JPH05306126A - Distributed index optical element and its production - Google Patents

Distributed index optical element and its production

Info

Publication number
JPH05306126A
JPH05306126A JP13583892A JP13583892A JPH05306126A JP H05306126 A JPH05306126 A JP H05306126A JP 13583892 A JP13583892 A JP 13583892A JP 13583892 A JP13583892 A JP 13583892A JP H05306126 A JPH05306126 A JP H05306126A
Authority
JP
Japan
Prior art keywords
distribution
gel
refractive index
solution
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13583892A
Other languages
Japanese (ja)
Inventor
Yuko Kurasawa
祐子 倉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP13583892A priority Critical patent/JPH05306126A/en
Publication of JPH05306126A publication Critical patent/JPH05306126A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/54Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with beryllium, magnesium or alkaline earth metals

Abstract

PURPOSE:To produce a distributed index optical element whose base has highly concave refractive index distribution without disturbing the desired concn. distribution of a metal. CONSTITUTION:When a distributed index optical element is produced by a sol-gel process, a silica sol is prepd., a salt of a metal other than silicon is added to the silica sol and wet gel is formed. This wet gel is immersed in a soln. contg. a salt of at least one kind of metal other than silicon for a short time and the salt is distributed in the gel so that the concn. is increased from the center of the gel toward the periphery. The gel is then dried and sintered to obtain the objective distributed index optical element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラ、顕微鏡等の光
学レンズとして利用される屈折率分布型光学素子および
その製造方法に係り、屈折率分布型光学素子(以下、G
RINという)の中で、特に金属酸化物含有量が中心か
ら外周へ向かって増加するようなGRINおよびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gradient index optical element used as an optical lens for cameras, microscopes and the like and a method for manufacturing the same, and relates to a gradient index optical element (hereinafter referred to as G
RIN), and particularly to a GRIN in which the content of metal oxide increases from the center toward the outer periphery, and a method for producing the GRIN.

【0002】[0002]

【従来の技術】一般に、GRINを製造する方法とし
て、イオン交換法、スタッフィング法、ゾル・ゲル法が
知られている。
2. Description of the Related Art Generally, as a method for producing GRIN, an ion exchange method, a stuffing method and a sol-gel method are known.

【0003】GRINの屈折率分布は、ガラス媒質中の
金属酸化物濃度の濃度勾配に起因するものである。屈折
率への寄与の大きな金属酸化物の濃度分布を中心から外
周に向け高く分布させた場合、屈折率も中心から外周に
向かって強くなるように分布した凹分布GRINとな
る。
The refractive index distribution of GRIN is due to the concentration gradient of the metal oxide concentration in the glass medium. When the concentration distribution of the metal oxide having a large contribution to the refractive index is distributed higher from the center toward the outer circumference, the refractive index also becomes a concave distribution GRIN in which the distribution becomes stronger from the center toward the outer circumference.

【0004】凹分布GRINレンズを作製する方法とし
て、イオン交換法でTlを凹形状に分布させた例が特開
昭49−24447号公報に記載されており、特開昭5
6−24307号公報においてはスタッフィング法によ
りSiO2 多孔質ガラスに温度制御と溶媒交換によりC
sNO3 を凹状に導入して沈積固定させる例が記載され
ている。また、ゾル・ゲル法により作製したドライゲル
あるいは焼結ゲルを母体多孔質とし、この母体多孔質を
溶液に浸漬してリン酸塩を凹状に分布させた例が特開昭
60−166240号公報に記載されている。
As a method for producing a concave distribution GRIN lens, an example in which Tl is distributed in a concave shape by an ion exchange method is described in JP-A-49-24447, and JP-A-5-24447.
In JP-A 6-24307, SiO 2 porous glass is subjected to C control by temperature control and solvent exchange by the stuffing method.
An example is described in which sNO 3 is introduced in a concave shape to fix the deposit. Japanese Patent Laid-Open No. 60-166240 discloses an example in which a dry gel or a sintered gel prepared by the sol-gel method is used as a matrix porous material, and the matrix porous material is dipped in a solution to distribute the phosphate in a concave shape. Have been described.

【0005】また、凸分布GRINを作製した例ではあ
るが、ゾル・ゲル法により作製した湿潤ゲルに処理を施
して作製する方法としては、シリコンのアルコキシドと
ホウ素のアルコキシドを加水分解した溶液中に酢酸鉛水
溶液と酢酸の混合溶液を加え、ゲル化して得られた湿潤
ゲルを酢酸カリウムを含む溶液に含浸してゲル中の酢酸
鉛と液中の酢酸カリウムを交換する方法(特開平3−2
95818号公報)が知られている。この方法により得
られたGRINは、凸状に分布した酢酸鉛と凹状に分布
した酢酸カリウムを含有している。
Further, although there is an example of producing a convex distribution GRIN, as a method for producing by processing a wet gel produced by the sol-gel method, a solution obtained by hydrolyzing a silicon alkoxide and a boron alkoxide is used. A method of exchanging lead acetate in the gel with potassium acetate in the solution by adding a mixed solution of an aqueous solution of lead acetate and acetic acid and impregnating a wet gel obtained by gelation with a solution containing potassium acetate (JP-A-3-2)
No. 95818) is known. GRIN obtained by this method contains convexly distributed lead acetate and concavely distributed potassium acetate.

【0006】[0006]

【発明が解決しようとする課題】しかし、凹分布GRI
Nの作製方法として知られているイオン交換法は、凹状
に分布させる金属種がTl,Ag等の1価金属に限られ
るため、屈折率分布のバリエーションが乏しいという欠
点があった。
[Problems to be Solved by the Invention] However, the concave distribution GRI
The ion exchange method, which is known as a method for producing N, has a defect that the variation of the refractive index distribution is poor because the concavely distributed metal species are limited to monovalent metals such as Tl and Ag.

【0007】また、スタッフィング法、ゾル・ゲル法に
より凹分布を付与した例(特開昭56−24307号公
報、特開昭60−166240号公報)では、多価金属
に濃度勾配をもたせることができるため、イオン交換法
と比較して分布特性のバリエーションは拡がるものの、
従来、母材となるSiO2 多孔質体として、連続気孔を
もつゲル、或いはガラスを用いていることから、金属塩
溶液に含浸した際、細孔中に溶液が侵入するときに細孔
中に生じる気−液界面には毛細管力が働き、母材多孔質
体が割れやすいなどの問題点があった。
In addition, in the examples in which the concave distribution is provided by the stuffing method and the sol-gel method (Japanese Patent Laid-Open Nos. 56-24307 and 60-166240), it is possible to give the polyvalent metal a concentration gradient. Therefore, the variation of distribution characteristics is widened compared to the ion exchange method,
Conventionally, since a gel or glass having continuous pores is used as the SiO 2 porous body which is the base material, when it is impregnated with a metal salt solution, when the solution penetrates into the pores, Capillary force acts on the resulting gas-liquid interface, and the base material porous body is easily broken.

【0008】それに対し、ゾル・ゲル法により得られる
湿潤ゲルを金属塩溶液に浸漬する場合には、細孔中に液
−液界面が存在するが、ここで生じる毛細管力は溶媒に
より異なるものの乾燥ゲルと比べれば遙かに小さいもの
であるので、ゲルを溶液に含浸する際に割れが生じ難
い。
On the other hand, when the wet gel obtained by the sol-gel method is immersed in the metal salt solution, a liquid-liquid interface exists in the pores, but the capillary force generated here varies depending on the solvent, but the drying occurs. Since it is much smaller than gel, cracks are less likely to occur when the gel is impregnated with a solution.

