JP3112473B2 - Method of manufacturing refractive index distribution type optical element - Google Patents

Method of manufacturing refractive index distribution type optical element

Info

Publication number
JP3112473B2
JP3112473B2 JP02279998A JP27999890A JP3112473B2 JP 3112473 B2 JP3112473 B2 JP 3112473B2 JP 02279998 A JP02279998 A JP 02279998A JP 27999890 A JP27999890 A JP 27999890A JP 3112473 B2 JP3112473 B2 JP 3112473B2
Authority
JP
Japan
Prior art keywords
gel
refractive index
index distribution
optical element
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02279998A
Other languages
Japanese (ja)
Other versions
JPH04154628A (en
Inventor
荘尚 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP02279998A priority Critical patent/JP3112473B2/en
Publication of JPH04154628A publication Critical patent/JPH04154628A/en
Application granted granted Critical
Publication of JP3112473B2 publication Critical patent/JP3112473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、屈折率分布型光学素子の製造方法に係り、
特に光学レンズなどの製造に適用されるゾル・ゲル法に
よる屈折率分布型光学素子の製造方法に関する。
The present invention relates to a method for manufacturing a gradient index optical element,
In particular, the present invention relates to a method for producing a gradient index optical element by a sol-gel method applied to the production of optical lenses and the like.

[従来の技術] 一般に、屈折率分布を有する屈折率分布型光学素子の
製造方法として、ゾル・ゲル法が用いられている。
[Related Art] In general, a sol-gel method is used as a method for manufacturing a gradient index optical element having a refractive index distribution.

従来、上記ゾル・ゲル法により、屈折率分布を付与す
る方法として、例えばJournal of Non−Crystalline So
lids,Vol.85(1986),pp.244〜246,“Preparation of G
radient−Index Glass Rods by the Sol−Gel Process"
に記載される方法が知られている。この方法は、少なく
とも一種の屈折率分布を付与するための金属成分を含有
するシリカゾルを調整し、ゲル化させた後に、このウェ
ットゲルを上記金属成分を溶解・拡散しうる水溶液など
の溶液に浸漬し、屈折率分布を付与する金属成分を溶出
後、ゲル中の溶媒を交換して、ゲル内の細孔に金属塩の
微結晶を沈殿させて分布を固定し、乾燥・焼成するとい
う方法である。
Conventionally, as a method of providing a refractive index distribution by the sol-gel method, for example, Journal of Non-Crystalline So
lids, Vol.85 (1986), pp.244-246, “Preparation of G
radient-Index Glass Rods by the Sol-Gel Process "
Are known. In this method, a silica sol containing a metal component for imparting at least one refractive index distribution is prepared and gelled, and then the wet gel is immersed in a solution such as an aqueous solution that can dissolve and diffuse the metal component. Then, after eluting the metal component that gives the refractive index distribution, the solvent in the gel is exchanged, and the crystal is precipitated by microcrystals of the metal salt in the pores of the gel to fix the distribution, and then dried and fired. is there.

[発明が解決しようとする課題] 従来までの方法により、屈折率分布付与を行い、得ら
れたガラス体の屈折率分布を測定すると、第5図に示す
ように、ガラス体中心部で屈折率が高く、外周部で低
い、屈折率差Δnとなるものが得られる。しかし、得ら
れたガラス体の外周部での屈折率分布に乱れが生じてい
るために、得られたガラス体の全てを使用することはで
きなかった。従来法では、この外周部の乱れを取り除く
ために、ガラス体を得た後に外周部のみを削り取らなけ
ればならず、工数が増え、更に有効径が小さくなってし
まった。
[Problems to be Solved by the Invention] When a refractive index distribution is provided by a conventional method and the refractive index distribution of the obtained glass body is measured, as shown in FIG. Is high, and the refractive index difference Δn is low at the outer peripheral portion. However, since the refractive index distribution at the outer peripheral portion of the obtained glass body was disturbed, all of the obtained glass bodies could not be used. In the conventional method, in order to remove the disturbance in the outer peripheral portion, only the outer peripheral portion has to be cut off after obtaining the glass body, which increases the number of steps and further reduces the effective diameter.

