あるいは球面に加工することによって、
第4図に示すような光軸方向屈折率分布型レンズを作製
する事ができる。屈折率分布がガラス表面から内部に向
かってほぼ直線状に減少するレンズ素材から作製した平
凸レンズは、球面収差とコマ収差を良好に補正する作用
を有する。
Polishing both sides of a lens material with such a refractive index distribution
By processing it into the desired flat or spherical surface,
A lens with a gradient index of refraction along the optical axis as shown in FIG. 4 can be manufactured. A plano-convex lens made from a lens material whose refractive index distribution decreases almost linearly from the glass surface toward the inside has the effect of effectively correcting spherical aberration and coma aberration.

上記平凸レンズの具体的な従来の作製方法は、ナトリウ
ムやカリウムを含む屈折率が均一なガラス基板を、屈折
率を高める作用の大きいタリウム等の一価陽イオンを含
む硝酸塩あるいは破酸塩等の溶融塩中に浸漬して、該溶
融塩中の一価陽イオンとガラス体中に含まれる一価陽イ
オンとを交換させ、ガラス基板表面から内部に向かって
屈折率が次第に減少する屈折率分布を形成させる。この
様にして得たレンズ素材を四角板状の小片に切断し、こ
れら小片を接着剤で相互に接着(貼り付け〉して四角柱
状体とする。この四角柱状体は円筒研削盤によって所望
の直径を有する円柱状体に加工(丸め)される。その後
、溶剤で接着剤を除去(バラク)すると円盤状レンズ素
材が多数得られる。
The specific conventional manufacturing method for the above-mentioned plano-convex lens is to use a glass substrate with a uniform refractive index that contains sodium or potassium, and a nitrate or a salt containing monovalent cations such as thallium that have a large effect of increasing the refractive index. A refractive index distribution in which the refractive index gradually decreases from the surface of the glass substrate toward the inside by immersing it in a molten salt and exchanging monovalent cations in the molten salt with monovalent cations contained in the glass body. to form. The lens material obtained in this way is cut into square plate-like pieces, and these pieces are glued together (pasted) to form a square prism. It is processed (rounded) into a cylindrical body having a diameter.Then, the adhesive is removed (balked) with a solvent, and a large number of disc-shaped lens materials are obtained.

このレンズ素材のうち、屈折率分布を有する層を球面加
工し、屈折率分布が−様な面を平面に加工すると平凸の
光軸方向屈折率分布型レンズが得られる。
Of this lens material, by processing the layer having a refractive index distribution into a spherical surface and processing the surface with a --like refractive index distribution into a flat surface, a plano-convex optical axis direction refractive index distribution type lens can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記ガラス基板から光軸方向屈折率分布型レンズを作製
する方法の最大の問題点は製造コストが高くつく事にあ
る。特に、丸め工程では四角柱状から円柱状に研削加工
するため貴重な硝材が少なくとも22%は捨てられてし
まう事、また貼り付けやバラク工程等に多くの手間暇を
かけなければならない事にある。
The biggest problem with the method of manufacturing a gradient index lens in the optical axis direction from the glass substrate is that the manufacturing cost is high. In particular, in the rounding process, at least 22% of valuable glass material is wasted as the glass is ground from a rectangular prism to a cylinder, and a lot of time and effort must be spent on pasting and barring processes.

一方、熱延伸法などで作製したガラス棒を切断して得た
円盤状ガラス板をイオン交換する方法は前述のガラス基
板から作製する方法に比べ、加工ロスが少ない様に考え
られるが、この方法では円!Ii1拭ガラス板の側周部
からのイオンの拡散があり、第3図に示すように半径方
向にも屈折率分布層を形成する。この屈折率分布層は光
軸方向屈折率分布型レンズにとって不要であるため、最
終的に研削除去しなければならず、前述の方法と同じく
貴重な硝材を浪費することになる。
On the other hand, the method of ion-exchanging a disk-shaped glass plate obtained by cutting a glass rod produced by a hot drawing method etc. seems to have less processing loss than the method of producing it from a glass substrate as described above. So yen! There is diffusion of ions from the side periphery of the wipe glass plate Ii1, and a refractive index distribution layer is also formed in the radial direction as shown in FIG. Since this refractive index distribution layer is unnecessary for the optical axis direction refractive index distribution type lens, it must be finally removed by polishing, which wastes valuable glass material as in the above-mentioned method.