【0009】これを利用して、凸分布GRINを作製し
た例が特開平3−295818号公報に開示されてい
る。これは、金属塩を含有する湿潤ゲルをその金属塩に
対する溶解度の小さい溶液に順次浸漬していき、金属塩
の微結晶を湿潤ゲル細孔中に析出させ、その後ゲル中に
含有する金属塩以外の金属塩を含有する溶液に浸漬し、
ゲル内の金属塩を溶出し、溶液中の金属塩をゲル中へ導
入したのちに、再度金属塩に対する溶解度の小さい溶液
に順次浸漬していくことで、金属塩の微結晶を湿潤ゲル
細孔中に沈澱させる方法である。しかし、この方法を利
用して凹分布GRINを作製した例はない。
An example of producing a convex distribution GRIN by utilizing this is disclosed in Japanese Patent Laid-Open No. 3-295818. This is because a wet gel containing a metal salt is sequentially immersed in a solution having a low solubility in the metal salt, fine crystals of the metal salt are precipitated in the wet gel pores, and then a metal salt other than the metal salt contained in the gel is excluded. Dipping in a solution containing the metal salt of
After the metal salt in the gel is eluted and the metal salt in the solution is introduced into the gel, the microcrystals of the metal salt are wet gel pores by successively immersing the metal salt in a solution having a low solubility in the metal salt again. It is a method of precipitating it inside. However, there is no example in which the concave distribution GRIN is produced by using this method.

【0010】そこで、本発明者は、湿潤ゲルに処理を施
して凹分布GRINを作製する方法を種々検討した。こ
れは、上記方法(特開平3−295818号公報)にお
ける湿潤ゲル中からゲル外の溶液へ溶出し、凸形状に分
布させる金属塩と、溶液中に溶解させてゲル中へドープ
し、凹形状に分布させる金属塩とを逆に用いる方法、す
なわち、湿潤ゲル中に予め屈折率への寄与の小さい金属
酸化物の原料となる金属塩を導入しておき、分布付与に
用いる屈折率への寄与の大きい金属酸化物の原料となる
金属塩を溶解し、ここへゲルを浸漬することでゲル中に
屈折率への寄与の大きい金属塩の濃度分布を凹状に形成
する方法である。
Therefore, the present inventor has conducted various studies on a method of producing a concave distribution GRIN by treating a wet gel. This is the metal salt which is eluted from the wet gel into the solution outside the gel in the above method (JP-A-3-295818) and distributed in a convex shape, and the metal salt dissolved in the solution to dope into the gel to form a concave shape. A method of using the metal salt to be distributed in reverse, that is, a metal salt that is a raw material of a metal oxide having a small contribution to the refractive index is previously introduced into the wet gel, and the contribution to the refractive index used for imparting the distribution is provided. Is a method of forming a concave concentration distribution of a metal salt that greatly contributes to the refractive index in the gel by dissolving a metal salt that is a raw material of a metal oxide having a large amount and immersing the gel therein.

【0011】ところで、一般にレンズ系をより一層コン
パクトにするためには、個々のレンズの屈折力を強くす
る必要がある。これは、GRINを用いたレンズ系にお
いても同様で、GRINの屈折力を強くする必要があ
り、そのためにはGRINのベース屈折率を強くするこ
とが望まれる。
Generally, in order to make the lens system more compact, it is necessary to increase the refractive power of each lens. This also applies to a lens system using GRIN, and it is necessary to increase the refractive power of GRIN, and for that purpose, it is desired to increase the base refractive index of GRIN.

【0012】従来、スタッフィング法、ゾル・ゲル法に
より凹分布を付与した例(特開昭56−24307号公
報、特開昭60−166240号公報)では、母材とな
る多孔質体として多孔質SiO2 を用いているために、
いずれもベースの屈折率値は小さいものであった。
Conventionally, in the examples in which the concave distribution is provided by the stuffing method and the sol-gel method (JP-A-56-24307 and JP-A-60-166240), a porous material as a base material is porous. Since SiO 2 is used,
In all cases, the refractive index value of the base was small.

【0013】しかし、前述の凹分布GRINレンズの作
製方法を開示した従来例では、母材ガラスとしてSiO
2 多孔質体を用いているので、中心部の屈折率も弱く、
特開昭56−24307号公報では、n=1.462と
記されている。特開昭60−166240号公報には、
凹分布作製例について中心部の屈折率値の記述はされて
いないが、SiO2 焼結ゲルをリンのアルコキシド水溶
液に5分間浸漬するという作製工程から中心部の屈折率
がSiO2 ガラスの屈折率と比べて大差なく、小さな値
であることは容易に推測できる。
However, in the conventional example disclosing the method of manufacturing the above-mentioned concave distribution GRIN lens, SiO is used as the base glass.
Because of the use of 2 porous body, the refractive index of the central portion is weak,
In JP-A-56-24307, n = 1.462 is described. JP-A-60-166240 discloses that
Although not described in the refractive index values of the central portion for the concave distribution manufacturing example, the refractive index the refractive index of the SiO 2 glass of the center from the manufacturing process of immersing 5 minutes SiO 2 sintered gel alkoxide solution of phosphorus It can be easily inferred that the value is small compared to.

【0014】凹分布GRINのベースの屈折率を強くす
るためには、屈折率分布への寄与の大きな金属塩の分布
は、図1のaにて示すように中心部の金属塩濃度を高く
することが望まれる。図においては、bは従来の凹分布
を示す。aのような金属塩の分布を付与するためには、
分布付与に用いる金属塩溶液(以下、分布付与液とい
う)中の金属塩濃度を上げるか、分布付与液への浸漬時
間(以下、分布付与時間という)を長くして金属塩をゲ
ル中心部まで浸透させるなどの方法が考えられる。
In order to increase the refractive index of the base of the concave distribution GRIN, the metal salt distribution that makes a large contribution to the refractive index distribution increases the metal salt concentration in the central portion as shown in FIG. 1a. Is desired. In the figure, b indicates the conventional concave distribution. In order to impart a metal salt distribution such as a,
Increase the metal salt concentration in the metal salt solution used for distribution (hereinafter referred to as distribution application liquid) or increase the immersion time in the distribution application liquid (hereinafter referred to as distribution application time) to bring the metal salt to the gel center part. Methods such as permeation are possible.