ゾル・ゲル法によると、一般に大口径のガラス体を得
ることは困難であるため、ガラス体を小さく加工するこ
とは好ましくなく、また、加工する場合は、非常に高い
加工精度が要求されるという問題点があった。
According to the sol-gel method, it is generally difficult to obtain a large-diameter glass body, so it is not preferable to work the glass body in a small size, and when working, very high processing accuracy is required. There was a problem.

本発明は、かかる従来の問題点に鑑みてなされたもの
で、屈折率分布に乱れが無く、より大きな有効径の屈折
率分布型光学素子を得ることができる屈折率分布型光学
素子の製造方法を提供することを目的とする。
The present invention has been made in view of such a conventional problem, and has no disorder in the refractive index distribution, and a method of manufacturing a refractive index distributed optical element capable of obtaining a refractive index distributed optical element having a larger effective diameter. The purpose is to provide.

[課題を解決するための手段] 上記目的を達成するため、本発明は、ゾル・ゲル法に
よる屈折率分布型光学素子の製造方法において、屈折率
分布を付与する成分の濃度勾配を持ったウェットゲルの
周囲に、前記ウェットゲルに含まれている液体が透過す
ることのできる一層以上の緩衝層を設けて、前記ウェッ
トゲルの乾燥を行い、前記屈折率分布を付与する成分の
濃度分布の乱れが緩衝層内に形成されるようにしたこと
を特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention relates to a method for manufacturing a refractive index distribution type optical element by a sol-gel method. Around the gel, one or more buffer layers through which the liquid contained in the wet gel can pass are provided, and the wet gel is dried to disturb the concentration distribution of the component that provides the refractive index distribution. Is formed in the buffer layer.

この発明では、屈折率分布を付与する成分として金属
塩を使用することができ、又、製造される光学素子とし
ては多成分系ガラスとすることができる。
In the present invention, a metal salt can be used as a component for imparting a refractive index distribution, and a multi-component glass can be used as an optical element to be manufactured.

又、本発明では、ゲルに屈折率分布を付与する成分に
対して濃度勾配を形成し、その後、ウェットゲル中の溶
媒を置換してゲルの細孔内に金属塩の微結晶を沈澱さ
せ、この沈澱の後、ゲルを乾燥させることができる。
Further, in the present invention, a concentration gradient is formed for the component that imparts the refractive index distribution to the gel, and then the solvent in the wet gel is replaced to precipitate fine crystals of the metal salt in the pores of the gel, After this precipitation, the gel can be dried.

以上の処理の後、緩衝層を取り除くか、またはそのま
ま焼結してガラス化することにより、最終的な屈折率分
布型光学素子を製造することができる。
After the above treatment, the buffer layer is removed or sintered as it is to vitrify, whereby a final graded index optical element can be manufactured.

[作用] 本発明の発明者は、第5図に示したガラス体の外周部
の屈折率分布の乱れは、金属成分の微結晶をゲルの細孔
内に沈殿させた後のゲルの乾燥工程において生じ、この
分布の乱れは、以下に述べる機構により発生しているこ
とを見いだした。
[Operation] The inventor of the present invention has found that the disorder of the refractive index distribution in the outer peripheral portion of the glass body shown in FIG. It has been found that this distribution disorder is caused by the mechanism described below.

ゲルの細孔内に金属塩の微結晶を沈殿させた、濃度分
布付与直後のゲルは、溶媒で満たされている。このとき
の金属成分の濃度分布は、第6図に示すようなもので、
分布の乱れは見られない。しかし、続いて行われる乾燥
工程において、ゲル中の溶媒は気相と接触しているゲル
の外周部から蒸発して、ゲルは乾燥してゆく。したがっ
て、ゲルの中心部に存在している溶媒は、外周部に存在
していた溶媒が蒸発することにより発生する毛管力など
により、徐々にゲルの外周部に移動して蒸発してゆく。
このときに、ゲルの外周部で溶媒は蒸発するが、溶媒に
溶解して外周部に移動してきた金属成分はゲルに取り残
されるため、金属成分の結晶が析出するものである。
The gel immediately after giving the concentration distribution, in which the fine crystals of the metal salt are precipitated in the pores of the gel, is filled with the solvent. The concentration distribution of the metal component at this time is as shown in FIG.
No disturbance in distribution is observed. However, in the subsequent drying step, the solvent in the gel evaporates from the outer peripheral portion of the gel in contact with the gas phase, and the gel dries. Therefore, the solvent existing in the central portion of the gel gradually moves to the outer peripheral portion of the gel and evaporates due to the capillary force generated by the evaporation of the solvent existing in the outer peripheral portion.
At this time, the solvent evaporates in the outer peripheral portion of the gel, but the metal component dissolved in the solvent and moved to the outer peripheral portion is left in the gel, so that the crystal of the metal component precipitates.

