JPS6042239A - Manufacture of glass body having refractive index distribution - Google Patents

Manufacture of glass body having refractive index distribution

Info

Publication number
JPS6042239A
JPS6042239A JP58146447A JP14644783A JPS6042239A JP S6042239 A JPS6042239 A JP S6042239A JP 58146447 A JP58146447 A JP 58146447A JP 14644783 A JP14644783 A JP 14644783A JP S6042239 A JPS6042239 A JP S6042239A
Authority
JP
Japan
Prior art keywords
refractive index
index distribution
glass body
gel
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58146447A
Other languages
Japanese (ja)
Other versions
JP2515713B2 (en
Inventor
Kenzo Susa
憲三 須佐
Iwao Matsuyama
松山 巖
Hiroyoshi Matsumura
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58146447A priority Critical patent/JP2515713B2/en
Publication of JPS6042239A publication Critical patent/JPS6042239A/en
Application granted granted Critical
Publication of JP2515713B2 publication Critical patent/JP2515713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Abstract

PURPOSE:To manufacture inexpensively a glass body having a refractive index distribution in the thickness direction under mild conditions by immersing silica gel contg. other added metal in a leaching liq. to leach part of the added metal and by drying and sintering the remaining silica gel. CONSTITUTION:Alcohol and acid are added to Si(OCH3)4 contg. Ge(OCH3)4, and the resulting hydrolyzate is converted into gel in a glass vessel 1 to form wet gel 2. This silica gel 2 is immersed in water 3 as a leaching liq. at room temp. to leach part of the contained Ge. The remaining gel is washed with methanol, dried, and vitrified by sintering in an electric furnace 4. P, B, Ta, Ti, Zr or other element providing a high refractive index to silica may be used in place of Ge as the added element. The leaching liq. is selected in accordance with the kind of the used element. For example, when Ta is used, an aqueous soln. of acid or alkali is suitable for use as the leaching liq.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は厚み方向に屈折率分布を有するガラスの製造方
法に係シ、特に、光フアイバ母材、ロッドレンズ、その
他の光学部品などに好適なガラスの製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of manufacturing glass having a refractive index distribution in the thickness direction, and is particularly suitable for optical fiber base materials, rod lenses, and other optical components. This invention relates to a glass manufacturing method.

〔発明の背景〕[Background of the invention]

従来、厚み方向に屈折率分布を設ける方法として、イオ
ン交換法、CVD法などが知られている。
Conventionally, ion exchange methods, CVD methods, and the like are known as methods for providing a refractive index distribution in the thickness direction.

イオン交換法では、例えば、[Appied phys
ics; vow、 19. A7.1113 (19
80) 、〕 に見られるようにイオン交換可能なTt
lやNa+を含有するホウ硅酸ガラスロッドを530〜
550CのK N Os溶融塩中で50〜100時間処
理し、さらに、切断、研磨加工する。この方法では、ガ
ラスロッドを溶融塩中に長時間保持するいうきわめて作
業環境の悪い工程を必要とする。また、用いる材料が、
アルカl含有するため、耐候性の点でも信頼性に乏しか
った。
In the ion exchange method, for example, [Applied phys
ics; vow, 19. A7.1113 (19
80) , ], Tt that can be ion exchanged
Borosilicate glass rod containing l and Na+ from 530~
It is treated in a KNOs molten salt at 550C for 50 to 100 hours, and then cut and polished. This method requires holding the glass rod in molten salt for an extended period of time, a process that is extremely harsh. In addition, the materials used are
Since it contained alkali, it was also unreliable in terms of weather resistance.

一方、CVD法では高シリカ系の材料が1吏用されるた
め信頼性は高かったが、大きな屈折率分布をつけること
が困難であシ、かつ、製造速度の点でも問題があった。
On the other hand, in the CVD method, reliability was high because a high silica material was used, but it was difficult to create a large refractive index distribution, and there were also problems in terms of manufacturing speed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は以上の従来技術の欠点をなくし、比較的
緩やかな条件で、安価に製造する方法を提供することに
ある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a method for manufacturing at a low cost under relatively mild conditions.

〔発明の概要〕[Summary of the invention]

本発明の方法によれば、シリコン以外の金属を1種以上
添加したシリカゲルを1回以上溶出液中に所定の時間浸
漬し、金属成分の一部分を溶出した後、乾燥・焼結する
ことにより、厚み方向に屈折率分布を有するガラスが製
造される。
According to the method of the present invention, silica gel to which one or more metals other than silicon are added is immersed in an eluate at least once for a predetermined period of time to elute a portion of the metal components, and then dried and sintered. Glass having a refractive index distribution in the thickness direction is manufactured.

以下実施列により詳細に説明する。This will be explained in detail below using the implementation column.

〔発明の実施例〕[Embodiments of the invention]

実施例1 30モル%(7) Qe (OCHs )4e含有すル
S i (Oc)(!l )41モルに4.5モルのア
ルコールおよび4モルの1/100N−HC1水溶液を
加えて加水分解し、第1図に示すとおシ内径8trag
φのガラス容器内1でゲル化し、Wetゲル2を作成し
た。このゲルの一部分=i20caの水3に室温で約9
0分間浸漬し、メタノール中に約50分間浸漬し洗浄し
た後、65Cで徐々に乾燥し、電気炉4を用いて115
0Cで焼結ガラス化したところ、直径3wnφ、長さ約
10mmのガラスロッドが得られた。このガラスロッド
を軸に垂直な方向に切断し、径方向の屈折率分布を測定
したところ、第2図曲線5に示すとおり、中心部分で高
く周辺で低い屈折率分布を有することがわかった。さら
に、この屈折率分布を屯 rの位置における屈折率を鬼<r>とじ、aを定数とし
たとき、 我 η 見(r)二雉◎(1−ar”) に近い屈折率分布を有する二とがわかった。
Example 1 4.5 mol of alcohol and 4 mol of 1/100N-HC1 aqueous solution were added to 41 mol of 30 mol% (7) Qe (OCHs)4e-containing Si (Oc) (!l) for hydrolysis. As shown in Figure 1, the inner diameter of the cylinder is 8 trag.
The mixture was gelated in a glass container 1 having a diameter of φ to create a wet gel 2. One portion of this gel = approximately 9 in 20 ca of water at room temperature
After immersing in methanol for about 50 minutes and washing, gradually drying at 65C, and using electric furnace 4 at 115C.
When it was sintered and vitrified at 0C, a glass rod with a diameter of 3wnφ and a length of about 10mm was obtained. When this glass rod was cut in a direction perpendicular to the axis and the refractive index distribution in the radial direction was measured, it was found that the refractive index distribution was high at the center and low at the periphery, as shown by curve 5 in Figure 2. Furthermore, when this refractive index distribution is expressed as the refractive index at the position r and a is set as a constant, it has a refractive index distribution close to the following. I found out the second one.

本発明者らの実験によれば、添加元素の種類および溶出
液の種類が決まればゲルの直径(または厚み)、ゲルの
密度、溶出液量、溶出時間、溶出温度などを変えること
により、屈折率分布形状を制御することができる。
According to the experiments of the present inventors, once the type of added element and the type of eluent are determined, refractive The rate distribution shape can be controlled.

添加元素としては、中心部分と周辺部分の屈折4f:大
きくとるためには、シリカに対して大きな屈折4を与え
る添加元素、たとえば、Ta、’pi。
As an additive element, in order to increase the refraction 4f of the central portion and the peripheral portion, an additive element that gives a large refraction 4 to silica, such as Ta and 'pi.

Zr、Sb、kA、Nb、Snl Pb、Zrなどを選
ぶ必要がある。
It is necessary to select Zr, Sb, kA, Nb, Snl Pb, Zr, etc.

また、浴出7夜は、たとえ・ば、Gel P+ Bなど
の場合は水が最も好しいが、酸や、アルカリ水溶液を使
用することもできる。逆にTaなどの場合は、酸やアル
カリ水溶液が好しい。このことは、添加元素の溶出液−
\の溶解度と関係するものであり、使用する添加元素に
応じて溶解度が大きくとれる診出液を選ぶ必要がある。
Furthermore, for example, in the case of Gel P+ B, water is most preferable for the bath, but an acid or alkaline aqueous solution can also be used. Conversely, in the case of Ta, etc., an acid or alkali aqueous solution is preferable. This means that the eluent of the added element -
It is related to the solubility of \, and it is necessary to select a diagnostic fluid that has a high solubility depending on the added element used.

また、使用する酸・アルカリの濃度は一般に高いほど好
しいが、作業上の観点から、約10規定以下が好しい。
In general, the concentration of the acid/alkali used is preferably as high as possible, but from the viewpoint of work, it is preferably about 10N or less.

溶出液がアルカリ性の場合、ロッド周辺部分で第2図曲
1腺6に示したような屈折率分布を有するクラップイン
部分が生じる。この場合、水または酸性溶出液に浸漬す
る前あるいは浸漬後、アルカリ性の溶出液に、少なくと
も1回以上浸漬することによシ達成される。その場合、
アルカリ濃度は約0.IN以上が好しい。
When the eluate is alkaline, a clap-in portion having a refractive index distribution as shown in curve 1 gland 6 of FIG. 2 is generated around the rod. In this case, this can be accomplished by immersing the material in an alkaline eluent at least once before or after immersing it in water or an acidic eluent. In that case,
The alkaline concentration is approximately 0. IN or higher is preferable.

溶出液量は最小限、ゲルが溶出液に浸されるだけあれば
よいが、溶出液量が多いほど、周辺部分の屈折率を下げ
ることができる。さらに、水を溶出液として用いた場合
は、流水下で溶出することができるため、有利である。
The amount of eluate needs to be minimal, as long as the gel is immersed in the eluate, but the larger the amount of eluate, the lower the refractive index of the peripheral portion can be. Furthermore, when water is used as the eluent, it is advantageous because the elution can be carried out under running water.

一方、溶出時間はゲルの密度すなわち多孔質ゲルの細孔
径、およびゲルのサイズで決まるものである。たとえば
、細孔径が2倍になれば、溶出時間は約半分に、また、
サイズが2倍になれば、逆に4倍になる。ゲルの密度と
サイズが同一のものに対しては、時間が長いほど全体の
溶出量は多くなるが、中心部分と周辺部分の屈折率差が
小さくなる。たとえば、上記実施例では、溶出時間を1
5時間まで延長した場合は、はとんど屈折率差が見られ
なくなった。したがって、いたずらに、長時間溶出すこ
とは好しくなく、ゲルのサイズなどによって自から溶出
時間の上限が存在する。
On the other hand, the elution time is determined by the density of the gel, that is, the pore diameter of the porous gel, and the size of the gel. For example, if the pore size is doubled, the elution time will be approximately halved, and
If the size doubles, it will quadruple. For gels with the same density and size, the longer the time, the greater the total elution amount, but the smaller the difference in refractive index between the center and peripheral regions. For example, in the above example, the elution time is 1
When the time was extended to 5 hours, no difference in refractive index was observed. Therefore, it is undesirable to elute for a long time, and there is an upper limit to the elution time depending on the size of the gel.

溶出温度は室温でも十分可能であるが、溶出時間の短縮
のため必要に応じて、容出液の沸点近くまで上げること
ができる。
Although the elution temperature can be set at room temperature, it can be raised to near the boiling point of the eluate if necessary to shorten the elution time.

上記実施例においては、溶出処理後、メタノール中に浸
漬し、ゲルを洗浄したが、この工程は、必ずしも必要と
しない。しかしながら、溶出量が多い場合、溶出成分が
、多孔質ゲル表面に付着したり、ゲルの割れを生じさせ
たり、結晶化を生じさせたりする。これを防止するため
に、ゲルを洗浄するわけであるが、洗浄液としては溶出
作用の少ない液体が好しく、メタノール、エタノール。
In the above examples, after the elution treatment, the gel was washed by immersing it in methanol, but this step is not necessarily necessary. However, if the amount of elution is large, the eluate components may adhere to the surface of the porous gel, cause cracks in the gel, or cause crystallization. To prevent this, the gel is washed, and the washing liquid is preferably a liquid with little elution effect, such as methanol or ethanol.

グロバノール、ブタノールなどが特に好しい。洗浄時間
および温度は、溶出時間・温度条件と同様にゲルの密度
およびサイズによって下限条件が決まる。
Globanol, butanol and the like are particularly preferred. The lower limit of the washing time and temperature is determined by the density and size of the gel, as well as the elution time and temperature conditions.

上記の実施例では、アルコキシドの加水分解によシ得ら
れたゲルを用いたが、本発明の実施に当っては、第2の
金属酸化物の添加された多孔質ゲルであればいかなるも
のも使用できる。
In the above examples, a gel obtained by hydrolysis of an alkoxide was used, but in carrying out the present invention, any porous gel to which a second metal oxide is added may be used. Can be used.

また、添加される金属が2種以上間時添加されても同様
な効果が期待できることは自明である。
Furthermore, it is obvious that similar effects can be expected even if two or more metals are added over time.

また、以上の実施例では、ロッド状ガラスに関するもの
であるが、板状のゲルを用いれば、板の厚み方向に屈折
率分布を有する板ガラスが作成できることは自明である
Furthermore, although the above examples relate to rod-shaped glass, it is obvious that by using a plate-shaped gel, a plate glass having a refractive index distribution in the thickness direction of the plate can be created.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溶出温度が室温で、かつ比較的短時間
(数時間以内)に所望の屈折率分布をつけることができ
るので、従来に比較して製造工程における作業環境をき
わめてよくすることができる。また、屈折率の大きいシ
リカ系の材料を使用することができるため、耐候性を向
上させることができる。さらに、本発明の方法は一回の
処理で大量の試料を処理できる特徴を有するため、量産
化、低価格化の効果をも有するものである。
According to the present invention, the desired refractive index distribution can be achieved at room temperature and in a relatively short period of time (within several hours), making the working environment in the manufacturing process much better than in the past. I can do it. Furthermore, since a silica-based material with a high refractive index can be used, weather resistance can be improved. Furthermore, since the method of the present invention has the feature of being able to process a large amount of samples in a single process, it also has the effect of mass production and cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプロセス工程の一例を示す説明図、第
2図は本発明の一実施例で得られたガラスロッドの屈折
率分布を示すグラフである。
FIG. 1 is an explanatory diagram showing an example of the process steps of the present invention, and FIG. 2 is a graph showing the refractive index distribution of a glass rod obtained in one example of the present invention.

Claims (1)

【特許請求の範囲】 1、シリコン以外の金属を少なくとも1種以上添加した
シリカゲルを少なくとも1種以上の溶出液中に少なくと
も1回以上、溶出液の沸点以下の温度にて浸漬し、金属
成分の一部分を溶出した後、乾燥、焼結することを特徴
とする厚み方向に屈折率分布を有するガラスの製造方法
。 2、前記1種以上の溶出液が実質的に水である溶出液を
含んで成ることを特徴とする特許請求の範囲第1項記載
の屈折率分布を有するガラス体の製造方法。 3、前記1種以上の溶出液が10規定以下の酸性水溶液
を含んで成ることを特徴とする特許請求の範囲第1項記
載の屈折率分布を有するガラス体の製造方法。 4、前記1種以上の溶出液が0.1〜10規定のアルカ
リ性水溶液を含んで成ることを特徴とする特許請求の範
囲第1項記載の屈折率分布を有するガラス体の製造方法
。 5、前記金属が、Ge、P、Bから選択した少なくとも
1金属であることを特徴とする特許請求の範囲第1項、
第2項もしくは第4項記載の屈折率分布を有するガラス
体の製造方法。 6、前記金属が、’l’a、Ti、Zr、8b、A/1
.INb、Sn、Pb、Znから選択した少なくとも1
金、属であることを特徴とする特許請求の範囲第1項、
第3項もしくは第4項記載の屈折率分布を有するガラス
体の製造方法。 7、溶出温度が室温近傍であることを特徴とする特許請
求の範囲第1項乃至第6項のいずれかの項に記載の屈折
率分布を有するガラス体の製造方法。 8、溶出後、乾燥焼結する前に、ゲルを洗浄することを
特徴とする特許請求の範囲第1項乃至第7項のいずれか
の項に記載の屈折率分布を有するガラス体の製造方法。 9、前記洗浄液がメタノール、エタノール、プロパノー
ルから選ばれた少なくとも1種以上から成ることを特徴
とする特許請求の範囲第8項記載の屈折率分布を有する
ガラス体の製造方法。
[Claims] 1. Silica gel to which at least one metal other than silicon is added is immersed in at least one eluate at least once at a temperature below the boiling point of the eluate to remove the metal components. A method for producing glass having a refractive index distribution in the thickness direction, which comprises eluting a portion of the glass and then drying and sintering the glass. 2. The method for manufacturing a glass body having a refractive index distribution according to claim 1, wherein the one or more eluents include an eluate that is substantially water. 3. The method for manufacturing a glass body having a refractive index distribution according to claim 1, wherein the one or more eluents contain an acidic aqueous solution of 10N or less. 4. The method for manufacturing a glass body having a refractive index distribution according to claim 1, wherein the one or more eluents contain an alkaline aqueous solution of 0.1 to 10 normal. 5. Claim 1, wherein the metal is at least one metal selected from Ge, P, and B.
A method for manufacturing a glass body having the refractive index distribution according to item 2 or 4. 6. The metal is 'l'a, Ti, Zr, 8b, A/1
.. At least one selected from INb, Sn, Pb, and Zn
Claim 1, characterized in that it is metal or metal;
A method for producing a glass body having the refractive index distribution according to item 3 or 4. 7. A method for manufacturing a glass body having a refractive index distribution according to any one of claims 1 to 6, characterized in that the elution temperature is near room temperature. 8. A method for manufacturing a glass body having a refractive index distribution according to any one of claims 1 to 7, which comprises washing the gel after elution and before drying and sintering. . 9. The method for producing a glass body having a refractive index distribution according to claim 8, wherein the cleaning liquid comprises at least one selected from methanol, ethanol, and propanol.
JP58146447A 1983-08-12 1983-08-12 Method for producing glass body having refractive index distribution Expired - Lifetime JP2515713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146447A JP2515713B2 (en) 1983-08-12 1983-08-12 Method for producing glass body having refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146447A JP2515713B2 (en) 1983-08-12 1983-08-12 Method for producing glass body having refractive index distribution

Publications (2)

Publication Number Publication Date
JPS6042239A true JPS6042239A (en) 1985-03-06
JP2515713B2 JP2515713B2 (en) 1996-07-10

Family

ID=15407845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146447A Expired - Lifetime JP2515713B2 (en) 1983-08-12 1983-08-12 Method for producing glass body having refractive index distribution

Country Status (1)

Country Link
JP (1) JP2515713B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270233A (en) * 1985-09-24 1987-03-31 Hoya Corp Production of stuffed glass of unstuffed glass by sol-gel method
JPS62119120A (en) * 1985-11-18 1987-05-30 Hitachi Cable Ltd Production of vitreous body having refractive index distribution
JPS62119122A (en) * 1985-11-18 1987-05-30 Hitachi Cable Ltd Production of vitreous body having refractive index distribution
US5837023A (en) * 1996-08-08 1998-11-17 Olympus Optical Co., Ltd. Process for making gradient index optical elements
US7304253B2 (en) 2004-07-22 2007-12-04 Samsung Electronics Co., Ltd. Switching device of an image recording and replaying apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019520A (en) * 1973-05-31 1975-03-01
JPS55100231A (en) * 1979-01-19 1980-07-31 Hitachi Ltd Production of optical fiber base material
JPS5792543A (en) * 1980-11-27 1982-06-09 Sumitomo Electric Ind Ltd Preparation of optical glass part
JPS589842A (en) * 1981-07-01 1983-01-20 Hitachi Ltd Preparation of optical glass
JPS58135150A (en) * 1982-02-08 1983-08-11 Hitachi Ltd Preparation of optical glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019520A (en) * 1973-05-31 1975-03-01
JPS55100231A (en) * 1979-01-19 1980-07-31 Hitachi Ltd Production of optical fiber base material
JPS5792543A (en) * 1980-11-27 1982-06-09 Sumitomo Electric Ind Ltd Preparation of optical glass part
JPS589842A (en) * 1981-07-01 1983-01-20 Hitachi Ltd Preparation of optical glass
JPS58135150A (en) * 1982-02-08 1983-08-11 Hitachi Ltd Preparation of optical glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270233A (en) * 1985-09-24 1987-03-31 Hoya Corp Production of stuffed glass of unstuffed glass by sol-gel method
JPH0556291B2 (en) * 1985-09-24 1993-08-19 Hoya Corp
JPS62119120A (en) * 1985-11-18 1987-05-30 Hitachi Cable Ltd Production of vitreous body having refractive index distribution
JPS62119122A (en) * 1985-11-18 1987-05-30 Hitachi Cable Ltd Production of vitreous body having refractive index distribution
US5837023A (en) * 1996-08-08 1998-11-17 Olympus Optical Co., Ltd. Process for making gradient index optical elements
US7304253B2 (en) 2004-07-22 2007-12-04 Samsung Electronics Co., Ltd. Switching device of an image recording and replaying apparatus

Also Published As

Publication number Publication date
JP2515713B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US3485687A (en) Porous high silica glass
JP3708238B2 (en) Manufacturing method of gradient index optical element
US4686195A (en) Method and composition for the manufacture of gradient index glass
US4756733A (en) Method and composition for creating gradient-index glass
JPS6042239A (en) Manufacture of glass body having refractive index distribution
JPS62119121A (en) Production of vitreous body having refractive index distribution
JP2515713C (en)
JPS62119122A (en) Production of vitreous body having refractive index distribution
JP3209533B2 (en) Method of manufacturing refractive index distribution type optical element
JPS6236980B2 (en)
JPS61183137A (en) Production of glass body having refractive index distribution
JPS61183136A (en) Production of glass body having refractive index distribution
JP3112473B2 (en) Method of manufacturing refractive index distribution type optical element
JPH04260608A (en) Production of optical element with refractive index distribution type
JPS62119120A (en) Production of vitreous body having refractive index distribution
JPS6364927A (en) Production of glass material having refractive index distribution
JP2687569B2 (en) Ion exchange treatment method for optical glass
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JP2515889B2 (en) Gradient index type optical element and manufacturing method thereof
JPH0788224B2 (en) Method of manufacturing gradient index lens
JP3153814B2 (en) Method of manufacturing refractive index distribution type optical element
JPS6364928A (en) Production of glass material having refractive index distribution
JPS6395124A (en) Production of glass material having refractive index distribution
JPS62171929A (en) Production of glass material having refractive index distribution
JP3043781B2 (en) Method of manufacturing refractive index distribution type optical element