【0015】しかし、分布付与液中の金属塩濃度の増大
には溶解度の限界があり、金属塩濃度を増大させること
だけにより、ゲル中心部の金属濃度を上げるにも限界が
ある。また、長時間の分布付与を行った場合、分布付与
液はゲル中心部まで十分に浸透する。分布付与液の溶媒
は、原理上金属塩に対してある程度以上の溶解度を持っ
ている必要があるので、この溶液がゲル中心部まで浸透
すると、ゲル細孔中に一度は微結晶とて析出させた金属
塩を除々にに溶解することになる。さらに、その後の分
布固定工程で溶解度の低い溶媒に浸漬して溶媒交換する
際に、多くの金属塩が溶液中に溶解した状態にあるの
で、固定操作中も金属塩は分布付与液とともに細孔中を
働き易く、分布形状がくずれ易い。
However, there is a limit to the solubility in increasing the metal salt concentration in the distribution-imparting liquid, and there is also a limit to increasing the metal concentration in the center of the gel only by increasing the metal salt concentration. Further, when the distribution is imparted for a long time, the distribution-imparting liquid sufficiently penetrates into the gel central portion. In principle, the solvent of the distribution-imparting liquid must have a certain degree of solubility in the metal salt, so when this solution penetrates to the center of the gel, it precipitates once as fine crystals in the gel pores. The metal salts gradually dissolve. Furthermore, since many metal salts are in a state of being dissolved in the solution when the solvent is exchanged by immersing it in a solvent having a low solubility in the subsequent distribution fixing step, the metal salt remains in the pores together with the distribution-imparting liquid during the fixing operation. It is easy to work inside, and the distribution shape is likely to collapse.

【0016】このように、SiO2 多孔質体に金属塩を
外部溶液からドープしてベースの屈折率を強くした凹分
布GRINを作製しようとすると、長時間の分布付与が
必要となり、分布の固定が不安定になるという問題点が
あった。
As described above, when an attempt is made to fabricate a concave distribution GRIN in which the SiO 2 porous body is doped with a metal salt from an external solution, the refractive index of the base is strengthened, it is necessary to give the distribution for a long time, and the distribution is fixed. There was a problem that was unstable.

【0017】さらに、長時間の分布付与は屈折率分布に
寄与する金属塩濃度の分布形状を乱すだけでなく、ゲル
中に存在する他の金属塩、すなわちガラス転移点や熱膨
張係数の分布を補正するために予めゾル調製時、あるい
はその後の工程で導入した金属塩の分布をも崩す可能性
を持つ。このような作用をもつ金属塩の濃度分布が崩れ
ると、ドライゲルを焼成し、ガラス化する工程で割れが
生じるという問題につながる。
Further, giving a distribution for a long time not only disturbs the distribution shape of the metal salt concentration that contributes to the refractive index distribution, but also changes the distribution of other metal salts present in the gel, that is, the glass transition point and the thermal expansion coefficient. There is a possibility that the distribution of the metal salt introduced beforehand during the preparation of the sol or in the subsequent steps for correction may be disrupted. If the concentration distribution of the metal salt having such an action collapses, it causes a problem that cracks occur in the step of baking the dry gel and vitrifying.

【0018】本発明は、これら従来の問題点、すなわち
凹分布GRINの光学特性のバリエーションが乏しいこ
と、母材多孔質体が溶液への浸漬時に割れ易いこと等を
鑑み、ゾル・ゲル法により作製した湿潤ゲルに適当な処
理を施し、凹形状の付与する方法を選択し、凹分布状の
付与する金属種の中心部濃度を高くした際に分布固定が
不安定になりやすいことを解決するためになされたもの
であり、凹状に分布する金属種の中心位置における濃度
の高い、ひいてはベースの屈折率の強い凹分布GRIN
を、所望の金属塩濃度の分布形状を乱すことなしに製造
する方法およびそのGRINを提供することを目的とす
る。
The present invention is manufactured by the sol-gel method in view of these conventional problems, that is, the variation in the optical characteristics of the concave distribution GRIN is poor, and the base material porous body is easily cracked when immersed in a solution. In order to solve the problem that the fixed distribution tends to become unstable when the concentration of the metal species in the concave distribution pattern is increased by applying a suitable treatment to the wet gel and selecting the method of giving the concave shape. The concave distribution GRIN having a high concentration at the central position of the concavely distributed metal species and thus a strong refractive index of the base GRIN.
It is an object of the present invention to provide a method for producing the same without disturbing the distribution shape of the desired metal salt concentration and its GRIN.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、ゾル・ゲル法によりGRINを製造する
にあたり、シリカゾルにシリコン以外の金属種の塩を導
入して湿潤ゲルを調製する工程、および前記湿潤ゲルを
前記金属種のうち少なくとも1種の金属種の塩を含有す
る溶液に浸漬して、前記溶液中に含有させた金属塩濃度
が前記湿潤ゲルの中心から外周へ向けて高くなるように
分布させる工程を設けることとした。
In order to achieve the above object, in the present invention, when GRIN is produced by the sol-gel method, a salt of a metal species other than silicon is introduced into silica sol to prepare a wet gel. And a step of immersing the wet gel in a solution containing a salt of at least one metal species among the metal species, so that the concentration of the metal salt contained in the solution increases from the center of the wet gel toward the outer periphery. It was decided to provide a step of distributing so as to increase the height.

【0020】上記製造方法により作製したGRINは、
ガラス媒質中に中心から外周に向けて屈折率が強くなっ
ている。
GRIN produced by the above manufacturing method is
In the glass medium, the refractive index increases from the center toward the outer periphery.

【0021】なお、本発明において用いる金属塩として
は、酢酸塩、ギ酸塩、アセチルアセトン塩などの有機酸
塩や硝酸塩などが最適である。
The metal salt used in the present invention is most preferably an organic acid salt such as acetate, formate or acetylacetone, or nitrate.

【0022】[0022]

【作用】本発明の方法により、凹状に分布した金属塩を
有するGRINを作製する際の各浸漬操作と、そのとき
のゲル中の金属塩の挙動モデルを以下に説明する。
The following is a description of each dipping operation for producing GRIN having a concavely distributed metal salt by the method of the present invention, and a behavior model of the metal salt in the gel at that time.

【0023】ゾル作製時から後の工程で凹状の分布付与
させる金属M1 の塩を導入しておき、その後M1 塩の溶
解度が小さな溶媒に浸漬することにより、分布付与前の
湿潤ゲル細孔中には、M1 塩の微結晶が析出する。
A salt of the metal M 1 which imparts a concave distribution is introduced in a later step from the time of preparing the sol, and thereafter, it is immersed in a solvent in which the solubility of the M 1 salt is small. Fine crystals of the M 1 salt are precipitated therein.

【0024】M1 塩を溶解した分布付与液に、先の湿潤
ゲルを浸漬すると、溶液と接しているゲル外周部から分
布付与液が浸透していく。浸漬時間が長くなると分布付
与液は中心部まで浸透していき、ゲル細孔中に浸透した
液は、ゲル細孔中に存在する前述のM1 塩の微結晶を溶
解度の許す範囲で除々に溶解していく考えられる。ここ
で、「徐々に」と述べたのは、実際に用いる分布付与液
の金属塩濃度と溶媒に対する金属塩の溶解度の間には、
極端な隔たり(≧1オーダー)をもたせないことが多
く、さらにゲル細孔中の溶液を強制的に攪拌することは
できないことから溶解速度が遅いと思われるからであ
る。そこで、短時間の分布付与で十分に目的とする分布
形状を達成できれば、分布付与液はゲル中心の微結晶を
溶解するほど浸透せず、そのため、続く溶媒交換処理で
1 塩の溶解度の低い溶液に浸漬した際には、分布付与
液から導入されたM1 塩のみが主に沈積すればすむと考
えられる。
When the above-mentioned wet gel is immersed in the distribution-imparting liquid in which the M 1 salt is dissolved, the distribution-imparting liquid permeates from the outer periphery of the gel in contact with the solution. When the immersion time becomes longer, the distribution-imparting liquid permeates to the central portion, and the liquid permeating into the gel pores gradually increases the solubility of the above-mentioned M 1 salt microcrystals present in the gel pores within the range of solubility. It is thought that it will dissolve. Here, "gradually" means that between the metal salt concentration of the distribution-imparting liquid actually used and the solubility of the metal salt in the solvent,
This is because an extreme gap (≧ 1 order) is often not provided, and the solution in the gel pores cannot be forcibly stirred, so that the dissolution rate seems to be slow. Therefore, if the desired distribution shape can be achieved by applying the distribution for a short time, the distribution-imparting liquid does not penetrate to the extent that it dissolves the fine crystals of the gel center, and therefore the solubility of the M 1 salt is low in the subsequent solvent exchange treatment. When immersed in the solution, it is considered that only the M 1 salt introduced from the distribution-imparting liquid should be mainly deposited.