すなわち、ゲル中に存在している溶媒は、金属成分の
微結晶を生じさせるものであるため、金属成分の溶解度
は低いが極わずかには溶解し、また、ゲル内でのシラノ
ールの重縮合反応が進行しているため、水が生成するの
で、ゲル中の液体はわずかに金属成分の溶解度を持つ。
したがって、ゲル内の液体が蒸発していくときに、ゲル
内の液体にわずかに溶解して、ゲルの中心部に存在して
いた金属成分が、金属塩としてゲルの外周部に取り残さ
れるために、最終的に得られたガラス体には外周部に屈
折率分布の乱れが生じてしまうのである。
That is, since the solvent present in the gel causes microcrystals of the metal component, the solubility of the metal component is low but very small, and the polycondensation reaction of the silanol in the gel is also slight. The liquid in the gel has a slight solubility of the metal component as water is generated as the reaction proceeds.
Therefore, when the liquid in the gel evaporates, it is slightly dissolved in the liquid in the gel, and the metal component existing in the center of the gel is left as a metal salt on the outer periphery of the gel. In addition, in the finally obtained glass body, the refractive index distribution is disturbed in the outer peripheral portion.

そこで、本発明は、第1図(a)及び(b)に示すよ
うに、ウェットゲル1の表面を気相に直接接触させない
ように、緩衝層2を1層以上設けて乾燥することとし
た。これにより、ウェットゲル1中の液体は緩衝層2を
通して蒸発していく。つまり、気相はゲルには直接接触
せず、緩衝層2に接触しているので、ウェットゲル1中
の液体は緩衝層2で蒸発するため、第2図に示すよう
に、分布の乱れている部分は緩衝層2の内部のみとなっ
て、ウェットゲル1中では、分布が乱れている部分がな
くなる。
Therefore, in the present invention, as shown in FIGS. 1 (a) and 1 (b), one or more buffer layers 2 are provided and dried so that the surface of the wet gel 1 is not brought into direct contact with the gas phase. . Thereby, the liquid in the wet gel 1 evaporates through the buffer layer 2. That is, since the gas phase does not directly contact the gel but contacts the buffer layer 2, the liquid in the wet gel 1 evaporates in the buffer layer 2, and as shown in FIG. Only the inside of the buffer layer 2 is present, and there is no part in the wet gel 1 where the distribution is disturbed.

[実施例] (第1実施例) 7mlのSi(OCH3と7mlのSi(OC2H5に、HClを含
む濃度が1mol/のほう酸水溶液15mlと0.25mol/の酢
酸鉛60ml,0.5mol/の硝酸鉛10mlを加えて加水分解して
ゾルを調製し、内径20mmの円筒ガラス容器内でゲル化さ
せて、ウエットゲルを作成した。
Example (First Example) In 7 ml of Si (OCH 3 ) 4 and 7 ml of Si (OC 2 H 5 ) 4 , 15 ml of a boric acid aqueous solution containing HCl at a concentration of 1 mol / and 60 ml of 0.25 mol / lead acetate were added. A sol was prepared by hydrolysis by adding 10 ml of 0.5 mol / lead nitrate and gelling in a cylindrical glass container having an inner diameter of 20 mm to prepare a wet gel.

