JPS6227012B2 - - Google Patents
Info
- Publication number
- JPS6227012B2 JPS6227012B2 JP59041409A JP4140984A JPS6227012B2 JP S6227012 B2 JPS6227012 B2 JP S6227012B2 JP 59041409 A JP59041409 A JP 59041409A JP 4140984 A JP4140984 A JP 4140984A JP S6227012 B2 JPS6227012 B2 JP S6227012B2
- Authority
- JP
- Japan
- Prior art keywords
- dopant
- glass body
- rod
- refractive index
- pores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 61
- 239000002019 doping agent Substances 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 38
- 239000011148 porous material Substances 0.000 claims description 24
- 239000005373 porous glass Substances 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 3
- 238000007654 immersion Methods 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 2
- 230000004075 alteration Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- -1 methanol and ethanol Chemical class 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- FYWSTUCDSVYLPV-UHFFFAOYSA-N nitrooxythallium Chemical compound [Tl+].[O-][N+]([O-])=O FYWSTUCDSVYLPV-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01262—Depositing additional preform material as liquids or solutions, e.g. solution doping of preform tubes or rods
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0095—Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/50—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Description
〔産業上の利用分野〕
本発明は、光伝送用フアイバーの素材(プレフ
オーム)やロツド状レンズの材料として、特にマ
イクロレンズアレー用のロツド状マイクロレン
ズ、あるいは光通信用フアイバーと光源との結合
用マイクロレンズなどの素材として好適な屈折率
勾配を有するロツド状ガラス体の製造法に関す
る。
〔従来技術〕
屈折率勾配を有するガラス体の製造法として
は、分子スタツフイング法が知られている。この
方法は多孔質ガラス体内にドーパント(屈折率修
正成分)が或る濃度勾配を形成して分布するよ
う、ドーパントを多孔質ガラス体の細孔内に充填
し、しかる後その細孔を熱処理(焼成)によつて
つぶす方法であつて、特開昭51−12607号公報に
は、多孔質ガラス体の細孔内にドーパントの溶液
を浸透(スタツフイング)させた後、そのガラス
体からドーパントの一部を溶出(アンスタツフイ
ング)させて細孔内に分布するドーパントに濃度
勾配を形成させ、次いでドーパントを細孔内に析
出させてからそのガラス体を乾燥し、しかる後こ
れに焼成処理を施して細孔をつぶすことからなる
屈折率勾配を有するガラス体の製造方法が教示さ
れている。
〔発明の目的〕
マイクロレンズアレー用のロツド状マイクロレ
ンズ、あるいは光通信フアイバーと光源との結合
用マイクロレンズなどの素材として使用されると
ころの屈折率勾配を有するロツド状ガラス体は、
収差が小さく、結像特性がよいことが要件であ
る。レンズの収差を小さくするためには、屈折率
勾配を理想分布に調整することが望ましい。屈折
率勾配を有するロツド状ガラス体の中心軸上の屈
折率をn0、中心軸から半径rの位置の屈折率をn
(r)とすると、ロツドの半径方向全域に亘る屈
折率の理想分布は式(1)で表わされる。
n(r)2=n0 2{1−(gr)2} ……(1)
ここで、gは分布の2次定数である。
然るに、前掲の公開公報に教示された分子スタ
ツフイング法に従つて、ロツド状多孔質ガラス体
(半径r0)を硝酸セシウム水溶液中に浸漬してスタ
ツフイングを行なつた後、40体積%のエタノール
水溶液中に浸漬してアンスタツフイングを行な
い、次いで0℃のエタノールに3時間浸漬してド
ーパントCsNO3を細孔内に析出させ、しかる後
乾燥、焼成を行なつて屈折率勾配を有するロツド
状ガラス体Aを製造した場合には、そのガラスロ
ツドAの半径方向の屈折率分布は、第1図aに破
線で示す通りあつて、中心軸の近傍では実線で示
す理想分布曲線と一致するが、半径の約60%を越
えた位置では、周辺に近付くに従つて勾配が緩や
かになり、理想分布曲線との隔たりが大きくな
る。式(1)で表わされる理想分布に対する屈折率分
布の近似の度合は下式(2)で定義される標準偏差S
の大きさで表わされ、経験上、Sの値が10×10-5
以上になると収差が大きくなるので、この値以下
であることが好ましい。上に紹介したガラスロツ
ドAでは、半径の60%まではSの値が4.4×10-5
であるものの、80%まででは40×10-5を越えるの
で、ロツド状マイクロレンズとしては実用に供し
得ない。
また、ロツド状レンズでは軸上収差特性も考慮
する必要があるが、既述のガラスロツドAでは、
第1図bで示されるように、ロツドの周辺部で軸
上収差が悪化する。
本発明の目的は、分子スタツフイング法を改良
して理想分布にほぼ一致する屈折率勾配を有する
うえに、軸上収差も良好なロツド状ガラス体の製
造方法を提供することにある。
〔発明の構成〕
本発明者らは、上の目的に適うロツド状ガラス
体の製造方法について研究を重ねた結果、スタツ
フイングしたロツド状多孔質ガラス体をアンスタ
ツフイングするに際し、スタツフイングに用いた
ドーパント溶液と同種のドーパントをより低濃度
で含有する溶液を使用し、このドーパント溶液に
ガラス体を浸漬することによつて、ドーパントの
濃度勾配から予想されるガラス体周辺部の屈折率
を理想分布曲線(第2図aの実線参照)より若干
高くなるようにアンスタツフイングし、しかる後
このガラス体をドーパント溶解度の低い溶媒に低
温で浸漬すれば、ガラス体内のドーパントは細孔
内に析出すると共に、ガラス体周辺部のドーパン
トの一部はガラス体から改めて溶出されるので、
最終的には第2図bに示す如く、ロツドの周辺部
まで理想分布にほぼ合致する屈折率勾配を持つガ
ラス体が得られることを見出した。
而して本発明の方法は、ロツド状多孔質ガラス
体の内部にドーパント溶液をスタツフイングさせ
た後、細孔内のドーパントの一部をアンスタツフ
イングさせてガラス体内に分布するドーパントに
濃度勾配を形成させ、しかる後ドーパントを細孔
内に析出させてからガラス体を乾燥し、次いでこ
れを焼成して細孔をつぶすことからなる屈折率勾
配を有するロツド状ガラス体の製造法に於いて、
スタツフイングさせた前記のガラス体をスタツフ
イングに用いたドーパント溶液と同種のドーパン
トをより低濃度で含有する溶液に浸漬することに
よつてアンスタツフイングを行ない、次いでアン
スタツフイングされたガラス体を5℃に於けるド
ーパント溶解度が0.5g/100g(溶媒)以下であ
る溶媒に5℃以下の温度で浸漬することによつて
細孔内でのドーパントの析出を行なわせることを
特徴とする。
本発明で使用されるロツド状多孔質ガラス体
は、分相し得る硼珪酸塩ガラスロツドから容易に
製造可能であつて、例えば当該ガラスロツドを所
定の条件で熱処理するこにより、SiO2に富んだ
酸不溶相と、アルカリ金属酸化物及びB2O3に富
んだ酸易溶相に分相させ、次にこのガラスロツド
を酸で処理して酸易溶相を溶出させれば、連続細
孔を有するロツド状多孔質ガラス体を得ることが
できる。
本発明では分子スタツフイング法で公知のドー
パントがいずれも使用可能であるが、なかでも硝
酸タリウム(TlNO3)、硝酸セシウム(CsNO3)な
どが好ましい。ロツド状多孔質ガラス体にドーパ
ントの溶液をスタツフイングする工程には、公知
の分子スタツフイング法のそれがそのまま採用さ
れる。しかし、本発明のアンスタツフイング工程
は、ドーパントを含まない溶媒のみを使用する従
来のアンスタツフイング工程とは相違して、スタ
ツフイング工程で用いたドーパント溶液と同種の
ドーパントをより低濃度で含有する溶液を使用す
る。この溶液にスタツフイングを終えたロツド状
多孔質ガラス体を浸漬することによつて、多孔質
ガラス体には第2図aに破線で示されるような屈
折率分布曲線を与えるドーパントの濃度勾配が形
成される。アンスタツフイング工程で使用される
ドーパント溶液の溶媒は、スタツフイング工程で
のドーパント溶液の溶媒と同種であつても異種で
あつても差支えないが、典型的には後述の実施例
に示す通り、スタツフイング工程では水が、アン
スタツフイング工程では低級アルコールの水溶液
がそれぞれドーパントの溶媒として使用される。
そしてアンスタツフイング工程の温度は、スタツ
フイング工程のそれより低温であるのが通例であ
る。
アンスタツフイング工程を終え、所定通りにド
ーパントの濃度勾配が形成された多孔質ガラス体
は、次いでプレシピテーシヨン工程に移され、5
℃に於けるドーパント溶解度が0.5g/100g(溶
媒)以下である溶媒に、5℃以下の温度で浸漬さ
れる。これによつて多孔質ガラス体内のドーパン
トは細孔内に析出せしめられると共に、ガラス体
周辺部の細孔内に存在するドーパントの一部はガ
ラス体外へ溶出せしめられるので、ロツド状多孔
質ガラス体には第2図bの破線(実線は理想分布
曲線である)で示されるような屈折率分布を与え
得るドーパントの濃度勾配が付与されるのであ
る。このプレシピテーシヨン工程で使用される溶
媒、すなわち5℃に於けるドーパント溶解度が
0.5g/100g(溶媒)以下である溶媒としては、
メタノール、エタノールなどで例示される低級一
価アルコール及びアセトン、メチルエチルケトン
などで例示されるケトンの1種もしくは2種以上
が使用できるほか、これらと水又はメチルエーテ
ル、メチルエチルエーテル、エチルエーテルなど
で例示されるエーテルとの混合物も溶媒として使
用可能である。ちなみに、ドーパント溶解度が
0.5g/100g(溶媒)より大きい溶媒を使用した
場合には、ガラス体周辺部のドーパントの溶出速
度が速くなりすぎ、細孔内にドーパントを析出さ
せるのに必要時間だけ、ガラス体を当該溶媒に浸
漬しておくとガラス体周辺部の屈折率勾配が急に
なり、理想分布から逸脱する。ガラス体を溶媒に
浸漬する際の温度は、5℃以下とすべきあつて、
5℃より高い温度で浸漬した場合には、ガラス体
内のドーパントの濃度分布に乱れが生ずるので好
ましくない。浸漬はガラス体内に分布するドーパ
ントを細孔内に析出させるに必要な時間だけ続け
られるが、その浸漬時間は一般に多孔質ガラスロ
ツド径(mm)の2乗×0.25〜1時間の範囲にあ
る。
上記のプレシピテーシヨン工程を終えた多孔質
ガラス体は、溶媒から取出した後、分子スタツフ
イング法の常法通り、これを乾燥して細孔内の溶
媒を揮散せしめ、次いで細孔がつぶれるまで焼成
処理を施すことにより、目的の屈折率勾配を有す
るロツド状ガラス体を得ることができる。
〔実施例〕
重量%でSiO2……54.50、B2O3……34.30、
Na2O……5.20及びK2O……6.00の組成を有するガ
ラスを1450℃で3時間溶解し、溶解中1時間撹拌
を行なつて鋳型に流し込み、480℃で2時間保持
した後、炉内で放冷してガラスブロツクを得た。
このブロツクから直径4〜6mm、長さ100mmのガ
ラスロツドを複数本切り出し、各ロツドを540℃
で120時間熱処理して分相させ、しかる後これら
を1.5Nの硫酸中100℃で12〜24時間処理して多孔
質ガラスロツドを得た。
次にこれらの多孔質ガラスロツドそれぞれに、
次表の条件でスタツフイング処理、アンスタツフ
イング処理及びプレシピテーシヨン処理を施した
後、相対温度20%以下の雰囲気中で乾燥し、続い
て各ロツドを細孔がつぶれる温度まで加熱焼成し
て屈折率勾配を有するガラスロツドを得た。尚、
表中の比較例1及び2は、特開昭51−126207号公
報に教示された方法でアンスタツフイング処理を
行なつたものに相当する。
こうして得られた各ガラスロツドについて、D
線下で干渉顕微鏡法により半径方向の屈折率分布
を測定し、633nmHe−Neレーザー光で光線追跡
法により軸上収差を測定した。結果を第1表及び
第2表に示す。
[Industrial Field of Application] The present invention is suitable for use as a material for optical transmission fibers (preforms) and rod-shaped lenses, particularly for rod-shaped microlenses for microlens arrays, or for coupling fibers for optical communication with light sources. The present invention relates to a method of manufacturing a rod-shaped glass body having a refractive index gradient suitable as a material for microlenses and the like. [Prior Art] A molecular stuffing method is known as a method for manufacturing a glass body having a refractive index gradient. This method involves filling the pores of a porous glass body with a dopant (refractive index modifying component) so that the dopant (refractive index modifying component) forms a certain concentration gradient and is distributed within the porous glass body, and then heat-treating the pores ( JP-A-51-12607 discloses a method in which a dopant solution is infiltrated into the pores of a porous glass body (stuffing), and then the dopant is crushed from the glass body. A portion of the dopant is eluted (unstuffed) to form a concentration gradient in the dopant distributed within the pores, and then the dopant is precipitated within the pores, the glass body is dried, and then subjected to a firing process. A method of manufacturing a glass body with a refractive index gradient is taught, which comprises collapsing the pores by applying a refractive index gradient. [Object of the Invention] A rod-shaped glass body with a refractive index gradient used as a material for rod-shaped microlenses for microlens arrays or microlenses for coupling optical communication fibers and light sources, etc.
The requirements are that the aberrations are small and the imaging characteristics are good. In order to reduce lens aberrations, it is desirable to adjust the refractive index gradient to an ideal distribution. The refractive index on the central axis of a rod-shaped glass body with a refractive index gradient is n 0 , and the refractive index at a position at a radius r from the central axis is n
(r), the ideal distribution of refractive index over the entire radial area of the rod is expressed by equation (1). n(r) 2 =n 0 2 {1-(gr) 2 } ...(1) Here, g is a quadratic constant of the distribution. However, according to the molecular stuffing method taught in the above-mentioned publication, a rod-shaped porous glass body (radius r 0 ) was immersed in an aqueous cesium nitrate solution for stuffing, and then 40% by volume of the material was stuffed. The rod is immersed in an ethanol aqueous solution for unstuffing, then immersed in 0°C ethanol for 3 hours to precipitate the dopant CsNO 3 into the pores, and then dried and fired to form a rod with a refractive index gradient. When a shaped glass body A is manufactured, the refractive index distribution in the radial direction of the glass rod A is as shown by the broken line in FIG. , at a position beyond about 60% of the radius, the slope becomes gentler as it approaches the periphery, and the gap from the ideal distribution curve becomes larger. The degree of approximation of the refractive index distribution to the ideal distribution expressed by equation (1) is the standard deviation S defined by equation (2) below.
From experience, the value of S is 10×10 -5
If the value exceeds this value, the aberration becomes large, so it is preferable that the value is less than this value. In the glass rod A introduced above, the value of S is 4.4×10 -5 up to 60% of the radius.
However, up to 80%, it exceeds 40×10 -5 and cannot be used practically as a rod-shaped microlens. In addition, with rod-shaped lenses, it is necessary to consider the axial aberration characteristics, but with the glass rod A mentioned above,
As shown in FIG. 1b, the axial aberration worsens at the periphery of the rod. An object of the present invention is to provide a method for manufacturing a rod-shaped glass body which has a refractive index gradient that substantially matches an ideal distribution and also has good axial aberration by improving the molecular stuffing method. [Structure of the Invention] As a result of repeated research on a method for manufacturing a rod-shaped glass body that meets the above objectives, the present inventors have discovered a method that can be used for stuffing when unstuffing a rod-shaped porous glass body that has been stuffed. By using a solution containing the same type of dopant at a lower concentration as the dopant solution that was used, and by immersing the glass body in this dopant solution, the refractive index at the periphery of the glass body expected from the dopant concentration gradient can be idealized. If the glass body is unstuffed to be slightly higher than the distribution curve (see the solid line in Figure 2a) and then immersed in a solvent with low dopant solubility at low temperature, the dopant in the glass body will precipitate into the pores. At the same time, some of the dopants around the glass body are eluted from the glass body again, so
It was finally found that a glass body having a refractive index gradient almost matching the ideal distribution up to the periphery of the rods could be obtained, as shown in FIG. 2b. The method of the present invention involves stuffing a dopant solution inside a rod-shaped porous glass body, and then unstuffing a portion of the dopant within the pores to create a concentration gradient in the dopant distributed within the glass body. In a method for producing a rod-shaped glass body having a refractive index gradient, the process comprises forming a dopant, then precipitating a dopant into the pores, drying the glass body, and then firing it to collapse the pores. ,
Unstuffing is carried out by immersing the above-mentioned unstuffed glass body in a solution containing a lower concentration of the same type of dopant as the dopant solution used for stuffing, and then the unstuffed glass body is It is characterized in that the dopant is precipitated within the pores by immersing it in a solvent whose dopant solubility at 5°C is 0.5g/100g (solvent) or less at a temperature of 5°C or less. The rod-shaped porous glass body used in the present invention can be easily manufactured from a phase-separable borosilicate glass rod, and can be produced by, for example, heat-treating the glass rod under predetermined conditions to form an SiO 2 -rich acid. If the glass rod is separated into an insoluble phase and an acid-easily soluble phase rich in alkali metal oxides and B 2 O 3 , and then treated with acid to elute the acid-easily soluble phase, it will have continuous pores. A rod-shaped porous glass body can be obtained. In the present invention, any dopant known in the molecular stuffing method can be used, but among them, thallium nitrate (TlNO 3 ), cesium nitrate (CsNO 3 ), etc. are preferred. In the step of stuffing the rod-shaped porous glass body with a dopant solution, a known molecular stuffing method is directly adopted. However, unlike the conventional unstuffing process that uses only a dopant-free solvent, the unstuffing process of the present invention contains a lower concentration of the same type of dopant as the dopant solution used in the stuffing process. Use a solution that By immersing the rod-shaped porous glass body that has been stuffed into this solution, the dopant concentration gradient that gives the porous glass body a refractive index distribution curve as shown by the broken line in Figure 2a is created. It is formed. The solvent of the dopant solution used in the unstuffing process may be the same or different from the solvent of the dopant solution in the unstuffing process, but typically, as shown in the Examples below, Water is used as a solvent for the dopant in the stuffing process, and an aqueous solution of a lower alcohol is used in the unstuffing process.
The temperature of the unstuffing process is usually lower than that of the stuffing process. After completing the unstuffing process, the porous glass body in which a dopant concentration gradient has been formed in a predetermined manner is then transferred to a precipitation process.
It is immersed in a solvent whose dopant solubility at °C is 0.5 g/100 g (solvent) or less at a temperature of 5 °C or less. As a result, the dopant in the porous glass body is precipitated into the pores, and a part of the dopant present in the pores around the glass body is eluted out of the glass body, so that the rod-shaped porous glass body A concentration gradient of the dopant that can provide a refractive index distribution as shown by the broken line in FIG. 2b (the solid line is the ideal distribution curve) is given to the dopant. The solvent used in this precipitation process, i.e. the dopant solubility at 5°C, is
As a solvent that is 0.5g/100g (solvent) or less,
One or more types of lower monohydric alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone can be used, as well as combinations thereof with water or methyl ether, methyl ethyl ether, ethyl ether, etc. Mixtures with ethers can also be used as solvents. By the way, the dopant solubility is
If a solvent larger than 0.5g/100g (solvent) is used, the elution rate of the dopant around the glass body will be too fast, and the glass body will be evacuated from the solvent for the time necessary to precipitate the dopant in the pores. If the glass body is immersed in water, the refractive index gradient at the periphery of the glass body becomes steeper and deviates from the ideal distribution. The temperature when immersing the glass body in the solvent should be 5°C or less,
If the glass body is immersed at a temperature higher than 5° C., the dopant concentration distribution within the glass body will be disturbed, which is not preferable. The immersion is continued for a time necessary to precipitate the dopant distributed within the glass body into the pores, and the immersion time is generally in the range of the square of the porous glass rod diameter (mm) x 0.25 to 1 hour. After the porous glass body that has undergone the above precipitation process is removed from the solvent, it is dried to volatilize the solvent in the pores, and then the pores are collapsed, as is the usual method of molecular stuffing. A rod-shaped glass body having the desired refractive index gradient can be obtained by performing the firing process up to the desired temperature. [Example] In weight%, SiO 2 ...54.50, B 2 O 3 ...34.30,
Glass having a composition of Na 2 O...5.20 and K 2 O...6.00 was melted at 1450℃ for 3 hours, stirred for 1 hour during melting, poured into a mold, kept at 480℃ for 2 hours, and then placed in a furnace. A glass block was obtained by cooling in a chamber.
Cut out multiple glass rods with a diameter of 4 to 6 mm and a length of 100 mm from this block, and heat each rod to 540°C.
They were heat-treated for 120 hours to separate the phases, and then treated in 1.5N sulfuric acid at 100°C for 12 to 24 hours to obtain porous glass rods. Next, for each of these porous glass rods,
After performing stuffing treatment, unstuffing treatment, and precipitation treatment under the conditions shown in the table below, each rod is dried in an atmosphere with a relative temperature of 20% or less, and then each rod is heated and fired to a temperature that collapses the pores. A glass rod with a refractive index gradient was obtained. still,
Comparative Examples 1 and 2 in the table correspond to those in which unstuffing was performed by the method taught in Japanese Patent Application Laid-Open No. 126207/1983. For each glass rod thus obtained, D
The refractive index distribution in the radial direction was measured by interference microscopy under the line, and the axial aberration was measured by ray tracing with a 633 nm He-Ne laser beam. The results are shown in Tables 1 and 2.
【表】【table】
【表】【table】
【表】【table】
【表】
前2表から明らかな通り、本発明の方法で得ら
れた実施例1〜10のガラスロツドは、前掲の式(1)
で表わされる屈折率の理想分布(半径方向分布)
に対し、ロツド半径の90%まで標準偏差Sが2〜
6×10-5の範囲にあつて、理想分布とよく一致す
るのに反し、従来技術による比較例1及び2のガ
ラスロツドは、ロツド半径の80%で既に標準偏差
Sが10×10-5を越える。
また、実施例1〜5及び比較例で得られたガラ
スロツドの軸上収差の測定結果は第3図に示され
るが、比較例1及び2のガラスロツドは、第3図
fおよびgから明らかな通り、光線入射半径比
0.6より周辺側で軸上収差が急激に悪化する。こ
のことは実質的にロツド状レンズとして有効な領
域が、光軸を中心とした面積36%までの範囲にす
ぎないことを意味する。これに対し、実施例1〜
5のガラスロツドは、それぞれ第3図a〜eで図
示される通り、いずれも光線入射半径比0.9まで
軸上収差が±50μm以内にあり、ロツドのほぼ全
域がレンズとして活用し得ることが解る。
〔効果〕
以上詳述して来た通り、本発明の方法によれ
ば、理想分布にほぼ一致する屈折率勾配を有し、
しかも軸上収差特性に優れたロツド状ガラス体を
製造することができる。従つて、本発明は各種の
ロツド状レンズの素材となり得るロツド状ガラス
体の製造法として、その工業的価値は極めて大き
い。[Table] As is clear from the previous two tables, the glass rods of Examples 1 to 10 obtained by the method of the present invention have the formula (1) shown above.
Ideal distribution of refractive index (radial distribution) expressed by
In contrast, the standard deviation S is 2 to 90% of the rod radius.
In the range of 6×10 -5 , the glass rods of Comparative Examples 1 and 2 match well with the ideal distribution, whereas the standard deviation S of the glass rods of Comparative Examples 1 and 2 according to the prior art already exceeds 10×10 -5 at 80% of the rod radius. exceed. Furthermore, the measurement results of the axial aberrations of the glass rods obtained in Examples 1 to 5 and Comparative Examples are shown in FIG. 3, and as is clear from FIG. , ray incidence radius ratio
Axial aberration worsens rapidly on the peripheral side from 0.6. This means that the effective area as a rod-shaped lens is only up to 36% of the area centered on the optical axis. In contrast, Examples 1-
As shown in FIGS. 3a to 3e, each of the glass rods No. 5 has an axial aberration within ±50 μm up to a light beam incidence radius ratio of 0.9, and it can be seen that almost the entire area of the rod can be used as a lens. [Effects] As detailed above, according to the method of the present invention, the refractive index gradient almost matches the ideal distribution,
Moreover, a rod-shaped glass body with excellent axial aberration characteristics can be manufactured. Therefore, the present invention has extremely great industrial value as a method for manufacturing rod-shaped glass bodies that can be used as materials for various rod-shaped lenses.
第1図aは従来法で製造したガラスロツドAの
半径方向の屈折率分布を示し、第1図bは同じく
ガラスロツドAの軸上収差を示す。第2図aは本
発明のアンスタツフイング工程を終えた多孔質ガ
ラスロツドをそのまま乾燥、焼成した場合に得ら
れる半径方向の屈折率分布を示し、第2図bは本
発明の方法に従つてプレシピテーシヨン工程を終
えた多孔質ガラスロツドを乾燥、焼成して得られ
る半径方向の屈折率分布を示す。第3図a〜eは
それぞれ実施例1〜5で得たガラスロツドの軸上
収差を示し、第3図f及びgは比較例1及び2で
得たガラスロツドの軸上収差を示す。
FIG. 1a shows the radial refractive index distribution of glass rod A manufactured by the conventional method, and FIG. 1b also shows the axial aberration of glass rod A. Figure 2a shows the radial refractive index distribution obtained when the porous glass rod that has undergone the unstuffing process of the present invention is dried and fired as it is, and Figure 2b shows the refractive index distribution in the radial direction obtained when the porous glass rod is dried and fired in accordance with the method of the present invention. This figure shows the radial refractive index distribution obtained by drying and firing a porous glass rod that has undergone a recipe process. 3A to 3E show the axial aberrations of the glass rods obtained in Examples 1 to 5, respectively, and FIGS. 3F and 3G show the axial aberrations of the glass rods obtained in Comparative Examples 1 and 2.
Claims (1)
の溶液を浸透(スタツフイング)させた後、細孔
内のドーパントの一部をガラス体から溶出(アン
スタツフイング)させてガラス体内に分布するド
ーパントに濃度勾配を形成させ、しかる後ドーパ
ントを細孔内に析出させてからガラス体を乾燥
し、次いでこれを焼成して細孔をつぶすことから
なる屈折率勾配を有するロツド状ガラス体の製法
に於いて、スタツフイングさせたガラス体をスタ
ツフイングに用いたドーパント溶液より低濃度で
同種のドーバントを含有する溶液に浸漬すること
によつてアンスタツフイングを行ない、しかる後
アンスタツフイングされたガラス体を5℃に於け
るドーパント溶解度が0.5g/100g(溶媒)以下
である溶媒に5℃以下の温度で浸漬することによ
り細孔内でのドーパントの析出を行わせることを
特徴とする前記の屈折率勾配を有するロツド状ガ
ラス体の製法。1. After a dopant solution is infiltrated into the rod-shaped porous glass body (stuffing), a part of the dopant in the pores is eluted from the glass body (unstuffing) and becomes the dopant distributed within the glass body. In a method for producing a rod-shaped glass body having a refractive index gradient, the method comprises forming a concentration gradient, then precipitating the dopant into the pores, drying the glass body, and then firing it to collapse the pores. The unstuffed glass body is then unstuffed by immersing it in a solution containing the same kind of dopant at a lower concentration than the dopant solution used for stuffing, and then the unstuffed glass body is The above-mentioned refractive index characterized in that the dopant is precipitated in the pores by immersion in a solvent whose dopant solubility at 5°C is 0.5g/100g (solvent) or less at a temperature of 5°C or less. A method for manufacturing a rod-shaped glass body with a gradient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59041409A JPS60186424A (en) | 1984-03-06 | 1984-03-06 | Manufacture of glass rod having refractive index gradient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59041409A JPS60186424A (en) | 1984-03-06 | 1984-03-06 | Manufacture of glass rod having refractive index gradient |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60186424A JPS60186424A (en) | 1985-09-21 |
JPS6227012B2 true JPS6227012B2 (en) | 1987-06-11 |
Family
ID=12607556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59041409A Granted JPS60186424A (en) | 1984-03-06 | 1984-03-06 | Manufacture of glass rod having refractive index gradient |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60186424A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277525A (en) * | 1987-05-08 | 1988-11-15 | Nippon Sheet Glass Co Ltd | Production of optical glass |
US7058269B2 (en) | 2001-10-24 | 2006-06-06 | Institut National D'optique | Reconstructed glass for fiber optic applications |
-
1984
- 1984-03-06 JP JP59041409A patent/JPS60186424A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60186424A (en) | 1985-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU652351B2 (en) | Quartz glass doped with rare earth element and production thereof | |
US6711918B1 (en) | Method of bundling rods so as to form an optical fiber preform | |
US4775401A (en) | Method of producing an optical fiber | |
CN1197516A (en) | Optical waveguide fiber containing titania and germania | |
JPH044986B2 (en) | ||
JPH0121099B2 (en) | ||
JPS58145634A (en) | Manufacture of doped glassy silica | |
EP0094810B1 (en) | Process for producing glass product having gradient of refractive index | |
CA1063352A (en) | Method for producing an impregnated waveguide | |
US4236930A (en) | Optical waveguide and method and compositions for producing same | |
US4188198A (en) | Joint doping of porous glasses to produce materials with high modifier concentrations | |
CA1238820A (en) | Fabrication of high-silica glass article | |
JPS6227012B2 (en) | ||
US4299608A (en) | Joint doping of porous glasses to produce materials with high modifier concentrations | |
JP2813752B2 (en) | Manufacturing method of optical waveguide preform | |
US4319905A (en) | Method of leaching glass preforms | |
JPS58199748A (en) | Manufacture of glass body having gradient of refractive index | |
JPH03265537A (en) | Rare-earth element-doped glass and its production | |
JPH05306126A (en) | Distributed index optical element and its production | |
JPS6021931B2 (en) | tempered glass products | |
JPS6177629A (en) | Production of spherical lens having refractive index distribution | |
CA1150737A (en) | Optical waveguide and method and compositions for producing same | |
CA1193620A (en) | Optical waveguide and method and compositions for producing same | |
JPH05178622A (en) | Production of quartz glass having refractive index distribution | |
JPS606295B2 (en) | Glass body manufacturing method |