〔問題点を解決するための手段〕[Means for solving problems]

ガラス体と一価陽イオンを含む溶融塩とを接触させて、
溶融塩中のイオンとガラス体中に含まれる一価陽イオン
とを交換させるイオン交換処理方法において、イオン交
換処理に先立ち、被処理ガラス体の要部以外を、一価陽
イオンを、含まないガラスないしはガラス質の無機材か
ら成る被覆層で被覆する。
By bringing the glass body into contact with a molten salt containing monovalent cations,
In an ion exchange treatment method in which ions in a molten salt are exchanged with monovalent cations contained in a glass body, prior to the ion exchange treatment, monovalent cations are not included in any part other than the main part of the glass body to be treated. Cover with a coating layer made of glass or a vitreous inorganic material.

1つの好適な方法は、二重ポット法、あるいはロッドイ
ンチューブ法によって芯体ガラスとこれを被覆する一価
陽イオンを含まない被覆ガラスとで円柱状のガラス棒を
形成し、このガラス棒を切断して側周面が上記被覆ガラ
ス層で被覆された円盤状ガラス板を作製してから該ガラ
ス板を溶融塩中に浸漬し、イオン交換処理を行う。
One preferred method is to form a cylindrical glass rod with a core glass and a coating glass that does not contain monovalent cations by a double pot method or a rod-in-tube method, and then After cutting to produce a disc-shaped glass plate whose side peripheral surface is coated with the above-mentioned coating glass layer, the glass plate is immersed in molten salt and subjected to ion exchange treatment.

また他の好適な方法として、まず一価陽イオンを含まな
いガラスを溶解し、これを水中に投入して得た水砕カレ
ットを乾燥してからボールミルで粉砕してフリットを作
製する。このフリットに粘土及び水などを加えたスラリ
ーを被処理ガラスの表面に塗布し、ざらに乾燥と焼付け
を行なって被覆ガラス棒を形成する。次いで、この被覆
ガラス棒を切断して円盤状ガラス板を作製してからこれ
を溶融塩中に浸漬し、イオン交換処理を行なう。
Another preferred method is to first melt glass that does not contain monovalent cations, and then pour it into water to obtain a granulated cullet, which is then dried and then ground in a ball mill to produce a frit. A slurry made by adding clay, water, etc. to this frit is applied to the surface of the glass to be treated, and is roughly dried and baked to form a coated glass rod. Next, this coated glass rod is cut to produce a disc-shaped glass plate, which is then immersed in molten salt to undergo ion exchange treatment.

この様な一価陽イオンを含まないガラスないしはガラス
質の無機材から成る被覆層(以下単に被覆ガラス層と呼
ぶ)が介在すると、該部位を介しての一価陽イオンの拡
散は極めて遅く、実質的に一価陽イオンの拡散は阻止さ
れる事が分かった。
When a coating layer made of glass or a glassy inorganic material that does not contain monovalent cations (hereinafter simply referred to as a coating glass layer) is present, the diffusion of monovalent cations through the site is extremely slow; It was found that the diffusion of monovalent cations was substantially inhibited.

ただし、被覆ガラス層の厚みが厚すぎるとレンズの有効
径は小さくなり好ましくない、この観点から、前記被覆
ガラス層の厚みは約250μm以下のR囲が好ましい。
However, if the thickness of the covering glass layer is too thick, the effective diameter of the lens becomes undesirably small.From this point of view, the thickness of the covering glass layer is preferably about 250 μm or less in radius radius.

〔作用〕[Effect]

上記の被覆ガラス層を有していない円盤状ガラス板では
、側周部からの一価陽イオンの拡散によって光軸方向以
外、即ち側周部付近では半径方向にも屈折率分布が形成
される。この屈折率分布は有害無益であるため後工程で
除去する必要が生じる。しかし、本発明の如く側周部が
一価陽イオンを含まない被覆ガラス層で覆われている円
盤状ガラス板では、イオン交換処理中に該ガラス板の側
周部からの一価陽イオンの透過がないため前記のような
半径方向の屈折率分布層は形成される事はなく、該側周
部を研削除去しなくても良い。
In a disc-shaped glass plate without the above-mentioned coating glass layer, a refractive index distribution is formed in a direction other than the optical axis direction due to the diffusion of monovalent cations from the side periphery, that is, in the radial direction near the side periphery. . Since this refractive index distribution is harmful and useless, it is necessary to remove it in a subsequent process. However, in a disc-shaped glass plate whose side periphery is covered with a coating glass layer that does not contain monovalent cations as in the present invention, monovalent cations are removed from the side periphery of the glass plate during ion exchange treatment. Since there is no transmission, the radial refractive index distribution layer as described above is not formed, and there is no need to remove the side peripheral portion by polishing.