このゲルの一部を濃度が5mol/の硝酸カリウム水溶
液に浸漬した後、アセトンに浸漬して微結晶を沈殿させ
て濃度分布を付与したウェットゲルを得た。このゲルを
円筒型容器の中に置き、周囲にゼラチンを流し込んで冷
却してゼラチンを固化させた。この後に、電気炉で乾燥
して焼結し、ガラス化したところ、緩衝層のゼラチンは
燃焼して消失し、直径約7mmのガラスロッドが得られ
た。
A part of this gel was immersed in an aqueous solution of potassium nitrate having a concentration of 5 mol /, and then immersed in acetone to precipitate microcrystals to obtain a wet gel having a concentration distribution. The gel was placed in a cylindrical container, gelatin was poured around and cooled to solidify the gelatin. After that, when dried and sintered in an electric furnace and vitrified, the gelatin in the buffer layer burned and disappeared, and a glass rod having a diameter of about 7 mm was obtained.

このガラスロッドを軸に直角に切断して径方向の屈折
率分布を測定したところ、第3図に示すように、屈折率
分布に乱れは見られなかった。
When this glass rod was cut at right angles to the axis and the radial refractive index distribution was measured, no disorder was found in the refractive index distribution as shown in FIG.

(第2実施例) 第1実施例と同様にしてゾルを調製し、40mm×40mm×
30mmの直方体のガラス容器内でウエットゲルを作成し、
第1実施例と同様にして屈折率分布を付与したウェット
ゲルを得た。このゲルの表面を多孔質ガラスで覆い、電
気炉中で乾燥した後、多孔質ガラスを取り外して焼結
し、ガラス化したところ、厚さが約10mmのガラス板が得
られた。
(Second Example) A sol was prepared in the same manner as in the first example, and was 40 mm × 40 mm ×
Create a wet gel in a 30 mm rectangular parallelepiped glass container,
A wet gel provided with a refractive index distribution was obtained in the same manner as in the first example. After the surface of the gel was covered with porous glass and dried in an electric furnace, the porous glass was removed, sintered, and vitrified to obtain a glass plate having a thickness of about 10 mm.

このガラス板の厚み方向に屈折率分布を測定したとこ
ろ、第4図に示すような屈折率分布が得られ、外周部に
は屈折率の乱れはみられなかった。
When the refractive index distribution was measured in the thickness direction of the glass plate, a refractive index distribution as shown in FIG. 4 was obtained, and no disorder in the refractive index was observed in the outer peripheral portion.

(第3実施例) 第1実施例と同様にして濃度分布を付与したウェット
ゲルを得た。このゲルをゲルの径とほぼ等しい孔を開け
た寒天に入れて、電気炉中で乾燥した後、焼結し、ガラ
ス化したところ、第1実施例と同様のガラス体が得られ
た。
(Third Example) A wet gel provided with a concentration distribution was obtained in the same manner as in the first example. This gel was placed in agar having a hole substantially equal to the diameter of the gel, dried in an electric furnace, sintered, and vitrified to obtain a glass body similar to that of the first example.

(第4実施例) 第1実施例と同様にして濃度分布を付与したウェット
ゲルを得た。このゲルをゲルの径よりやや小さい孔を開
けたスポンジに入れた後に、円筒型容器の中に置き、1m
olのSi(OC2H5と、4molのアルコール、塩酸を含む
水4molからなる溶液を加水分解したゾルを流し込んでゲ
ル化させた。その後に、電気炉中で乾燥し、緩衝層とし
て設けたスポンジとゲルを取り除いて、焼結し、ガラス
化したところ、第1実施例と同様のガラス体が得られ
た。
(Fourth Example) A wet gel provided with a concentration distribution was obtained in the same manner as in the first example. After placing this gel in a sponge with a hole slightly smaller than the diameter of the gel, place it in a cylindrical container,
A sol obtained by hydrolyzing a solution composed of 4 mol of Si (OC 2 H 5 ) 4 and 4 mol of water containing 4 mol of alcohol and hydrochloric acid was poured to gel. Thereafter, drying was performed in an electric furnace, the sponge and the gel provided as the buffer layer were removed, and sintering and vitrification were performed. Thus, a glass body similar to that of the first example was obtained.