【0025】一方、長時間の浸漬を行うと、ゲルの中心
部まで分布付与液が浸透するので、ゲル細孔中に析出し
ていた微結晶は除々に分布付与液溶媒に溶解する。した
がって、分布付与工程により濃度勾配をもって分布され
た溶解状態にあるM1 塩と、再度溶解した細孔中のM1
塩の微結晶の両者を、続く溶媒交換処理で沈積させなけ
ればならず、これら溶解したM1 塩はゲル細孔中を動き
易く、分布がくずれる原因となってしまう。
On the other hand, when the immersion is carried out for a long time, the distribution-imparting liquid penetrates to the center of the gel, so that the fine crystals precipitated in the gel pores gradually dissolve in the distribution-imparting liquid solvent. Thus, the M 1 salt in a dissolved state, which is distributed with a concentration gradient by profile-imparting step, M 1 in the pores dissolved again
Both the salt microcrystals must be deposited in the subsequent solvent exchange treatment, and these dissolved M 1 salts tend to move in the pores of the gel, causing the distribution to collapse.

【0026】このように、分布付与時間を短時間にする
ことは、分布付与により形成された金属塩の濃度分布
が、分布付与に続く工程でくずれること防止するという
効果をもつものである。
As described above, shortening the distribution application time has an effect of preventing the concentration distribution of the metal salt formed by the distribution application from being destroyed in the step following the distribution application.

【0027】本発明によれば、ゾル作製時から凹分布を
付与させる金属種M1 の塩を導入しているので、目標と
する金属塩の濃度分布を達成するためにも、短時間だけ
金属塩溶液に浸漬するだけで十分である。
According to the present invention, since the salt of the metal species M 1 which imparts the concave distribution is introduced from the time of sol preparation, the metal can be used for a short time only in order to achieve the target metal salt concentration distribution. Immersion in a salt solution is sufficient.

【0028】また、ガラス転移点や熱膨張係数の分布へ
の寄与を考慮して、予めゲル細孔中に導入してある金属
塩の濃度分布の乱れも、分布付与時間を短時間にするこ
とにより、最小限に抑えることができる。これらの濃度
分布が分布付与に続く次の工程においてくずれるのを防
止することは、割れのないバルク体を得るために不可欠
な要素である。
Further, in consideration of the contribution to the distribution of the glass transition point and the coefficient of thermal expansion, the concentration distribution of the metal salt previously introduced into the gel pores is also disturbed, and the distribution application time is shortened. Can be kept to a minimum. Preventing these concentration distributions from collapsing in the subsequent steps following distribution application is an essential factor for obtaining a crack-free bulk body.

【0029】以上のようにして、金属塩を凹状に分布さ
せたのち、M1 塩の溶解度の低い溶液に浸漬し、M1
の微結晶を析出させて金属塩濃度の分布を固定した湿潤
ゲルを乾燥したのち、焼成し、緻密化させることにより
凹状に金属塩が分布するようなGRINを得ることがで
きる。
[0029] As described above, after were distributed a metal salt in a concave shape, immersed in low solubility of M 1 salt solution to fix the distribution of the metal salt concentration to precipitate crystallites of M 1 salt wetting GRIN in which the metal salt is distributed in a concave shape can be obtained by drying and then densifying the gel to densify it.

【0030】また、このときに凹状に分布する金属塩と
して、屈折率への寄与の大きい金属種を選択すれば、屈
折率が凹状に分布するGRIN、いわゆる凹分布GRI
Nを得るができる。
At this time, if a metal species having a large contribution to the refractive index is selected as the concavely distributed metal salt, GRIN having a concavely distributed refractive index, so-called concave distribution GRI.
You can get N.

【0031】[0031]

【実施例1】テトラメトキシシラン50ml,トリエト
キシボロン12mlを混合した溶液に、0.01NのH
Cl水溶液25mlを加え、1時間加水分解した溶液
に、2Nの酢酸カリウム水溶液134.5ml,1.2
Nの酢酸鉛水溶液22.42ml,酢酸61.4mlを
混合した液を加え、約3分間激しく攪拌し、その後3分
間静置してゾルを調製した。このゾルを直径18mmの
ポリプロピレン製試験管に分注した後、ゲル化させた。
このゲルを試験管から取り出し、イソプロパノール:ア
セトンが5:5である溶液、およびアセトンに順次浸漬
し、ゲル細孔中に酢酸カリウム、酢酸鉛の微結晶を析出
させた。
Example 1 To a solution prepared by mixing 50 ml of tetramethoxysilane and 12 ml of triethoxyboron, 0.01N H 2 was added.
To the solution obtained by adding 25 ml of Cl aqueous solution and hydrolyzing for 1 hour, 134.5 ml of 2N potassium acetate aqueous solution, 1.2
A solution prepared by mixing 22.42 ml of an aqueous lead acetate solution of N and 61.4 ml of acetic acid was added, and the mixture was vigorously stirred for about 3 minutes and then left standing for 3 minutes to prepare a sol. This sol was dispensed into a polypropylene test tube having a diameter of 18 mm and then gelled.
The gel was taken out of the test tube and immersed in a solution of isopropanol: acetone of 5: 5 and acetone in order to deposit fine crystals of potassium acetate and lead acetate in the gel pores.

【0032】その後、0.2Mの酢酸鉛メタノール溶液
に2時間浸漬することにより、酢酸鉛をゲル中にしみ込
ませてPbを凹状に導入した(分布付与)。分布付与後
のゲルを、再度、イソプロパノール:アセトンが5:5
である溶液、およびアセトンに浸漬して酢酸鉛と酢酸カ
リウムの微結晶をゲル細孔中に生成させた(分布固
定)。分布固定後のゲルをアセトンから取り出し、30
℃で乾燥させてドライゲルを得た。このドライゲルを、
管状炉中で610℃まで焼結することにより、割れのな
い無色透明なガラスロッドを得た。
Then, by immersing the lead acetate in the gel by immersing it in a 0.2M lead acetate methanol solution for 2 hours, Pb was introduced in a concave shape (giving distribution). The gel after the distribution was imparted again with isopropanol: acetone at 5: 5.
Was dissolved in the solution and the acetone, and fine crystals of lead acetate and potassium acetate were generated in the gel pores (fixed distribution). Remove the gel after fixing the distribution from acetone.
Drying was performed at 0 ° C. to obtain a dry gel. This dry gel
By sintering in a tubular furnace to 610 ° C., a colorless transparent glass rod without cracks was obtained.

【0033】このガラスロッドを径方向に切断し、切断
面を研磨して、径方向屈折率分布を測定したところ、図
2に示すような中心部の屈折率ncenter=1.538、
外周部の屈折率nedge=1.610である屈折率分布を
していた。
The glass rod was cut in the radial direction, the cut surface was polished, and the refractive index distribution in the radial direction was measured. As shown in FIG. 2, the refractive index n center = 1.538 in the central portion,
The refractive index distribution was n edge = 1.610 at the outer peripheral portion.

【0034】[比較例]テトラメトキシシラン50m
l,トリエトキシボロン12mlを混合した溶液に0.
01NのHCl水溶液25mlを加え、加水分解した溶
液に、2Nの酢酸カリウム水溶液134.5ml、酢酸
61.4mlを混合した液を加え、激しく攪拌した後、
静置した。このようにして調製したゾルを直径18mm
のポリプロピレン製試験管に分注した後、ゲル化させ、
前記実施例1と同様な浸漬処理を行った。
[Comparative Example] Tetramethoxysilane 50 m
1 and 12 ml of triethoxyboron were mixed in a solution of 0.
To the hydrolyzed solution was added 25 ml of 01N HCl aqueous solution, and a solution of 13N ml of 2N potassium acetate aqueous solution and 61.4 ml of acetic acid was added.
I let it stand. The sol thus prepared has a diameter of 18 mm.
After dispensing into a polypropylene test tube of, gelled,
The same immersion treatment as in Example 1 was performed.

【0035】分布付与時間を2,4,8,12,16時
間と変化させた結果、実施例1とほぼ等しいベース位置
のPb濃度となったのは、12時間分布付与したもので
あった。そこで、12時間分布付与して得られたドライ
ゲルを、焼成のため400℃まで昇温したが、はじける
ように割れてしまった。これは、酢酸鉛の溶解度の比較
的高い溶液に、ゲルを長時間浸漬させたため、その後の
固定操作中に、ゲル中の酢酸カリウムの濃度勾配がくず
れて平坦な分布となったことにより、ガラス転移点の分
布が凸状となり、昇温時にゲルの外周部分から先に孔が
閉じ、ゲル内部のガスが抜けられずに割れたものと考え
られる。
As a result of changing the distribution-applying time to 2, 4, 8, 12, and 16 hours, the Pb concentration at the base position that was almost the same as that of Example 1 was obtained by applying the distribution for 12 hours. Then, the dry gel obtained by applying the distribution for 12 hours was heated to 400 ° C. for firing, but it cracked to pop. This is because the gel was soaked in a solution with relatively high solubility of lead acetate for a long time, and the concentration gradient of potassium acetate in the gel collapsed during the subsequent fixing operation, resulting in a flat distribution. It is considered that the distribution of the transition point became convex, the holes were closed from the outer peripheral portion of the gel at the time of temperature rise, and the gas inside the gel could not escape and was broken.

【0036】また、分布付与時間が2時間と短かったド
ライゲルを焼成してガラス化させ、屈折率分布を測定し
たところ、屈折率差については実施例1とほぼ等しく、
屈折率差Δn=0.066であったが、中心部の屈折率
はncenter=1.500と弱かった。
Further, when the dry gel, which had a distribution providing time as short as 2 hours, was baked and vitrified, and the refractive index distribution was measured, the difference in refractive index was almost the same as in Example 1.
The refractive index difference Δn was 0.066, but the refractive index in the central portion was n center = 1.500, which was weak.

【0037】[0037]

【実施例2】テトラメトキシシラン50ml,トリエト
キシボロン12mlを混合した溶液に、0.01NのH
Cl水溶液25mlを加え、1時間加水分解した溶液に
2Nの酢酸カリウム水溶液134.5ml,1.2Nの
酢酸水溶液33.63ml,酢酸61.4mlを混合し
た液を加え、約3分間激しく攪拌し、その後3分間静置
してゾルを調製した。このゾルを直径18mmのポリプ
ロピレン製試験管に分注した後、ゲル化させ、実施例1
と同様な浸漬処理を行い、30℃で乾燥させてドライゲ
ルを得た。このドライゲルを管状炉中で605℃まで焼
結し、無色透明なガラスロッドを得た。
EXAMPLE 2 0.01N H was added to a solution prepared by mixing 50 ml of tetramethoxysilane and 12 ml of triethoxyboron.
To the solution obtained by adding 25 ml of Cl aqueous solution and hydrolyzing for 1 hour, 134.5 ml of 2 N potassium acetate aqueous solution, 33.63 ml of 1.2 N acetic acid aqueous solution, and 61.4 ml of acetic acid were added, and stirred vigorously for about 3 minutes. Then, the mixture was allowed to stand for 3 minutes to prepare a sol. This sol was dispensed into a polypropylene test tube having a diameter of 18 mm and then gelled to give Example 1.
The same immersion treatment as above was performed, and the resultant was dried at 30 ° C. to obtain a dry gel. The dry gel was sintered to 605 ° C. in a tubular furnace to obtain a colorless and transparent glass rod.

【0038】このガラスロッドを径方向に切断し、切断
面を研磨して、径方向屈折率分布を測定したところ、図
3に示すような中心部の屈折率ncenter=1.565、
外周部の屈折率nedge=1.635である屈折率分布を
していた。
This glass rod was cut in the radial direction, the cut surface was polished, and the radial direction refractive index distribution was measured. As shown in FIG. 3, the refractive index n center = 1.565 at the central portion,
The refractive index distribution was n edge = 1.635 in the outer peripheral portion.

【0039】中心部の屈折率は、実施例1と比較する
と、0.027高くなっており、ゾル調製時に導入する
Pbの量を変化させることにより、分布付与時間を変化
させることなく、ベースの屈折率を上げられることがわ
かった。
The refractive index of the central portion is higher than that of Example 1 by 0.027. By changing the amount of Pb introduced at the time of sol preparation, the refractive index of the base can be changed without changing the distribution application time. It turned out that the refractive index can be raised.

【0040】[0040]

【実施例3】テトラメトキシシラン30ml,テトラエ
トキシシラン30mlを混合した溶液に、0.01Nの
HCl水溶液30mlを加えて加水分解し、1Nのギ酸
バリウム水溶液84.4ml、2.5Nの酢酸ナトリウ
ム水溶液112.5ml、酢酸78.0mlを混合した
液を加えて激しく攪拌し、その後3分間静置し、ゾルを
調製した。このゾルを直径18mmのポリプロピレン製
試験管に分注した後、ゲル化させた。このゲルを、エタ
ノールに浸漬し、ゲル細孔中に酢酸ナトリウム、ギ酸バ
リウムの微結晶を生成させた。
Example 3 To a solution prepared by mixing 30 ml of tetramethoxysilane and 30 ml of tetraethoxysilane, 30 ml of 0.01N HCl aqueous solution was added and hydrolyzed to give a solution of 1N barium formate aqueous solution 84.4 ml and 2.5N sodium acetate aqueous solution. A liquid in which 112.5 ml and 78.0 ml of acetic acid were mixed was added and vigorously stirred, and then left standing for 3 minutes to prepare a sol. This sol was dispensed into a polypropylene test tube having a diameter of 18 mm and then gelled. The gel was dipped in ethanol to generate fine crystals of sodium acetate and barium formate in the pores of the gel.

【0041】次に、0.2Nの酢酸バリウムのメタノー
ル溶液に1.5時間浸漬し、バリウムに凹状の濃度分布
を付与した後、再びエタノール溶液に浸漬し、バリウム
塩および酢酸ナトリウムの濃度分布を固定し、さらにエ
タノールに浸漬し、30℃で乾燥させ、バリウムが凹状
にナトリウムが凸状にそれぞれ分布しているドライゲル
を得た。このドライゲルを焼結することにより、割れの
ない無色透明なガラスロッドを得た。
Then, the barium salt was immersed in a 0.2N barium acetate methanol solution for 1.5 hours to give barium a concave concentration distribution, and then again immersed in an ethanol solution to determine the barium salt and sodium acetate concentration distributions. The gel was fixed, further immersed in ethanol, and dried at 30 ° C. to obtain a dry gel in which barium was concavely distributed and sodium was convexly distributed. By sintering this dry gel, a colorless and transparent glass rod without cracks was obtained.

【0042】このガラスロッドの屈折率分布を測定した
結果、図4に示すような中心部の屈折率ncenter=1.
570、外周部の屈折率nedge=1.624である屈折
率分布を有していた。
As a result of measuring the refractive index distribution of this glass rod, the refractive index n center = 1.
570, and the refractive index distribution was n edge = 1.624 in the outer peripheral portion.

【0043】一方、ゾル調製時にバリウム塩を使用せ
ず、代わりに0.2Nの酢酸バリウムのメタノール溶液
に30時間浸漬し、分布付与したものは、中心部の屈折
率が本実施例とほぼ等しくなるような金属酸化物組成を
有していたが、中心部と外周部におけるバリウムの濃度
差は小さく、屈折率差も約1/2になることがわかっ
た。
On the other hand, in the case where the barium salt was not used during the preparation of the sol, the barium salt was immersed in a methanol solution of 0.2N barium acetate for 30 hours instead, and the distribution was imparted, the refractive index of the central portion was almost the same as that of this example. However, it was found that the difference in barium concentration between the central portion and the outer peripheral portion was small and the difference in refractive index was about 1/2.

【0044】[0044]

【実施例4】テトラメトキシシラン30ml,テトラエ
トキシシラン30mlを混合した溶液に、0.01Nの
HCl水溶液20mlと3.2gホウ酸を5mlのH2
Oに溶解した溶液を加えて加水分解し、0.5Nの酢酸
ランタン水溶液320ml,2.5Nのカリウム水溶液
62.3mlを混合した液を加えてゾルを調製した。こ
のゾルを直径18mmのポリプロピレン製試験管に分注
した後、ゲル化させた。このゲルを、0.6Nの酢酸ラ
ンタン、0.6Nの酢酸カリウムを含有するメタノール
/水混合溶液に24時間浸漬した後、アセトンに浸漬
し、ゲル細孔中に酢酸ランタン、酢酸カリウムの微結晶
を生成させた。
Example 4 To a solution prepared by mixing 30 ml of tetramethoxysilane and 30 ml of tetraethoxysilane, 20 ml of 0.01N HCl aqueous solution and 3.2 g of boric acid were added to 5 ml of H 2
A solution dissolved in O was added for hydrolysis, and a sol was prepared by adding a liquid in which 320 ml of a 0.5 N lanthanum acetate aqueous solution and 62.3 ml of a 2.5 N potassium aqueous solution were mixed. This sol was dispensed into a polypropylene test tube having a diameter of 18 mm and then gelled. The gel was dipped in a methanol / water mixed solution containing 0.6N lanthanum acetate and 0.6N potassium acetate for 24 hours and then dipped in acetone to give lanthanum acetate and potassium acetate microcrystals in the gel pores. Was generated.

【0045】次に、0.2Nの酢酸ランタンのメタノー
ル/水混合溶液に2.0時間浸漬し、ランタンに凹状の
濃度分布を付与した後、アセトンに浸漬し、酢酸ランタ
ン、および酢酸カリウムの濃度分布を固定し、30℃で
乾燥させ、ドライゲルを得た。このドライゲルを焼結す
ることにより、割れのない無色透明なガラスロッドを得
た。
Then, the solution was immersed in a 0.2N lanthanum acetate mixed solution of methanol / water for 2.0 hours to give a concave concentration distribution to the lanthanum, and then immersed in acetone to obtain a concentration of lanthanum acetate and potassium acetate. The distribution was fixed and dried at 30 ° C. to obtain a dry gel. By sintering this dry gel, a colorless and transparent glass rod without cracks was obtained.

【0046】このガラスロッドの屈折率分布を測定した
結果、図5に示すような中心部の屈折率ncenter=1.
601、外周部の屈折率nedge=1.660である屈折
率分布を有していた。
As a result of measuring the refractive index distribution of this glass rod, the refractive index n center = 1.
601 and a refractive index distribution of n edge = 1.660 in the outer peripheral portion.

【0047】以上の実施例では、屈折率が凹分布である
GRINの作製方法のみを示しているが、屈折率への寄
与の小さな金属種に凹状の分布を、屈折率への寄与の大
きな金属種に凸状の分布を付与して屈折率が凸分布であ
るGRINを作製するときにも、凹状に分布する金属種
の中心部濃度を上げることができるので、割れのないガ
ラス体の焼成や、分散分布特性の向上が可能となる。
In the above examples, only the method of manufacturing GRIN having a concave refractive index is shown, but a concave distribution is used for a metal species having a small contribution to the refractive index and a metal having a large contribution to the refractive index. Even when a GRIN having a convex refractive index distribution is formed by providing a seed with a convex distribution, it is possible to increase the central portion concentration of the concavely distributed metal seed, so that it is possible to fire a glass body without cracking or Therefore, the dispersion distribution characteristic can be improved.

【0048】[0048]

【発明の効果】以上のように本発明によれば、短時間の
分布付与工程により、凹状に分布する金属種の中心位置
における濃度が比較的高いGRIN、ひいてはベースの
屈折率の比較的高い凹分布GRINを、所望の金属濃度
の分布形状を乱すことなく安定して製造できる。
As described above, according to the present invention, GRIN having a relatively high concentration at the central position of the concavely distributed metal species and, by extension, the concave portion having a relatively high refractive index of the base are obtained by the distribution giving step in a short time. The distribution GRIN can be manufactured stably without disturbing the distribution shape of the desired metal concentration.

【図面の簡単な説明】[Brief description of drawings]

【図1】径方向の金属塩濃度分布を示すグラフである。FIG. 1 is a graph showing a metal salt concentration distribution in a radial direction.

【図2】本発明の実施例1により得たGRINの径方向
屈折率分布を示すグラフである。
FIG. 2 is a graph showing a radial refractive index distribution of GRIN obtained in Example 1 of the present invention.

【図3】本発明の実施例2により得たGRINの径方向
屈折率分布を示すグラフである。
FIG. 3 is a graph showing a radial direction refractive index distribution of GRIN obtained in Example 2 of the present invention.

【図4】本発明の実施例3により得たGRINの径方向
屈折率分布を示すグラフである。
FIG. 4 is a graph showing a radial refractive index distribution of GRIN obtained in Example 3 of the present invention.

【図5】本発明の実施例4により得たGRINの径方向
屈折率分布を示すグラフである。
FIG. 5 is a graph showing a radial refractive index distribution of GRIN obtained in Example 4 of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月7日[Submission date] December 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】GRINの屈折率分布は、ガラス媒質中の
金属酸化物濃度の濃度勾配に起因するものである。屈折
率への寄与の大きな金属酸化物の濃度分布を中心から外
周に向け高く分布させた場合、屈折率も中心から外周に
向かって高くなるように分布した凹分布GRINとな
る。
The refractive index distribution of GRIN is due to the concentration gradient of the metal oxide concentration in the glass medium. When the concentration distribution of the metal oxide having a large contribution to the refractive index is distributed higher from the center toward the outer circumference, the concave distribution GRIN is distributed such that the refractive index also increases from the center toward the outer circumference.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】ところで、一般にレンズ系をより一層コン
パクトにするためには、個々のレンズの屈折力を強くす
る必要がある。これは、GRINを用いたレンズ系にお
いても同様で、GRINの屈折力を強くする必要があ
り、そのためにはGRINのベース屈折率を高くするこ
とが望まれる。
Generally, in order to make the lens system more compact, it is necessary to increase the refractive power of each lens. This also applies to a lens system using GRIN, and it is necessary to increase the refractive power of GRIN, and for that purpose, it is desired to increase the base refractive index of GRIN.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】しかし、前述の凹分布GRINレンズの作
製方法を開示した従来例では、母材ガラスとしてSiO
2 多孔質体を用いているので、中心部の屈折率も低く
特開昭56−24307号公報では、n=1.462と
記されている。特開昭60−166240号公報には、
凹分布作製例について中心部の屈折率値の記述はされて
いないが、SiO2 焼結ゲルをリンのアルコキシド水溶
液に5分間浸漬するという作製工程から中心部の屈折率
がSiO2 ガラスの屈折率と比べて大差なく、小さな値
であることは容易に推測できる。
However, in the conventional example disclosing the method of manufacturing the above-mentioned concave distribution GRIN lens, SiO is used as the base glass.
Because of the use of 2 porous body, the refractive index of the central portion is low,
In JP-A-56-24307, n = 1.462 is described. JP-A-60-166240 discloses that
Although not described in the refractive index values of the central portion for the concave distribution manufacturing example, the refractive index the refractive index of the SiO 2 glass of the center from the manufacturing process of immersing 5 minutes SiO 2 sintered gel alkoxide solution of phosphorus It can be easily inferred that the value is small compared to.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】凹分布GRINのベースの屈折率を高くす
ためには、屈折率分布への寄与の大きな金属塩の分布
は、図1のaにて示すように中心部の金属塩濃度を高く
することが望まれる。図においては、bは従来の凹分布
を示す。aのような金属塩の分布を付与するためには、
分布付与に用いる金属塩溶液(以下、分布付与液とい
う)中の金属塩濃度を上げるか、分布付与液への浸漬時
間(以下、分布付与時間という)を長くして金属塩をゲ
ル中心部まで浸透させるなどの方法が考えられる。
To increase the refractive index of the base of the concave distribution GRIN
For that, the distribution of large metal salts of contribution to the refractive index distribution, it is desirable to increase the metal salt concentration in the central portion as shown in a of FIG. In the figure, b indicates the conventional concave distribution. In order to impart a metal salt distribution such as a,
Increase the metal salt concentration in the metal salt solution used for distribution (hereinafter referred to as distribution application liquid) or increase the immersion time in the distribution application liquid (hereinafter referred to as distribution application time) to bring the metal salt to the gel center part. Methods such as permeation are possible.

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】しかし、分布付与液中の金属塩濃度の増大
には溶解度の限界があり、金属塩濃度を増大させること
だけにより、ゲル中心部の金属濃度を上げるにも限界が
ある。また、長時間の分布付与を行った場合、分布付与
液はゲル中心部まで十分に浸透する。分布付与液の溶媒
は、原理上金属塩に対してある程度以上の溶解度を持っ
ている必要があるので、この溶液がゲル中心部まで浸透
すると、ゲル細孔中に一度は微結晶とて析出させた金属
塩を除々に溶解することになる。さらに、その後の分布
固定工程で溶解度の低い溶媒に浸漬して溶媒交換する際
に、多くの金属塩が溶液中に溶解した状態にあるので、
固定操作中も金属塩は分布付与液とともに細孔中を働き
易く、分布形状がくずれ易い。
However, there is a limit to the solubility in increasing the metal salt concentration in the distribution-imparting liquid, and there is also a limit to increasing the metal concentration in the center of the gel only by increasing the metal salt concentration. Further, when the distribution is imparted for a long time, the distribution-imparting liquid sufficiently penetrates into the gel central portion. In principle, the solvent of the distribution-imparting liquid must have a certain degree of solubility in the metal salt, so when this solution penetrates to the center of the gel, it precipitates once as fine crystals in the gel pores. The metal salts will gradually dissolve. Furthermore, since many metal salts are dissolved in the solution when the solvent is exchanged by immersing it in a solvent having a low solubility in the subsequent distribution fixing step,
Even during the fixing operation, the metal salt is likely to work in the pores together with the distribution-imparting liquid, and the distribution shape is likely to collapse.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】本発明は、これら従来の問題点、すなわち
凹分布GRINの光学特性のバリエーションが乏しいこ
と、母材多孔質体が溶液への浸漬時に割れ易いこと等を
鑑み、ゾル・ゲル法により作製した湿潤ゲルに適当な処
理を施し、凹形状の付与する方法を選択し、凹分布状の
付与する金属種の中心部濃度を高くした際に分布固定が
不安定になりやすいことを解決するためになされたもの
であり、凹状に分布する金属種の中心位置における濃度
の高い、ひいてはベースの屈折率の高い凹分布GRIN
を、所望の金属塩濃度の分布形状を乱すことなしに製造
する方法およびそのGRINを提供することを目的とす
る。
The present invention is manufactured by the sol-gel method in view of these conventional problems, that is, the variation in the optical characteristics of the concave distribution GRIN is poor, and the base material porous body is easily cracked when immersed in a solution. In order to solve the problem that the fixed distribution tends to become unstable when the concentration of the metal species in the concave distribution pattern is increased by applying a suitable treatment to the wet gel and selecting the method of giving the concave shape. The concave distribution GRIN having a high concentration at the central position of the concavely distributed metal species and thus a high refractive index of the base.
It is an object of the present invention to provide a method for producing the same without disturbing the distribution shape of the desired metal salt concentration and its GRIN.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】また、上記製造方法において、中心から外
周へ向けて高くなるように分布される金属種として、屈
折率への寄与の大きな金属種を選択して作製したGRI
Nはガラス媒質中に中心から外周へ向けて屈折率が高く
なっている。
Further , in the above manufacturing method,
As a metal species distributed so as to increase toward the circumference,
GRI prepared by selecting a metal species that has a large contribution to the folding rate
N has a high refractive index from the center to the outer periphery in the glass medium.
Is becoming

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】[0037]

【実施例2】テトラメトキシシラン50ml,トリエト
キシボロン12mlを混合した溶液に、0.01NのH
Cl水溶液25mlを加え、1時間加水分解した溶液に
2Nの酢酸カリウム水溶液134.5ml,1.2Nの
酢酸鉛水溶液33.63ml,酢酸61.4mlを混合
した液を加え、約3分間激しく攪拌し、その後3分間静
置してゾルを調製した。このゾルを直径18mmのポリ
プロピレン製試験管に分注した後、ゲル化させ、実施例
1と同様な浸漬処理を行い、30℃で乾燥させてドライ
ゲルを得た。このドライゲルを管状炉中で605℃まで
焼結し、無色透明なガラスロッドを得た。
EXAMPLE 2 0.01N H was added to a solution prepared by mixing 50 ml of tetramethoxysilane and 12 ml of triethoxyboron.
To the solution obtained by adding 25 ml of Cl aqueous solution and hydrolyzing for 1 hour, 134.5 ml of 2N potassium acetate aqueous solution, 1.2N
A solution in which 33.63 ml of a lead acetate aqueous solution and 61.4 ml of acetic acid were mixed was added, and the mixture was vigorously stirred for about 3 minutes and then left standing for 3 minutes to prepare a sol. This sol was dispensed into a polypropylene test tube having a diameter of 18 mm, gelled, subjected to the same immersion treatment as in Example 1, and dried at 30 ° C. to obtain a dry gel. The dry gel was sintered to 605 ° C. in a tubular furnace to obtain a colorless and transparent glass rod.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0044[Correction target item name] 0044

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0044】[0044]

【実施例4】テトラメトキシシラン30ml,テトラエ
トキシシラン30mlを混合した溶液に、0.01Nの
HCl水溶液20mlと3.2gホウ酸を5mlのH2
Oに溶解した溶液を加えて加水分解し、0.5Nの酢酸
ランタン水溶液320ml,2.5Nの酢酸カリウム水
溶液62.3mlを混合した液を加えてゾルを調製し
た。このゾルを直径18mmのポリプロピレン製試験管
に分注した後、ゲル化させた。このゲルを、0.6Nの
酢酸ランタン、0.6Nの酢酸カリウムを含有するメタ
ノール/水混合溶液に24時間浸漬した後、アセトンに
浸漬し、ゲル細孔中に酢酸ランタン、酢酸カリウムの微
結晶を生成させた。
Example 4 To a solution prepared by mixing 30 ml of tetramethoxysilane and 30 ml of tetraethoxysilane, 20 ml of 0.01N HCl aqueous solution and 3.2 g of boric acid were added to 5 ml of H 2
A solution dissolved in O was added for hydrolysis, and a solution prepared by mixing 320 ml of a 0.5 N lanthanum acetate aqueous solution and 62.3 ml of a 2.5 N potassium acetate aqueous solution was added to prepare a sol. This sol was dispensed into a polypropylene test tube having a diameter of 18 mm and then gelled. The gel was dipped in a methanol / water mixed solution containing 0.6N lanthanum acetate and 0.6N potassium acetate for 24 hours and then dipped in acetone to give lanthanum acetate and potassium acetate microcrystals in the gel pores. Was generated.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゾル・ゲル法により屈折率分布型光学素
子を製造するにあたり、シリカゾルにシリコン以外の金
属種の塩を導入して湿潤ゲルを調製する工程、および前
記湿潤ゲルを前記金属種のうち少なくとも1種の金属種
の塩を含有する溶液に浸漬して、前記溶液中に含有させ
た金属塩濃度が前記湿潤ゲルの中心から外周へ向けて高
くなるように分布させる工程を有することを特徴とする
屈折率分布型光学素子の製造方法。
1. A step of preparing a wet gel by introducing a salt of a metal species other than silicon into silica sol in the production of a gradient index optical element by the sol-gel method; A step of immersing in a solution containing a salt of at least one metal species, and distributing the concentration of the metal salt contained in the solution so as to increase from the center to the outer periphery of the wet gel; A method of manufacturing a characteristic gradient index optical element.
【請求項2】 請求項1記載の製造方法により作製し、
ガラス媒質中に中心から外周に向けて屈折率が強くなる
屈折率分布を有したことを特徴とする屈折率分布型光学
素子。
2. Produced by the manufacturing method according to claim 1,
A gradient index optical element having a refractive index distribution in which the refractive index increases from the center to the outer periphery in a glass medium.
JP13583892A 1992-04-28 1992-04-28 Distributed index optical element and its production Withdrawn JPH05306126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13583892A JPH05306126A (en) 1992-04-28 1992-04-28 Distributed index optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13583892A JPH05306126A (en) 1992-04-28 1992-04-28 Distributed index optical element and its production

Publications (1)

Publication Number Publication Date
JPH05306126A true JPH05306126A (en) 1993-11-19

Family

ID=15160948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13583892A Withdrawn JPH05306126A (en) 1992-04-28 1992-04-28 Distributed index optical element and its production

Country Status (1)

Country Link
JP (1) JPH05306126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865867A (en) * 1995-09-11 1999-02-02 Olympus Optical Co., Ltd. Process for producing gradient index optical element
US6032487A (en) * 1995-11-24 2000-03-07 Plympus Optical Co., Ltd. Fabrication process of a gradient index type of optical element
WO2010001449A1 (en) * 2008-06-30 2010-01-07 東洋ガラス株式会社 Method of producing grin lens

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865867A (en) * 1995-09-11 1999-02-02 Olympus Optical Co., Ltd. Process for producing gradient index optical element
US6032487A (en) * 1995-11-24 2000-03-07 Plympus Optical Co., Ltd. Fabrication process of a gradient index type of optical element
WO2010001449A1 (en) * 2008-06-30 2010-01-07 東洋ガラス株式会社 Method of producing grin lens
EP2305612A1 (en) * 2008-06-30 2011-04-06 Toyo Glass Co., Ltd. Method of producing grin lens
EP2305612A4 (en) * 2008-06-30 2012-07-25 Toyo Glass Co Ltd Method of producing grin lens
JP5062853B2 (en) * 2008-06-30 2012-10-31 東洋ガラス株式会社 Manufacturing method of GRIN lens
US8763430B2 (en) 2008-06-30 2014-07-01 Toyo Seikan Group Holdings, Ltd. Method for manufacturing grin lens

Similar Documents

Publication Publication Date Title
US5123940A (en) Sol-gel doping of optical fiber preform
US5250096A (en) Sol-gel method of making multicomponent glass
JP3708238B2 (en) Manufacturing method of gradient index optical element
US4528010A (en) Process for producing optical glass product
JPH06122530A (en) Refractive index gradient type glass and sol-gel method for manufacture thereof
JPH0121099B2 (en)
JPH03295818A (en) Production of glass having distribution of refractive index
JPH05306126A (en) Distributed index optical element and its production
JPS6252136A (en) Manufacture of glass product
US6966201B2 (en) High-temperature sintering of soot bodies doped using molecular stuffing
JP3209533B2 (en) Method of manufacturing refractive index distribution type optical element
JP3207855B2 (en) Preform manufacturing method
JP3209534B2 (en) Method of manufacturing refractive index distribution type optical element
JP3476864B2 (en) Glass manufacturing method
JP3153814B2 (en) Method of manufacturing refractive index distribution type optical element
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JP3112473B2 (en) Method of manufacturing refractive index distribution type optical element
JP3043781B2 (en) Method of manufacturing refractive index distribution type optical element
JPH059036A (en) Production of quartz glass having refractive index distribution
JPH06316420A (en) Production of glass
JP2005145751A (en) Method for manufacturing grin lens, and grin lens
JPH08165121A (en) Production of negative refracting power and graded refractive index type optical element
JPH05306125A (en) Production of glass
JPH0812342A (en) Production of glass
JPS6227012B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706