また、従来技術の様に四角板状の小片を接着剤で貼り合
わせて四角柱状体に作製したり、さらに円柱状体に研削
加工する必要も無くなるから貴重な硝材が有効に使える
ばかりでなく、かつ加工工程も少なくできる。そして、
前記被覆ガラス層が不必要な場合はレンズ加工時に芯取
りを行うことによって容易に除去することも出来る。
In addition, there is no need to glue small pieces of square plates together with adhesive to create a square columnar body, or to grind them into a cylindrical body, as in the conventional technology, so not only can valuable glass materials be used more effectively, Moreover, the number of processing steps can be reduced. and,
If the covering glass layer is unnecessary, it can be easily removed by performing centering during lens processing.

〔実施例〕〔Example〕

以下本発明を図面に示した実施例に基づいて説明する。 The present invention will be described below based on embodiments shown in the drawings.

第1図は円盤状ガラス板Iを溶融塩3中に漫消し、イオ
ン交換を行っている様子を示している。ここで、被処理
ガラス体としてのガラス板lは、その側周部が一価陽イ
オンを透過しない被覆ガラス層2で被覆され、両者は完
全に熱融着して一体化した構造をしており、両面は露出
させである。溶融塩3に含まれる一価に2イオンB゛と
被処理ガラス体中の一価陽イオンA゛は、被処理ガラス
体1の表面のみを通してイオン交換が行われている。し
かし、その1Mt1部では一価陽イオンを透過しない被
覆ガラス層が存在するためこれらイオンの拡散は阻止さ
れる。この様な構造を有する円盤状ガラス板は、周知の
ロッドインチューブ法、あるいは二重水・シト法で作製
することができる。
FIG. 1 shows a state in which a disk-shaped glass plate I is immersed in a molten salt 3 and ion exchange is performed. Here, the glass plate l as the glass body to be treated has a structure in which the side periphery thereof is covered with a coating glass layer 2 that does not transmit monovalent cations, and the two are completely thermally fused and integrated. Both sides are exposed. Ion exchange is performed between the monovalent diion B' contained in the molten salt 3 and the monovalent cation A' in the glass body 1 to be treated only through the surface of the glass body 1 to be treated. However, in the 1Mt portion, there is a covering glass layer that does not transmit monovalent cations, so the diffusion of these ions is blocked. A disc-shaped glass plate having such a structure can be produced by the well-known rod-in-tube method or the double water/sheet method.

あるいは、一価陽イオンを含まないガラスを粉砕して、
例えば325メツシユ以下のフリットを作製し、このフ
リットに粘土及び水などを加えたスラリーを被処理ガラ
ス棒の表面に塗布し、さらに乾燥と焼付けを行なったガ
ラス棒を切断する方法によっても作製できる。
Alternatively, by crushing glass that does not contain monovalent cations,
For example, a frit of 325 mesh or less can be prepared, a slurry made by adding clay, water, etc. to the frit is applied to the surface of a glass rod to be treated, and the glass rod is further dried and baked and then cut.

次に、本発明の具体的な数値例について説明する。Next, specific numerical examples of the present invention will be explained.

実施例1 モル%(以下同じ)で表して、5iO260%。Example 1 Expressed as mol% (the same applies hereinafter), 5iO260%.

82032%+  ZnO15%、ZrO23%、Na
2o  3%、KtO15%、TIr02%の組成を有
する直径が50mm、長さが1mの母材ガラスを、 5
iOz65%+  8203 25%、  ZnO10
%の組成からなる内径が55mrn、外径が68mmの
被覆ガラス管に挿入し、その下端部を加熱して仮融着し
た。下端部は加熱したままで該ガラス管の上端を密刺し
、0.5気圧程度に減圧しなから熱延伸を行い、直径が
6.4mmのガラスロッドを得た。該ロッドをスライシ
ングマシーンで3.2mmの厚みに切断して円盤状ガラ
ス板を作製した。該ガラス板のイオン交換面の直径は6
゜Ommで、側周部の被覆ガラス層の厚みは200μm
であった。この円盤状ガラス板をKNO392%、Tl
NO38%のjA成からなる溶融塩中に浸漬して、49
2℃で695時間イオン交換処理を行った。この様にし
て得られたレンズ素材の屈折率分布を調べたところ、第
2図に示す屈折率分布形状のしンズ素材が得られた。
82032% + ZnO15%, ZrO23%, Na
A base glass with a diameter of 50 mm and a length of 1 m having a composition of 2O 3%, KtO 15%, and TIr 02%, 5
iOz65%+8203 25%, ZnO10
% composition and having an inner diameter of 55 mrn and an outer diameter of 68 mm, the lower end of the tube was heated and temporarily fused. The upper end of the glass tube was closely punctured while the lower end was still heated, and hot stretching was performed after reducing the pressure to about 0.5 atm to obtain a glass rod with a diameter of 6.4 mm. The rod was cut into a 3.2 mm thick piece using a slicing machine to produce a disc-shaped glass plate. The diameter of the ion exchange surface of the glass plate is 6
゜Omm, and the thickness of the coating glass layer on the side periphery is 200μm
Met. This disc-shaped glass plate was made of KNO392% and Tl.
49 by immersing it in a molten salt consisting of 38% NO and JA.
Ion exchange treatment was performed at 2°C for 695 hours. When the refractive index distribution of the lens material thus obtained was examined, a lens material having the refractive index distribution shape shown in FIG. 2 was obtained.

実施例2 Si0257%l B2O33%、Mg0 8%。Example 2 Si0257%l B2O33%, Mg08%.

Zn010%、 Na2O7%、 K2O13%の組成
を有する母材ガラスと、5i0260%、B20320
%、Mg0 5%、Zn0 15%の組成からなる被覆
ガラスを、各々純白金製の二重ルツボの内ボットと外ポ
ットに入れて直径が3,8mmのガラス棒を線引きした
。該ガラス棒をスライシングマシーンで1.8mmの厚
みに切断して円盤状ガラス板を作製した。該ガラス板の
イオン交換面の直径は5.4mmで、側周部の被覆ガラ
ス層の厚みは49μmであった。この円盤状ガラス板を
KNO395%ル%、TlNO35モル%の組成からな
る溶融塩中に浸漬して、485℃で760時間イオン交
換処理を行った。この様にして得られたレンズ素材の屈
折率分布を調べたところ、実施例】と同じ屈折率分布形
状を有するレンズ素材であった。
Base material glass having a composition of Zn010%, Na2O7%, K2O13%, 5i0260%, B20320
%, Mg0 5%, and Zn0 15% were placed in the inner and outer pots of a double crucible made of pure platinum, respectively, and a glass rod with a diameter of 3.8 mm was drawn. The glass rod was cut into a 1.8 mm thick piece using a slicing machine to produce a disc-shaped glass plate. The diameter of the ion-exchange surface of the glass plate was 5.4 mm, and the thickness of the glass layer covering the side periphery was 49 μm. This disc-shaped glass plate was immersed in a molten salt having a composition of 395% KNO and 35 mol% TlNO, and was subjected to ion exchange treatment at 485° C. for 760 hours. When the refractive index distribution of the lens material thus obtained was examined, it was found that the lens material had the same refractive index distribution shape as in Example.

実施例3 Si0260%、82032%、ZnO17%。Example 3 Si0260%, 82032%, ZnO17%.

ZrO21%、Na2O3%、に20 17%の組成を
有する母材ガラスと、5i0230%、820330%
、PbO30%、Ba0 10%の組成からなる被覆ガ
ラスを、実施例2と同様に二重ルツボ法で線引きし、外
径が4.3mmのガラス棒を得た。該ガラス棒をスライ
シングマシーンで1゜8mmの厚みに切断し′C円盤状
ガラス板を作製した。該ガラス板のイオン交換面の直径
は4.0mmで、側周部の被覆ガラス層の厚みは146
μmであった。この円盤状ガラス板をKN 0397%
Base material glass having a composition of 21% ZrO, 3% Na2O, 20% to 17%, 5i0230%, 820330%
, 30% PbO, and 10% Ba0 was drawn using the double crucible method in the same manner as in Example 2 to obtain a glass rod with an outer diameter of 4.3 mm. The glass rod was cut into 1.8 mm thick pieces using a slicing machine to produce 'C' disk-shaped glass plates. The diameter of the ion exchange surface of the glass plate is 4.0 mm, and the thickness of the coating glass layer on the side periphery is 146 mm.
It was μm. This disc-shaped glass plate is made of KN 0397%
.

TlNO33%の組成からなる溶融塩中に浸漬して、4
85℃で760時間イオン交換処理を行った。この様に
して得、られたレンズ素材の屈折率分布を調べたところ
、実施例1と同じ屈折率分布形状を有するレンズ素材で
あった。
4 by immersing it in a molten salt having a composition of 3% TlNO.
Ion exchange treatment was performed at 85°C for 760 hours. When the refractive index distribution of the lens material thus obtained was examined, it was found that the lens material had the same refractive index distribution shape as Example 1.

実施例4 Si0260%+  82035%、Mg0 2%。Example 4 Si0260% + 82035%, Mg02%.

ZnO11%、Na2O5%、に20 12%、Tl2
O3%の組成を有する心材ガラスと、5i0220%+
  820330%、PbO40%、  Zn0 10
%の組成からなる被覆ガラスを、実施例2と同じく二重
ルツボ法で線引きし、外径が4゜0mmのガラス棒を得
た。該ガラス棒をスライシングマシーンで1.8mmの
厚みに切断して円盤状ガラス板を作製した。該側周部の
被覆ガラス層の厚みは15μmであった。この円盤状ガ
ラス板をKNO395%、TlNO35%の組成からな
る溶融塩中に浸漬して、485℃で760時間イオン交
換処理を行った。この様にして得られたレンズ素材の屈
折率分布を調べたところ、実施例1と同じ屈折率分布形
状のレンズ素材である事が確認された。
ZnO 11%, Na2O 5%, Ni20 12%, Tl2
Core glass having a composition of O3% and 5i0220%+
820330%, PbO40%, Zn0 10
% was drawn using the double crucible method as in Example 2 to obtain a glass rod with an outer diameter of 4.0 mm. The glass rod was cut into a 1.8 mm thick piece using a slicing machine to produce a disc-shaped glass plate. The thickness of the glass layer covering the side circumference was 15 μm. This disc-shaped glass plate was immersed in a molten salt having a composition of 395% KNO and 35% TlNO, and was subjected to ion exchange treatment at 485° C. for 760 hours. When the refractive index distribution of the lens material thus obtained was examined, it was confirmed that the lens material had the same refractive index distribution shape as Example 1.

実施例5 モル%で表して、5iO260%、BzOt2%。Example 5 Expressed in mol%, 5iO2 60%, BzOt2%.

ZnO15%、ZrO22%+  NaaO3%、に2
015%、Tl202%の組成を(Tする直径が1、f
)mm、単長1mの被処理ガラス棒を、モル%で表して
、5i0230%、8203 28%、Pb040%、
ZrO22%の組成を有するフリット100重量部に対
し、粘土6重量部、カルボキシメチルセルローズ2蚤型
部と水45重量部を加え十分混合して得たスラリーの中
に浸漬して、被処理ガラス棒の表面にスラリーを塗布し
た。該ガラス棒を120℃で乾燥後、495℃迄昇温し
、2時間vE成した。冷却後、該ガラス棒をスライシン
グマシーンで2.2mmの厚みに切断して円盤状ガラス
板を作製した。その側周部の被覆ガラス層の厚みは95
μmであった。この円盤状ガラス板をモル%で表して、
KNO392%、TlN018%の組成からなる溶融塩
中に浸漬して、492℃で695時間イオン交換処理を
行った。この様にして得られたレンズ素材の屈折率分布
を調べたところ、第2図に示す屈折率分布形状を有する
レンズ素材が得られた。
ZnO15%, ZrO22% + NaaO3%, 2
015%, Tl202% composition (T diameter is 1, f
) mm, the glass rod to be treated with a single length of 1 m is expressed in mol%, 5i0230%, 8203 28%, Pb040%,
To 100 parts by weight of frit having a composition of 22% ZrO, 6 parts by weight of clay, 2 parts by weight of carboxymethyl cellulose and 45 parts by weight of water were added and thoroughly mixed.The glass rod to be treated was immersed in the slurry obtained. The slurry was applied to the surface. After drying the glass rod at 120°C, the temperature was raised to 495°C and vE was performed for 2 hours. After cooling, the glass rod was cut into a 2.2 mm thick piece using a slicing machine to produce a disk-shaped glass plate. The thickness of the coating glass layer around the side is 95
It was μm. This disc-shaped glass plate is expressed in mol%,
It was immersed in a molten salt having a composition of 392% KNO and 18% TlN, and was subjected to ion exchange treatment at 492°C for 695 hours. When the refractive index distribution of the lens material thus obtained was examined, a lens material having the refractive index distribution shape shown in FIG. 2 was obtained.

実施例6 モル%で表して、5iO267%+  B20i 5%
Example 6 5iO2 67% + B20i 5% expressed in mol%
.

Mg0 8%、ZnO10%、Na2O7%、に201
3%の組成を有する直径が3. 8mm、単長1mの被
処理ガラス棒を、モル%で表して、5i0235%! 
 820330%、Pb0 30%。
Mg0 8%, ZnO 10%, Na2O 7%, 201
3. diameter with a composition of 3%. The glass rod to be treated with a diameter of 8 mm and a length of 1 m is expressed as mol%, and is 5i0235%!
820330%, Pb0 30%.

A12035%の組成を有するフリッ)1002111
:部に対し、粘土5重量部、カルボキシメチルセルロー
ズ1重tgl+、塩化カリウム0.5fim部と水45
盃量部を加え十盆混合して得たスラリーの中に浸漬して
、被処理ガラス棒の表面にスラリーを2度塗布した。該
ガラス棒を120℃で乾燥後、495℃迄昇温し、2時
間焼成した。冷却後、該ガラス棒をスライシングマシー
ンで1.8mmの厚みに切断して円盤状ガラス板を作製
した。その側周部の被覆ガラス層の厚みは1B5μrn
であった。この円盤状ガラス板をモル%で表して、KN
O395%、TlN0a5%の組成からなる溶融塩中に
浸漬して、485℃で695時間イオン交換処理を行っ
た。この様にして得られたレンズ素材の屈折率分布を調
べたところ、実施例1と同じ屈折率外イ1形状のレンズ
素材である事が確認された。
A1002111 with a composition of 35%
: 5 parts by weight of clay, 1 weight part of carboxymethyl cellulose TGL+, 0.5 fim part of potassium chloride, and 45 parts of water.
The glass rod to be treated was immersed in the slurry obtained by adding a glass rod and mixing in ten trays, and the slurry was applied twice to the surface of the glass rod to be treated. After drying the glass rod at 120°C, the temperature was raised to 495°C and fired for 2 hours. After cooling, the glass rod was cut into a 1.8 mm thick piece using a slicing machine to produce a disk-shaped glass plate. The thickness of the coating glass layer around the side is 1B5μrn
Met. Expressing this disc-shaped glass plate in mol%, KN
It was immersed in a molten salt having a composition of 95% O3 and 5% TlN0a, and was subjected to ion exchange treatment at 485°C for 695 hours. When the refractive index distribution of the lens material thus obtained was examined, it was confirmed that the lens material had the same refractive index outside A1 shape as in Example 1.

実施例7 モル%で表して、5in25Q%、82032%。Example 7 Expressed in mol%, 5in25Q%, 82032%.

ZnO17%、ZrO21%、Na2O3%、に201
7%の組成を有する直径が5. 0mm、単長1mの被
処理ガラス棒を、モル%で表して、5i0217%、1
320325%、PbO50%。
ZnO17%, ZrO21%, Na2O3%, 201
5. diameter with a composition of 7%. A glass rod to be treated with a diameter of 0 mm and a length of 1 m is expressed as mol%, 5i0217%, 1
320325%, PbO50%.

Al20a8%の組成を有するフリット100重量部に
刻し、粘土7重PIk部と水47重量部を加え十分混合
して得たスラリー〇中に浸漬して、被処理ガラス棒の表
面にスラリーを塗布した。該ガラス棒な120℃で乾燥
後、495℃迄昇温し、2時間焼成した。冷却後、該ガ
ラス棒をスライシングマシーンで1.8mmの厚みに切
断して円盤状ガラス板を作製した。その側周部の被覆ガ
ラス層の厚みは35μmであった。この円盤状ガラス板
をモル%で表して、KNO397%、TlNO33%の
組成からなる溶融塩中に浸漬して、492℃で490時
間イオン交換処理を行った。この様にして得られたレン
ズ素材の屈折率分布を調べたところ、実施例1と同じ屈
折率分布形状のレンズ素材であった。
Cut into 100 parts by weight frit having a composition of 8% Al20a, add 7 parts PIk of clay and 47 parts by weight of water, and thoroughly mix it. Dip it into the slurry 〇 obtained, and apply the slurry to the surface of the glass rod to be treated. did. After drying the glass rod at 120°C, the temperature was raised to 495°C and fired for 2 hours. After cooling, the glass rod was cut into a 1.8 mm thick piece using a slicing machine to produce a disk-shaped glass plate. The thickness of the covering glass layer at the side circumference was 35 μm. This disc-shaped glass plate was immersed in a molten salt having a composition of 397% KNO and 33% TlNO expressed in mol%, and was subjected to ion exchange treatment at 492° C. for 490 hours. When the refractive index distribution of the lens material thus obtained was examined, it was found that the lens material had the same refractive index distribution shape as in Example 1.

実施例8 モル%て表して、5iOa62%、82035%Mg0
 2%、ZnO11%、Na2O5%、に2012%、
Tl2O3%の組成を有する直径が3.5mm、単長1
mの被処理ガラス棒を、モル%で表して、5t0220
%、BPO420%、Pbo  55%、A I 20
35%の組成を有するフリツ)100ffiffi部に
対し、粘土10iftfft部と水50重量部を加え十
分混合して得たスラリーの中に浸漬して、被処理ガラス
棒の表面にスラリーを塗布した。該ガラス棒を120℃
で乾燥後、495℃迄昇温し、2時間焼成した。冷却後
、該ガラス棒をスライシングマシーンで1.8mmの厚
みに切断して円盤状ガラス板を作製した。その側周部の
被覆ガラス層の厚みは33μmであった。この円盤状ガ
ラス板をモル%で表して、KNO397%、TlN0r
3%の組成からなる溶融塩中に浸漬して、492℃で6
95時間イオン交換処理を行った。この様にして得られ
たレンズ素材の屈折率分布を調べたところ、実施例1と
同じ屈折率分布形状のレンズ素材が得られた。
Example 8 Expressed as mol%, 5iOa62%, 82035%Mg0
2%, ZnO11%, Na2O5%, 2012%,
A diameter of 3.5 mm and a single length of 1 with a composition of Tl2O3%
m of glass rods to be treated, expressed as mol%, 5t0220
%, BPO420%, Pbo 55%, AI 20
The glass rod to be treated was immersed in a slurry obtained by adding 10 iffft parts of clay and 50 parts by weight of water to 100 ffiffi parts having a composition of 35%, and applying the slurry to the surface of the glass rod to be treated. The glass rod was heated to 120℃
After drying, the temperature was raised to 495°C and baked for 2 hours. After cooling, the glass rod was cut into a 1.8 mm thick piece using a slicing machine to produce a disk-shaped glass plate. The thickness of the covering glass layer at the side circumference was 33 μm. Expressing this disk-shaped glass plate in mol%, KNO397%, TlN0r
It was immersed in a molten salt with a composition of 3% and heated at 492°C for 6 hours.
Ion exchange treatment was performed for 95 hours. When the refractive index distribution of the lens material thus obtained was examined, a lens material with the same refractive index distribution shape as in Example 1 was obtained.

比較例1 実施例1と同じ母材ガラスのみを熱延伸して得たガラス
ロッドをスライシングマシーンで切断して、直径が6.
 0mm、厚みが3.2mmの円盤状ガラス板を作製し
て、実施例1と同じ?dlii!塩中で、かつ同じ条件
でイオン交換したレンズ素材の屈折率分布を調べたとこ
ろ、前記ガラス板の側周部からの一価陽イオンの拡散が
あるため、第3図に示す擾に側周部で半径方向の屈折率
分布が形成されている事が確認された。
Comparative Example 1 A glass rod obtained by hot-stretching only the same base material glass as in Example 1 was cut with a slicing machine to a diameter of 6.5 mm.
A disk-shaped glass plate with a thickness of 3.2 mm and a thickness of 3.2 mm was prepared in the same manner as in Example 1. dliii! When we investigated the refractive index distribution of a lens material subjected to ion exchange in salt under the same conditions, we found that monovalent cations diffused from the side periphery of the glass plate. It was confirmed that a radial refractive index distribution was formed in the area.

比較例2 実施例1と同じ組成の直径が4−  Omrn、  単
長が1mの被処理ガラス棒をスライシングマシーンで切
断して、厚みが2.2mmの円盤状ガラス板を作製して
、実施例1と同じ)7J融塩中で、かつ同じ条件でイオ
ン交換したレンズ素材の屈tRi1分布を調べたところ
、前記カラス板の側周部からの一価陽イオンの拡散が起
こり、第3図に示す様に側周部で半径方向の屈折率分布
が形成されている事が確認された。
Comparative Example 2 A glass rod to be treated having the same composition as Example 1 and having a diameter of 4-Omrn and a unit length of 1 m was cut with a slicing machine to produce a disc-shaped glass plate with a thickness of 2.2 mm. When we investigated the flexural tRi1 distribution of the lens material subjected to ion exchange in 7J molten salt under the same conditions as in 1), we found that monovalent cations diffused from the side periphery of the glass plate, as shown in Figure 3. As shown, it was confirmed that a radial refractive index distribution was formed at the side periphery.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、硝材を浪費することがなく、効率良く
レンズ素材を作製することができる。また、製造工程を
少なくすることも可能になるため光軸方向屈折率分布型
レンズが効率良く、かつ安価に製造できる。
According to the present invention, lens materials can be efficiently produced without wasting glass materials. Further, since it is possible to reduce the number of manufacturing steps, the optical axis direction gradient index lens can be manufactured efficiently and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって作製した円盤状ガラス板のイオ
ン交換処理工程を示す断面図、第2図(a)は本発明に
よるイオン交換処理後の円盤状ガラス板の断面図、同図
(b)はその側周部(破線Ig)の屈折率分布形状を示
す図、第3図(a)は従来法によるイオン交換処理後の
円盤状ガラス板の断面図、同図(b)はその側周部(破
線部)の屈折率分布形状を示す図、第4図は平凸の光軸
方向屈折率分布型レンズを示す断面図である。 1・・・・・被処理ガラス体   2・・・・・被覆ガ
ラス層3・・・・・溶融塩
FIG. 1 is a cross-sectional view showing the ion exchange treatment process of a disc-shaped glass plate produced according to the present invention, FIG. ) is a diagram showing the refractive index distribution shape of the side circumference (broken line Ig), Figure 3 (a) is a cross-sectional view of the disc-shaped glass plate after ion exchange treatment by the conventional method, and Figure 3 (b) is the side thereof. FIG. 4 is a cross-sectional view showing a plano-convex optical axis direction gradient index lens. 1... Glass body to be treated 2... Covering glass layer 3... Molten salt

Claims (1)

【特許請求の範囲】[Claims] ガラス体と一価陽イオンを含む溶融塩とを接触させて、
該イオンとガラス体中に含まれる一価陽イオンとを交換
させるイオン交換処理方法において、イオン交換処理に
先立ち、前記ガラス体の要部以外を、一価陽イオンを含
まないガラスないしはガラス質無機材から成る被覆層で
被覆することを特徴とするガラス体のイオン交換処理方
法。
By bringing the glass body into contact with a molten salt containing monovalent cations,
In an ion exchange treatment method in which the ions are exchanged with monovalent cations contained in the glass body, prior to the ion exchange treatment, other than the main parts of the glass body are treated with glass that does not contain monovalent cations or vitreous material. A method for ion exchange treatment of a glass body, characterized by coating it with a coating layer made of a material.
JP1097739A 1989-04-18 1989-04-18 Ion exchange treatment of glass body Pending JPH02279537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097739A JPH02279537A (en) 1989-04-18 1989-04-18 Ion exchange treatment of glass body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097739A JPH02279537A (en) 1989-04-18 1989-04-18 Ion exchange treatment of glass body

Publications (1)

Publication Number Publication Date
JPH02279537A true JPH02279537A (en) 1990-11-15

Family

ID=14200266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097739A Pending JPH02279537A (en) 1989-04-18 1989-04-18 Ion exchange treatment of glass body

Country Status (1)

Country Link
JP (1) JPH02279537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506607A (en) * 2008-10-24 2012-03-15 サン−ゴバン グラス フランス Glass substrate with electrodes, especially substrate used for organic light-emitting diode elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506607A (en) * 2008-10-24 2012-03-15 サン−ゴバン グラス フランス Glass substrate with electrodes, especially substrate used for organic light-emitting diode elements

Similar Documents

Publication Publication Date Title
US3843228A (en) Production of light-conducting glass structures with refractive index distribution
US4849002A (en) Ion-exchangeable germanate method for strengthened germanate glass articles
US4971423A (en) Gradient-index-type optical device
GB2075002A (en) Production of polarizing glasses
JP2011515322A (en) Planar optical element manufacturing method and element obtained by the manufacturing method
US3923486A (en) Method of producing light-conducting glass structure
US4686195A (en) Method and composition for the manufacture of gradient index glass
JP2004505882A (en) High silver borosilicate glass
JPH0627015B2 (en) Optical waveguide manufactured by exchanging Cs + ions from special base material glass
JPS6362454B2 (en)
US5032000A (en) Gradient index-type optical device and process for production thereof
JPH02279537A (en) Ion exchange treatment of glass body
GB2110660A (en) Acid-soluble glass for making flexible optical fiber bundle
GB2084565A (en) Acid-soluble glass composition
US4108621A (en) Process of producing soft aperture filter
US4851024A (en) Process for producing optical glass
JPS5964547A (en) Preparation of lens having refractive index distribution in axial direction
JPS57179055A (en) Manufacture of refractive index distribution type lens
JPS62858B2 (en)
JPH0353263B2 (en)
JPS6042239A (en) Manufacture of glass body having refractive index distribution
WO2024162147A1 (en) Glass substrate and photonic integrated device
JPS63225561A (en) Ion exchange method for glass rod
JPS61261238A (en) Production of lens having refractive index distribution in axial direction
JPH0764600B2 (en) Method for producing continuous refractive index type photoconductive glass body