なお、上記実施例において、乾燥時にゲルの周囲に設
ける緩衝層はゼラチン、多孔質ガラス,寒天,スポン
ジ,ゲルを用いたが、本発明はかかる実施例に限定され
るものではなく、高分子ゲル,海綿,不織布など、ゲル
中の液体を透過することのできるものであればどのよう
なものでもよい。
In the above embodiments, gelatin, porous glass, agar, sponge, and gel were used for the buffer layer provided around the gel during drying. However, the present invention is not limited to these embodiments, Any material that can permeate the liquid in the gel, such as sponge, sponge, and nonwoven fabric, may be used.

[発明の効果] 以上のように、本発明の製造方法を用いて、屈折率分
布型光学素子を製造することにより、外周部の加工をす
ることなしに、容易にガラス体の外周部まで屈折率分布
の乱れのない有効径の大きな屈折率分布型光学素子を製
造することができる。
[Effects of the Invention] As described above, by manufacturing the gradient index optical element using the manufacturing method of the present invention, the refractive index can be easily refracted to the outer peripheral portion of the glass body without processing the outer peripheral portion. It is possible to manufacture a gradient index optical element having a large effective diameter without disorder in the index distribution.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)及び(b)はそれぞれ本発明の製造方法に
おける乾燥工程を示す斜視図及び平面図、第2図は本発
明の製造方法による乾燥後のゲル中における金属成分の
濃度分布を示すグラフ、第3図及び第4図はそれぞれ本
発明の製造方法の第1実施例及び第2実施例で得られた
ガラス体の屈折率分布を示すグラフ、第5図は従来法に
よるガラス体の屈折率分布を示すグラフ、第6図は乾燥
工程前のゲル中における金属成分の濃度分布を示すグラ
フである。 1……ウェットゲル 2……緩衝層
1 (a) and 1 (b) are a perspective view and a plan view, respectively, showing a drying step in the production method of the present invention, and FIG. 2 shows a concentration distribution of a metal component in a gel after drying by the production method of the present invention. FIGS. 3 and 4 are graphs showing the refractive index distributions of the glass bodies obtained in the first and second embodiments of the manufacturing method of the present invention, respectively, and FIG. 5 is a glass body obtained by the conventional method. FIG. 6 is a graph showing the concentration distribution of the metal component in the gel before the drying step. 1 ... wet gel 2 ... buffer layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−119531(JP,A) 特開 昭62−288122(JP,A) 特開 昭63−112433(JP,A) 特開 平2−283626(JP,A) 特開 昭57−7835(JP,A) 特開 昭62−288125(JP,A) 特開 昭63−30330(JP,A) 特開 平1−96057(JP,A) 特開 昭64−3023(JP,A) 特開 平1−112432(JP,A) 特開 昭60−51622(JP,A) 特開 昭63−95125(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 8/00 - 8/02 C03B 37/00 - 37/16 C03B 20/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-119531 (JP, A) JP-A-62-288122 (JP, A) JP-A-63-112433 (JP, A) JP-A-2- 283626 (JP, A) JP-A-57-7835 (JP, A) JP-A-62-288125 (JP, A) JP-A-63-30330 (JP, A) JP-A-1-96057 (JP, A) JP-A-64-3023 (JP, A) JP-A-1-112432 (JP, A) JP-A-60-51622 (JP, A) JP-A-63-95125 (JP, A) (58) (Int.Cl. 7 , DB name) C03B 8/00-8/02 C03B 37/00-37/16 C03B 20/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ゾル・ゲル法による屈折率分布型光学素子
の製造方法において、屈折率分布を付与する成分の濃度
勾配を持ったウェットゲルの周囲に、前記ウェットゲル
に含まれている液体が透過することのできる一層以上の
緩衝層を設けて、前記ウェットゲルの乾燥を行い、前記
屈折率分布を付与する成分の濃度分布の乱れが緩衝層内
に形成されるようにしたことを特徴とする屈折率分布型
光学素子の製造方法。
1. A method of manufacturing a gradient index optical element by a sol-gel method, wherein a liquid contained in the wet gel is surrounded by a wet gel having a concentration gradient of a component for imparting a refractive index distribution. Providing one or more buffer layers that can transmit light, drying the wet gel, and disturbing the concentration distribution of the component that imparts the refractive index distribution is formed in the buffer layer. Of producing a gradient index optical element.
【請求項2】前記屈折率分布型光学素子は多成分系ガラ
スであることを特徴とする請求項1記載の屈折率分布型
光学素子の製造方法。
2. The method according to claim 1, wherein said gradient index optical element is a multi-component glass.
【請求項3】前記屈折率分布を付与する成分は金属塩で
あることを特徴とする請求項1又は2記載の屈折率分布
型光学素子の製造方法。
3. The method according to claim 1, wherein the component for imparting the refractive index distribution is a metal salt.
【請求項4】前記ゲルに屈折率分布を付与する成分に濃
度勾配を形成した後、ゲルを乾燥させる前に、前記ウェ
ットゲル中の溶媒を置換してゲルの細孔内に金属塩の微
結晶を沈澱させる工程を備えていることを特徴とする請
求項1記載の屈折率分布型光学素子の製造方法。
4. After forming a concentration gradient in a component that imparts a refractive index distribution to the gel, before drying the gel, the solvent in the wet gel is replaced to replace fine particles of a metal salt in the pores of the gel. 2. The method according to claim 1, further comprising a step of precipitating a crystal.
JP02279998A 1990-10-18 1990-10-18 Method of manufacturing refractive index distribution type optical element Expired - Fee Related JP3112473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02279998A JP3112473B2 (en) 1990-10-18 1990-10-18 Method of manufacturing refractive index distribution type optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02279998A JP3112473B2 (en) 1990-10-18 1990-10-18 Method of manufacturing refractive index distribution type optical element

Publications (2)

Publication Number Publication Date
JPH04154628A JPH04154628A (en) 1992-05-27
JP3112473B2 true JP3112473B2 (en) 2000-11-27

Family

ID=17618885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02279998A Expired - Fee Related JP3112473B2 (en) 1990-10-18 1990-10-18 Method of manufacturing refractive index distribution type optical element

Country Status (1)

Country Link
JP (1) JP3112473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8039508B2 (en) 2001-06-06 2011-10-18 Hoffmann-La Roche Inc. Lipase inhibiting composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8039508B2 (en) 2001-06-06 2011-10-18 Hoffmann-La Roche Inc. Lipase inhibiting composition
US8343543B2 (en) 2001-06-06 2013-01-01 Hoffmann-La Roche Inc. Lipase inhibiting composition

Also Published As

Publication number Publication date
JPH04154628A (en) 1992-05-27

Similar Documents

Publication Publication Date Title
US4061486A (en) Process for the manufacture of optical bodies with refractive index gradients
JP3708238B2 (en) Manufacturing method of gradient index optical element
US4686195A (en) Method and composition for the manufacture of gradient index glass
US5069700A (en) method of manufacturing gradient-index glass
JP3112473B2 (en) Method of manufacturing refractive index distribution type optical element
US2659665A (en) Reticles
JPS6252136A (en) Manufacture of glass product
JP3209533B2 (en) Method of manufacturing refractive index distribution type optical element
JP2515713B2 (en) Method for producing glass body having refractive index distribution
JPH05306126A (en) Distributed index optical element and its production
JP3153814B2 (en) Method of manufacturing refractive index distribution type optical element
JPH044261B2 (en)
Yamane et al. Radial GRIN material for photographic lenses made by the sol-gel process
JPH0788224B2 (en) Method of manufacturing gradient index lens
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JPH03141123A (en) Production of refractive index profile type optical element
JPH06316420A (en) Production of glass
JPS63307124A (en) Production of refractive index distributed type lens
JPH07330345A (en) Production of lens
JPS63222047A (en) Production of refractive index distribution-type optical element
JPH10186119A (en) Production of optical filter
JPH02204335A (en) Production of quartz glass body having refractive-index distribution
JPH0196021A (en) Production of base material for optical functional element
JPH08187461A (en) Production of refractive index distribution type microlens
JPS61101425A (en) Production of light transmission glass material having refractive index gradient

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees