JPH03265537A - Rare-earth element-doped glass and its production - Google Patents

Rare-earth element-doped glass and its production

Info

Publication number
JPH03265537A
JPH03265537A JP2065150A JP6515090A JPH03265537A JP H03265537 A JPH03265537 A JP H03265537A JP 2065150 A JP2065150 A JP 2065150A JP 6515090 A JP6515090 A JP 6515090A JP H03265537 A JPH03265537 A JP H03265537A
Authority
JP
Japan
Prior art keywords
glass
earth element
rare earth
doped
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2065150A
Other languages
Japanese (ja)
Other versions
JP2931026B2 (en
Inventor
Akira Oibe
及部 晃
Kazunori Nakamura
中村 一則
Nobuyuki Kagi
信行 加木
Yasumasa Sasaki
康真 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to DE69106795T priority Critical patent/DE69106795T2/en
Priority to AU71855/91A priority patent/AU652351B2/en
Priority to ES91903617T priority patent/ES2069877T3/en
Priority to EP91903617A priority patent/EP0466932B1/en
Priority to PCT/JP1991/000134 priority patent/WO1991011401A1/en
Priority to KR1019910701275A priority patent/KR0163195B1/en
Priority to US07/778,062 priority patent/US5262365A/en
Priority to CA002051104A priority patent/CA2051104C/en
Publication of JPH03265537A publication Critical patent/JPH03265537A/en
Application granted granted Critical
Publication of JP2931026B2 publication Critical patent/JP2931026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1438Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. solution doping of the article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/31Doped silica-based glasses containing metals containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3435Neodymium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3476Erbium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/36Doped silica-based glasses containing metals containing rare earth metals containing rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S65/00Glass manufacturing
    • Y10S65/15Nonoxygen containing chalogenides
    • Y10S65/16Optical filament or fiber treatment with fluorine or incorporating fluorine in final product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain a glass doped with a high-purity rare-earth element and Al, excellent in transprency and used for a functional optical fiber or an optical waveguide at a relatively low sintering temp. by adding a rare-earth element into an SiO2-based host glass doped with Al and F. CONSTITUTION:The rare-earth element-doped glass is obtained by the following method. Namely, a preform of quartz-based porous glass having connected open cells is dipped in a soln. contg. rare-earth element ion and aluminum ion to impregnate the preform in the doping stage, the doped base material is dried to deposit the rare-earth element and aluminum salt in the cell of the preform or further the deposited salt is oxidized and stabilized in the drying stage, and the dried preform is sintered and made nonporous in the sintering stage to produce the rare-earth element-doped glass. In this process, a fluorine doping stage for heat-treating the preform in a fluorine-contg. atmosphere is interposed between the drying stage and the sintering stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類元素ドープガラス、特に、光ファイバま
たは光導波路の形態をしたレーザ、光増幅器等の能動的
光素子に用いるのに適した希土類元素ドープガラスとそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to rare earth element doped glasses, particularly rare earth element doped glasses suitable for use in active optical devices such as lasers and optical amplifiers in the form of optical fibers or optical waveguides. This invention relates to element-doped glass and its manufacturing method.

(従来の技術) 希土類元素をコアに含む機能性光ファイバとして、希土
類元素イオンの電子準位間の誘導放出による光増幅を利
用したファイバレーザ[参考文献1.2]や光増幅器[
参考文献3.4]が報告されている。前記光ファイバの
中でもErドープファイバは光通信に使用されている1
、55μm帯の波長で光増幅作用を示すため、光電変換
を必要としないインライン光増幅器として注目されてい
る。
(Prior Art) As functional optical fibers containing rare earth elements in their cores, fiber lasers [Reference 1.2] and optical amplifiers [Reference 1.2] and optical amplifiers [Reference 1.2] utilize optical amplification by stimulated emission between electronic levels of rare earth element ions.
Reference 3.4] has been reported. Among the optical fibers mentioned above, Er-doped fibers are used for optical communications1.
Since it exhibits an optical amplification effect at wavelengths in the 55 μm band, it is attracting attention as an in-line optical amplifier that does not require photoelectric conversion.

さらに、機能性希土類ドープファイバの特性を改善する
ために、希土類元素と同時にA2を共ドブする技術があ
る。へβ共ドープは以下に示すように2つの利点を有し
ている。
Furthermore, in order to improve the characteristics of the functional rare earth doped fiber, there is a technique of co-doping A2 at the same time as the rare earth element. β-codoping has two advantages as shown below.

第一に、一般の光ファイバに使用されているSin、ガ
ラスまたはGe0z−5iOa系ガラスでは約0.1w
t%以上の希土類元素を添加すると、いわゆる濃度消光
を生じる欠点があった。
First, the amount of Si, glass, or Ge0z-5iOa glass used in general optical fibers is approximately 0.1w.
Addition of t% or more of rare earth elements has the disadvantage of causing so-called concentration quenching.

これは、希土類イオン同士がガラス中で凝集(クラスタ
ー化)することによって励起された電子のエネルギーが
、非放射的な過程を介して失われ易くなる現象であり、
発光の寿命や効率が損なわれる。/l共ドープはこの欠
点を解消し、クラスター化することなしに比較的高濃度
の希土類元素なドープできる[参考文献5]。
This is a phenomenon in which the energy of excited electrons is easily lost through non-radiative processes when rare earth ions aggregate (cluster) together in the glass.
The lifespan and efficiency of light emission are impaired. /l co-doping overcomes this drawback and allows relatively high concentrations of rare earth element doping without clustering [Reference 5].

希土類元素を高濃度にドープすると、励起光と希土類イ
オンとの作用長が短くても充分な増幅利得が得られるた
め、小型のレーザまたは光増幅器が実現できる。
When rare earth elements are doped at a high concentration, sufficient amplification gain can be obtained even if the action length between the excitation light and the rare earth ions is short, so a compact laser or optical amplifier can be realized.

第二に、Aβを共ドープすると希土類イオンの発光スペ
クトルが変化する場合がある。特に、石英系Erドープ
ガラスの1.55μm帯の発光スペクトルはAI2I2
−プによってブロードになり、増幅できる波長帯域が拡
大する。これは 波長多重伝送系の弄増幅器として使用
する場合に大きな利点となる。
Second, codoping with Aβ may change the emission spectrum of rare earth ions. In particular, the emission spectrum in the 1.55 μm band of quartz-based Er-doped glass is AI2I2
- The wavelength band that can be amplified is expanded. This is a major advantage when used as an amplifier in a wavelength division multiplexing transmission system.

希土類元素と/lを共ドープした光ファイバの作製方法
としては、従来、M (’: V D法をベースとした
溶液含浸法(MCVD溶液含浸法)があり、例えばB、
 J、 A1n5lieら[参考文献6]によって報告
されている。
Conventionally, as a method for manufacturing an optical fiber co-doped with a rare earth element and /l, there is a solution impregnation method (MCVD solution impregnation method) based on the M (': V D method).
J, A1n5lie et al. [Reference 6].

その方法は、まず、通常の方法に従って、出発石英ガラ
ス管の内側に比較的低屈折率のクラッドとなるガラス層
を堆積し2次にその内側に、通常よりも低い温度下でス
ート状の多孔質コアガラス層を堆積する1次いで、希土
類イオンとAI2イオンを含む溶液を多孔質コアガラス
層の気孔中に含浸し、乾燥、脱水工程を経た後、He気
流中で多孔質コアガラス層を焼結・無孔化する。以下、
通常の手順に戻り、コラプスして中実棒状の光フアイバ
母材を得るものである。 この方法によれば、希土類イ
オン同士がガラス中でクラスター化することなく、希土
類元素を3wt、%以上添加できるとされでいる。
The method involves first depositing a glass layer to serve as a cladding with a relatively low refractive index on the inside of a starting quartz glass tube according to the usual method, and then forming a soot-like porous layer on the inside of the cladding at a lower temperature than usual. 1. Next, a solution containing rare earth ions and AI2 ions is impregnated into the pores of the porous core glass layer, and after a drying and dehydration process, the porous core glass layer is sintered in a He gas flow. It becomes solid and non-porous. below,
Return to the normal procedure and collapse to obtain a solid rod-shaped optical fiber preform. According to this method, it is said that 3 wt.% or more of rare earth elements can be added without clustering of rare earth ions in the glass.

参考文献 1 ) C,J、Koester and E、5ni
tzer :  Appl、Opt。
References 1) C, J, Koester and E, 5ni
tzer: Appl, Opt.

3、1182 f19641 。3, 1182 f19641.

2) S、B、Poole et al、 :  El
ectron、Lett、、21゜P、 738 f1
9851 。
2) S.B. Poole et al.: El
ectron, Lett, 21°P, 738 f1
9851.

3)  R,J、Mears  et  al、   
:   Electron、Lett、、23゜P、 
1026 (19871。
3) R.J., Mears et al.
: Electron, Lett, 23°P,
1026 (19871.

4)E、Desurvire et al、 :  O
ot、Lett、、12.888f19871 。
4) E. Desurvire et al.: O
ot, Lett,, 12.888f19871.

5) K、Arai et al、 :  J、App
l、 Phys、、 59.3430(19861。
5) K. Arai et al.: J. App.
I, Phys., 59.3430 (19861.

6) B、J、A1n5lie et al、 :  
Mater、 Lett、、6.139(19881。
6) B, J, A1n5lie et al.:
Mater, Lett, 6.139 (19881).

ちなみに、前記の溶液含浸法自体は古くから知られた手
法であり、近年では石英系光フアイバ母材に希土類や遷
移金属等の気相法では添加しにくい元素をドープする方
法として広く採用されるようになった。VAD法または
外付は法で作製した多孔質ガラス(スート)母材に溶液
を含浸してドープトガラスを作製することも勿論可能で
ある。
By the way, the above-mentioned solution impregnation method itself is a method that has been known for a long time, and in recent years it has been widely adopted as a method for doping silica-based optical fiber base materials with elements that are difficult to add using the vapor phase method, such as rare earths and transition metals. It became so. Of course, it is also possible to produce doped glass by impregnating a porous glass (soot) base material produced by the VAD method or the external method with a solution.

周知の通り、VAD法または外付は法(いわゆるアウト
サイドプロセス)では、MCVD法(肉付は法)と比較
して、大型、均質でかつ光学特性に優れたガラス母材を
容易に作製することができる。
As is well known, the VAD method or external process (so-called outside process) makes it easier to produce a glass base material that is large, homogeneous, and has excellent optical properties compared to the MCVD method (filling process). be able to.

そこで本件発明者らはMCVD溶液含浸法と同様に、V
AD法をベースとする溶液含浸法(VAD溶液含浸法)
でもAj2ドープが可能ではないかと考え、以下に示す
実験l、実験2の方法でAI2ドープ石英系ガラスの作
製を試みた。尚、この実験l、実験2はそれぞれ本発明
の後記する比較例1、比較例2でもある。
Therefore, the present inventors developed V
Solution impregnation method based on AD method (VAD solution impregnation method)
However, we thought that Aj2 doping might be possible, and attempted to produce AI2 doped silica glass using the methods of Experiment 1 and Experiment 2 shown below. Note that Experiment 1 and Experiment 2 are also Comparative Example 1 and Comparative Example 2, respectively, which will be described later in the present invention.

(実験l=比較例1) VAD法で作製された平均かさ密度0.4〜0−5g/
cm”の純石英組成のスート母材を、種々の異なる濃度
の塩化アルミニウムを溶解したメチルアルコール溶液に
12〜24時間浸積して含浸を行った。含浸終了後、そ
の溶媒を蒸発させて乾燥させ、酸素気流中で約950℃
まで加熱してスート中に残留したアルミニウムの塩を酸
化・定着した。このときのスートの乾燥重量に対する添
加されたAl2 、0 mの重量分率(以下含浸濃度と
いう)は0.3〜3wt、%であった。
(Experiment 1 = Comparative Example 1) Average bulk density 0.4 to 0-5 g/
cm" of pure quartz composition was impregnated by immersing it in a methyl alcohol solution in which various concentrations of aluminum chloride were dissolved for 12 to 24 hours. After the impregnation, the solvent was evaporated and dried. at approximately 950°C in an oxygen stream.
The aluminum salts remaining in the soot were oxidized and fixed. At this time, the weight fraction of the added Al2,0 m to the dry weight of the soot (hereinafter referred to as impregnation concentration) was 0.3 to 3 wt.%.

次いで、中心温度1500℃の電気炉中を、体積比にし
て1%のCI2xと5%の0□を含むHeガス雰囲気に
保ちつつ、毎分2 m mの速度でスートを降下させて
焼結を行った。
Next, the soot was lowered at a rate of 2 mm per minute for sintering while maintaining a He gas atmosphere containing 1% CI2x and 5% 0□ by volume in an electric furnace with a center temperature of 1500°C. I did it.

焼結後の母材はいずれの場合も完全に無孔化せず、冷却
後にクラックが発生した。また、Aβを高濃度含浸した
母材は、内部に”す” (空洞)が生じていた。X線回
折の結果、ガラス相特有のハローは認められず、大部分
が第1図のようにクリストバライト(SiO,l及びム
ライト(3AJ2a03・2SiOzlの高融点結晶相
に変化しているのが確認された。
In all cases, the base material after sintering did not become completely non-porous, and cracks occurred after cooling. In addition, the base material impregnated with Aβ at a high concentration had cavities inside. As a result of X-ray diffraction, no halo peculiar to the glass phase was observed, and it was confirmed that most of the material had changed to high melting point crystal phases of cristobalite (SiO,l) and mullite (3AJ2a03.2SiOzl) as shown in Figure 1. Ta.

Al1と同時にErを含浸した場合もやはり無孔化せず
、透明ガラスは得られなかった。
Even when Er was impregnated at the same time as Al1, no porosity was achieved and no transparent glass was obtained.

(実験2=比較例2) VAD法によりP2O5を1.1wt、%ドープした、
平均かさ密度0.4〜0.5g/cm’の石英系スート
母材を作製した。これに実験lと同じAβ溶液を含浸し
、同一条件で乾燥・酸化及び焼結を行った。
(Experiment 2 = Comparative Example 2) Doped with 1.1 wt% P2O5 by VAD method,
A quartz-based soot base material having an average bulk density of 0.4 to 0.5 g/cm' was prepared. This was impregnated with the same Aβ solution as in Experiment 1, and dried, oxidized, and sintered under the same conditions.

この母材は完全には無孔化せず、実験lより程度は少な
いもののクラックが生じた。X線回折の結果はやはりハ
ローを示さず、クリストバライトとリン酸アルミニウム
(AJ2P04)の高融点結晶相の析出が認められた。
This base material was not completely made non-porous, and cracks occurred, although to a lesser extent than in Experiment 1. The results of X-ray diffraction also showed no halo, and precipitation of high melting point crystal phases of cristobalite and aluminum phosphate (AJ2P04) was observed.

A2と共にErを含浸した場合でも、やはり透明ガラス
は得られなかった。Erを高濃度含浸した母材では第2
図のように、リン酸エルビウム(ErPO,lの析出も
認められた。
Even when Er was impregnated together with A2, transparent glass was still not obtained. In the base material impregnated with high concentration of Er, the second
As shown in the figure, precipitation of erbium phosphate (ErPO,l) was also observed.

以上の実験l、2により透明ガラスが得られなかったの
は、前記MCVDをベースとする方法に比べて、本実験
l、2のVAD溶液含浸法では焼結温度が低いことにあ
ると考えられた。即ち、高融点結晶相の析出が焼結の進
行を阻害したことによるものと考えられた。
The reason why transparent glass could not be obtained in Experiments 1 and 2 above is thought to be that the sintering temperature was lower in the VAD solution impregnation method in Experiments 1 and 2 than in the MCVD-based method. Ta. That is, it was considered that the precipitation of a high melting point crystal phase inhibited the progress of sintering.

ちなみに、Aβ103−sio□系状態図によれば、ム
ライトとクリストバライトの共融点は1587±lO℃
であり、共融組成(Al1.03:8wt、%)よりも
高シリカ側の組成では、液相線温度は共融点とクリスト
バライトの融点1726±5℃の間にある。従って、実
験lの焼結温度1500℃では一旦析出したムライトと
クリストバライトが融解することはない。これらの高融
点結晶相を消失させるには、その組成に応じて1587
℃ないし1726℃よりも高い温度が必要である。
By the way, according to the Aβ103-sio□ system phase diagram, the eutectic point of mullite and cristobalite is 1587±1O℃
In a composition with higher silica than the eutectic composition (Al1.03: 8wt, %), the liquidus temperature is between the eutectic point and the cristobalite melting point of 1726±5°C. Therefore, at the sintering temperature of 1500° C. in Experiment 1, the mullite and cristobalite that have once precipitated do not melt. In order to eliminate these high melting point crystal phases, 1587
Temperatures above 1726°C are required.

方、実験2の組成に対応するAff、 O,−P−0−
−5in、系の詳細な状態図は報告されていないが、事
情は実験lの場合と同様であると推察される0例えばP
、O,−5iO−系でP2O5=1.1wt、%におけ
る液相、II湯温度クリストパライトが消失する温度)
は1700℃以上である。またAI2.O,−P、O@
系ではA 12 zOlが30wt、%を越えると液相
線温度(AI2PO4の消失温度)は1500℃以上に
なる。
On the other hand, Aff corresponding to the composition of Experiment 2, O, -P-0-
-5in, although the detailed phase diagram of the system has not been reported, it is assumed that the situation is similar to that in Experiment I.0 For example, P
, O, -5iO- system, P2O5 = 1.1wt, liquid phase in %, II hot water temperature, temperature at which cristopalite disappears)
is 1700°C or higher. Also AI2. O, -P, O@
In the system, when A 12 zOl exceeds 30 wt.%, the liquidus temperature (disappearance temperature of AI2PO4) becomes 1500° C. or higher.

試みに、上記実験l、2で得られた母材を酸水素火炎を
用いて強熱・急冷したところ、いずれも透明なガラスに
なったが、ガラス中に多数の気泡が残留し、光学用ガラ
スとして実用し得るものではなかった。
As an attempt, we ignited and rapidly cooled the base materials obtained in Experiments 1 and 2 above using an oxyhydrogen flame, and both became transparent glass, but many bubbles remained in the glass, making it difficult to use for optical purposes. It could not be put to practical use as glass.

以上のことより、VAD溶液含浸法ではMCVD溶液含
浸法のようにAβドープ(または共ドープ)ガラスを作
製することはできず、その原因は焼結温度不足によるも
のと確信されるに至った6C発明が解決しようとする課
題) 前記のVAD溶液含浸法による焼結温度不足の問題を解
決するには、焼結温度を1600℃、或は1700℃以
上に高めることが考えられるが、そのような高温にする
には技術上、設備上の困難を伴う。
From the above, the VAD solution impregnation method cannot produce Aβ-doped (or co-doped) glass like the MCVD solution impregnation method, and it is believed that the cause is the insufficient sintering temperature. Problems to be Solved by the Invention) In order to solve the problem of insufficient sintering temperature due to the VAD solution impregnation method, it is conceivable to increase the sintering temperature to 1600°C or 1700°C or higher, but such Raising the temperature involves technical and equipment difficulties.

第一に、一般にスート母材の焼結炉に使用されている石
英ガラス製の炉芯管や治具は、このような高温では軟化
変形するため長時間の使用には耐え得ない、これを解決
するには石英ガラス製の炉芯管の代わりに高融点セラミ
ックスの炉芯管を使用することが考えられるが、その場
合は、炉芯管から不純物が揮散して母材中に混入し、そ
の結果ファイバの伝送損失が急増する。これは当業界で
は周知の事実である。
First, the quartz glass furnace core tubes and jigs commonly used in soot base material sintering furnaces soften and deform at such high temperatures and cannot withstand long-term use. One possible solution to this problem is to use a high melting point ceramic furnace core tube instead of a quartz glass furnace core tube, but in that case, impurities would volatilize from the furnace core tube and get mixed into the base material. As a result, fiber transmission loss increases rapidly. This is a well-known fact in the industry.

第二に、液相線温度よりも高い温度で焼結を行うと、母
材が自重によって延伸、落下してしまう場合がある。
Second, if sintering is performed at a temperature higher than the liquidus temperature, the base material may stretch and fall due to its own weight.

これらの問題はVAD溶液含浸法に限らず、外付は法等
も含めたいわゆるアウトサイドプロセス(outsid
e process )で作製した多孔質ガラスの焼結
に共通する問題点である。
These problems are not limited to the VAD solution impregnation method.
This is a common problem in the sintering of porous glass produced using e-process.

ちなみに、MCVD溶液含浸法では基材の石英ガラス管
が反応管を兼ねており、これを酸水素火炎で直接加熱す
る方式であるため、容易に高融点結晶相消失温度まで加
熱することができ、不純物が混入する心配もない。また
焼結時に結晶化しても、−旦冷却することなしに直ちに
1900℃以上のコラブス工程に移行できるので、熱歪
によるクラックも生じない、しかもコラプス中に結晶相
は完全に融解し、中実化後の急冷によって透明なガラス
母材が得られる。
By the way, in the MCVD solution impregnation method, the quartz glass tube used as the base material also serves as the reaction tube, and since it is directly heated with an oxyhydrogen flame, it can be easily heated to the high melting point crystal phase disappearance temperature. There is no need to worry about contamination with impurities. In addition, even if crystallization occurs during sintering, the process can be immediately transferred to the collab process at temperatures above 1900℃ without first cooling, so no cracks will occur due to thermal strain.Moreover, the crystalline phase will completely melt during collapse, forming a solid solid. A transparent glass base material is obtained by rapid cooling after curing.

〔発明の目的〕[Purpose of the invention]

本発明者らは上記のようなVAD法等のアウトサイドプ
ロセスを用いて希土類元素+AI2共ドープガラスを作
製する場合の諸問題に鑑みて、ガラス組成の改良を検討
し、本発明に至った。
The present inventors have considered improvements to the glass composition in view of the problems encountered when producing a rare earth element + AI2 co-doped glass using an outside process such as the VAD method as described above, and have arrived at the present invention.

本発明の目的は、比較的低い焼結温度でも透明なガラス
が得られる組成の希土類元素+へβ共ドープガラスを提
供することにある。
An object of the present invention is to provide a glass co-doped with rare earth elements + and β, which has a composition that allows a transparent glass to be obtained even at a relatively low sintering temperature.

本発明の他の目的は、高濃度の希土類元素をドープして
も発光特性が損なわれないようにした希土類元素+AI
2共ドープガラスを提供することにある。
Another object of the present invention is to create a rare earth element + AI which does not impair its luminescent properties even when doped with a high concentration of rare earth element.
An object of the present invention is to provide a dual-doped glass.

本発明の更に他の目的は、前記の希土類元素+AI2共
ドープガラス、特に機能性光ファイバまたは先導波路用
の高純度で透明性に優れた希土類元素+AI2ドープガ
ラスを、VAD法等のアウトサイドプロセスによっても
製造できる方法を提供することにある。
Still another object of the present invention is to produce the rare earth element + AI2 co-doped glass, particularly the rare earth element + AI2 co-doped glass with high purity and excellent transparency for functional optical fibers or guiding waveguides, by an outside process such as VAD method. The purpose is to provide a method that can also be manufactured by.

(課題を解決するための手段) 本発明のうち請求項第1の希土類元素ドープガラスは、
AI2とFを共ドープしたSin、系の組成からなるホ
ストガラス中に、希土類元素を添加してなるものである
(Means for Solving the Problems) The rare earth element-doped glass according to claim 1 of the present invention comprises:
A rare earth element is added to a host glass having a composition of Sin co-doped with AI2 and F.

本発明のうち請求項第2の希土類元素ドープガラスは、
請求項第1のホストガラス組成に、更にガラスの屈折率
を増大させる物質が添加されてなるものである。
The rare earth element-doped glass according to claim 2 of the present invention includes:
A substance that increases the refractive index of the glass is further added to the host glass composition according to the first aspect of the present invention.

本発明のうち請求項第3の希土類元素ドープガラスは、
請求項第1のホストガラス組成に、更にガラスの軟化温
度を低下させる物質が添加されてなるものである。
The rare earth element-doped glass according to claim 3 of the present invention includes:
A substance that lowers the softening temperature of the glass is further added to the host glass composition according to the first aspect of the present invention.

本発明のうち請求項第4の希土類元素ドープガラスは1
.lとFが共ドープされたGeO□SiOよ系の組成か
らなるホストガラス中に、希土類元素が添加されてなる
ものである。
The rare earth element doped glass according to claim 4 of the present invention is 1
.. A rare earth element is added to a host glass having a composition of GeO□SiO co-doped with l and F.

本発明のうち請求項第5の希土類元素ドープガラスの製
造方法は、連結した開気孔を有する石英系多孔質ガラス
製の母材を、希土類元素イオン及びアルミニウムイオン
を含む溶液に浸漬してその母材中に希土類元素およびア
ルミニウムを含浸させるドープ工程と、該ビーブ工程後
の母材を乾燥して希土類元素及びアルミニウムの塩を母
材の気孔内に沈積させ、あるいはさらに沈積した塩を酸
化して安定させる乾燥工程と、該乾燥工程後の母材を焼
結・無孔化する焼結工程とを備えた希土類元素ドープガ
ラスの製造方法において、上記乾燥工程を終えた後から
上記焼結工程を終えるまでの間に、フッ素を含有する雰
囲気中で上記母材を加熱処理するフッ素ドープ工程が介
在されていることを特徴とするものである。
A method for producing rare earth element-doped glass according to claim 5 of the present invention is to immerse a base material made of silica-based porous glass having connected open pores in a solution containing rare earth element ions and aluminum ions. A doping process in which rare earth elements and aluminum are impregnated into the material, and a base material after the beaving process is dried to deposit rare earth element and aluminum salts in the pores of the base material, or further, the deposited salts are oxidized. In a method for producing rare earth element-doped glass comprising a drying step for stabilization and a sintering step for sintering and making the base material non-porous after the drying step, the sintering step is performed after the drying step is finished. The process is characterized in that a fluorine doping process is performed during the process, in which the base material is heat treated in a fluorine-containing atmosphere.

本発明のうち請求項第6の希土類元素ドープガラスの製
造方法は、請求項第5におけるフッ素ドブ工程を、フッ
化アルミニウムの昇華温度である1276℃よりも低い
温度、好ましくは1000℃以下の温度で行なうことを
特徴とするものである。
The method for producing rare earth element-doped glass according to claim 6 of the present invention is characterized in that the fluorine doping step in claim 5 is carried out at a temperature lower than 1276°C, which is the sublimation temperature of aluminum fluoride, preferably at a temperature of 1000°C or lower. It is characterized by the fact that it is carried out in

本発明のうち請求項第7の希土類元素ドープガラスの製
造方法は、請求項第5、第6において、乾燥工程を終え
た後から焼結工程を終えるまでの間に、(1,あるいは
その他の塩素化合物の気相および02を含有する雰囲気
中で脱水処理を行なう工程を介在させることを特徴とす
るものである。
The seventh aspect of the present invention provides a method for producing rare-earth element-doped glass, in which (1) or other This method is characterized by intervening a step of performing dehydration treatment in an atmosphere containing a gas phase of a chlorine compound and O2.

本発明の基礎ガラス組成はR,O,−AugOz  S
 t Oz  F系(Rは希土類元素、FはOを置換す
る形でドープされる)であり、基本的に高シリカ、無ア
ルカリの石英系ガラスである。このため、膨張係数、軟
化温度などの性質が通常の光ファイバに使用される石英
系ガラスに近く、それらとの融着性がよい、従って本発
明の希土類元素ドープガラスをコア材に、ドドープシリ
カなどの比較的低屈折率のガラスをクラツド材に使用し
て、コアークラッド構造を有する光ファイバ(または光
導波路)を容易に作製することができる。
The basic glass composition of the present invention is R, O, -AugOz S
It is a tOzF-based glass (R is a rare earth element, F is doped to replace O), and is basically a high-silica, alkali-free silica-based glass. Therefore, properties such as expansion coefficient and softening temperature are close to those of quartz glass used in ordinary optical fibers, and the fusion properties with them are good. By using glass with a relatively low refractive index as the cladding material, an optical fiber (or optical waveguide) having a core-clad structure can be easily produced.

また、一般の石英系ファイバとの融着接続性にも優れた
ものとなる。
Furthermore, it has excellent fusion splicability with general silica fibers.

さらに本発明の希土類元素ドープガラスでは、希土類元
素とAlの共存効果により発光特性を損なわずに高濃度
の希土類元素を添加することができ、励起光との作用長
が短くても充分な増幅利得が得られるので、レーザまた
は光増幅器の小型化が実現できる。さらに、希土類元素
がErの場合にはA2の共存により1.55μm付近の
光増幅を示す波長帯域が広がるため、本発明のガラス組
成は光増幅器用として好適である。
Furthermore, in the rare earth element-doped glass of the present invention, a high concentration of rare earth elements can be added without impairing the luminescence characteristics due to the coexistence effect of rare earth elements and Al, and sufficient amplification gain can be achieved even if the interaction length with excitation light is short. Therefore, it is possible to downsize the laser or optical amplifier. Further, when the rare earth element is Er, the wavelength band exhibiting optical amplification around 1.55 μm is widened due to the coexistence of A2, so the glass composition of the present invention is suitable for use in optical amplifiers.

これらの効果は、公知の希土類元素+AI2共ドブ石英
系ガラスと同等のものであるが、本発明の希土類元素ド
ープガラスはさらフッ素を含んでいることを特徴とする
新規の石英系ガラス組成である。フッ素を添加したこと
によって後記の(作用)の項に示すような製造プロセス
上の大きな利点を有している。
These effects are equivalent to the known rare earth element + AI2 doped silica glass, but the rare earth element doped glass of the present invention is a new silica glass composition characterized by further containing fluorine. . The addition of fluorine has significant advantages in terms of the manufacturing process, as shown in the (effects) section below.

希土類元素及びAlは石英ガラスの屈折率を高める効果
を有するが、フッ素は逆に低下させるので、それらのド
ープ置の比率によってはガラスの屈折率は石英レベルよ
りも低くなり、クラッドとの屈折率差が十分に確保され
ないことがある。この場合は前記基礎ガラス組成に、更
に屈折率を高める効果を持つ成分を添加してもよい。
Rare earth elements and Al have the effect of increasing the refractive index of quartz glass, but fluorine conversely lowers it, so depending on the doping ratio of these elements, the refractive index of the glass will be lower than the quartz level, and the refractive index of the cladding will be lower. The difference may not be sufficiently secured. In this case, a component having the effect of further increasing the refractive index may be added to the basic glass composition.

また、Al2F、は1276℃で昇華するため、これよ
り高い温度で焼結を行うとガラス中に残留するAl2量
が少なくなる。この場合は前記基礎ガラス組成に、更に
ガラスの軟化温度を低下させる成分を添加するのも好ま
しい結果を与える。このような添加物としてはG e 
02またはp、o5が特に好適である。いずれも石英ガ
ラスの屈折率を高めると同時に軟化温度を低下させる。
Furthermore, since Al2F sublimes at 1276° C., sintering at a higher temperature reduces the amount of Al2 remaining in the glass. In this case, it is also possible to add a component that lowers the softening temperature of the glass to the basic glass composition to give preferable results. Such additives include G e
02 or p, o5 are particularly preferred. Both of them increase the refractive index of quartz glass and at the same time lower the softening temperature.

前者は屈折率の増大に、後者は軟化温度の低下により顕
著な効果を示す0周知のように、VAD法、外付は法で
は、どちらの成分も容易にスート中に添加することがで
きる。
The former has a remarkable effect on increasing the refractive index, and the latter has a remarkable effect on lowering the softening temperature.As is well known, in the VAD method and the external method, both components can be easily added to the soot.

(作用) 高シリカ、無アルカリの希土類元素+へβ共ドブ石英系
ガラスを作製するには、多孔質ガラス母材を用いた温液
含浸法が簡便であり、かつ、希土類元素及びAβドープ
濃度の調整が容易である等の長所を有しており、一般性
もあると考えられる。しかし、VAD溶液含浸法ではフ
ッ素ドープ工程を経ずに含浸母材を焼結すると、前述の
実験例のように高融点結晶相が析出するため無孔化が困
難である。
(Function) To produce a high-silica, alkali-free rare earth element + Aβ co-doped quartz glass, a hot liquid impregnation method using a porous glass matrix is simple, and the rare earth element and Aβ doping concentration is It has advantages such as easy adjustment, and is considered to be general. However, in the VAD solution impregnation method, if the impregnated base material is sintered without going through the fluorine doping step, a high melting point crystal phase precipitates as in the above-mentioned experimental example, making it difficult to make the material non-porous.

ところが、希土類元素とAPに加えてさらにフッ素が添
加されていると、焼結温度が1500℃以下の比較的低
温でも容易に無孔化・透明ガラス化できる。その理由は
明確ではないが、■石英系母材のガラス粒子にフッ素を
添加することによって溶融粘度が低下する。そのため焼
結は速やかに進行し、また、希土類元素およびAPのガ
ラス中への拡散・均質化も促進される。■希土類及びA
Pの酸化物がフッ素と反応して、表1に示すような比較
的低融点のフッ化物に変化するためと推定される。
However, if fluorine is added in addition to rare earth elements and AP, it can be easily made non-porous and transparent glass even at a relatively low sintering temperature of 1500° C. or lower. Although the reason for this is not clear, (1) Melt viscosity is reduced by adding fluorine to the glass particles of the quartz-based base material. Therefore, sintering progresses quickly, and diffusion and homogenization of rare earth elements and AP into the glass is also promoted. ■Rare earths and A
This is presumed to be because the oxide of P reacts with fluorine and changes into a fluoride with a relatively low melting point as shown in Table 1.

希土類元素右よび/またはAl1を高濃度含浸した場合
には、拡散・均質化が不十分で失透することもある。し
かし、完全に無孔化したガラスマトリックス中に少量の
微粒子が分散した状態になっているので、酸水素火炎等
を用いて高温まで熱すれば直ちに透明化する。このとき
クラックが生じたり、気泡が残留したりすることもない
If rare earth elements and/or Al1 are impregnated at a high concentration, diffusion and homogenization may be insufficient and devitrification may occur. However, since a small amount of fine particles are dispersed in a completely non-porous glass matrix, it immediately becomes transparent when heated to a high temperature using an oxyhydrogen flame or the like. At this time, no cracks occur or bubbles remain.

従って本発明のガラス組成を用いれば、VAD溶液含浸
法等のアウトサイドプロセスによっても透明で気泡の無
い希土類元素+/l共ドープガラス製品が得られる。
Therefore, if the glass composition of the present invention is used, a transparent, bubble-free rare earth element +/l co-doped glass product can be obtained even by an outside process such as a VAD solution impregnation method.

ちなみに、P (P、O,)も石英ガラスの溶液粘度を
大きく低下させるドーパントとして知られているが、希
土類元素とAl2に加えてさらにPを添加した場合(フ
ッ素を含まない場合)は、前述の実験例2に示したよう
にリン酸アルミニウムやリン酸エルビウムといった高融
点結晶の析出を誘発し、むしろ逆効果である。
Incidentally, P (P, O,) is also known as a dopant that greatly reduces the solution viscosity of quartz glass, but when P is added in addition to the rare earth element and Al2 (when fluorine is not included), the above-mentioned As shown in Experimental Example 2, this induces the precipitation of high melting point crystals such as aluminum phosphate and erbium phosphate, which has the opposite effect.

次に、本発明の希土類元素ドープガラスの製造方法によ
れば、希土類元素ドープ光フアイバ用のガラス母材(ロ
ット)を、例えばVADi18;液含浸法により次のよ
うにしで製作することができる。
Next, according to the method for producing rare earth element-doped glass of the present invention, a glass base material (lot) for a rare earth element-doped optical fiber can be produced, for example, by a VADi18 liquid impregnation method as follows.

石英ガラススート母材をVAD法で作製し、これに希土
類元素及びAβイオンを含む溶液を含浸させた後、この
溶媒を蒸発、乾燥させて希土類元素及びAPの塩を前記
スー1材の気孔内に沈積させる。この場合、溶液原料と
しては、塩化物、水和塩化物、硝酸塩などの、アルコー
ル溶液または水溶液等が使用できる。
A quartz glass soot base material is prepared by the VAD method, and is impregnated with a solution containing rare earth elements and Aβ ions.The solvent is then evaporated and dried to release rare earth element and AP salts into the pores of the soot material. to be deposited. In this case, as the solution raw material, an alcohol solution or an aqueous solution of chloride, hydrated chloride, nitrate, etc. can be used.

また、前記の溶液を含浸させたスート母材は、焼結に先
立って酸素雰囲気中で加熱処理を施しておくのが望まし
い、溶液原料に塩化物原料を使用する場合は、これらは
比較的低温でも蒸発・揮散し易いので、酸化して安定化
させておくとガラス中へのドープ量の再現性が向上する
。溶液原料に硝酸塩を使用した場合は、硝酸塩は200
’C程度の温度で分解して酸化物となるので特に酸化工
程を行う必要はない。
In addition, it is desirable that the soot base material impregnated with the above solution be heat-treated in an oxygen atmosphere prior to sintering.If chloride raw materials are used as the solution raw materials, they should be heated at relatively low temperatures. However, it easily evaporates and volatilizes, so if it is stabilized by oxidation, the reproducibility of the amount of dope into the glass will be improved. When nitrate is used as a solution raw material, the nitrate is 200
Since it decomposes into an oxide at a temperature of about 1000 yen, there is no need to carry out any particular oxidation step.

また、前記焼結に先立って請求項第7のようにCI2.
或はその他の塩素化合物の気相を含有する雰囲気中で脱
水処理を行う場合にも、雰囲気中に過剰の酸素ガスを添
加しておくのが望ましい、aI素ガスを含まないと脱水
処理中に、酸化物が再び塩化物となって揮散し易くなる
からである。
Further, prior to the sintering, CI2.
Also, when performing dehydration treatment in an atmosphere containing the gas phase of other chlorine compounds, it is desirable to add excess oxygen gas to the atmosphere. This is because the oxide becomes a chloride again and becomes easily volatilized.

次いで、溶液含浸母材をフッ素を含有するHe雰囲気中
で焼結・無孔化する。フッ素源としては周知の通りSi
F、、SF、、フレオンなどのガスを使用することがで
きる。
Next, the solution-impregnated base material is sintered and made non-porous in a He atmosphere containing fluorine. As is well known, Si is a fluorine source.
Gases such as F, SF, and Freon can be used.

従って本発明の希土類元素ドープガラスの製造方法によ
れば、透明で残留気泡のない希土類元素+AI2共ドー
プガラスロッドが得られる。
Therefore, according to the method for producing rare earth element-doped glass of the present invention, a rare earth element+AI2 co-doped glass rod that is transparent and free of residual bubbles can be obtained.

このようにして得られた希土類元素ドープガラスロッド
を光ファイバに加工するには1例えば、外付は法でクラ
ッドガラス層を形成した後、これを加熱延伸して紡糸す
るなどの既存の技術を利用することができる。このよう
にすれば、光を導波する部分の全体または一部が本発明
の請求項第1〜4の希土類元素ドープガラスで構成され
る希土類元素ドープ光ファイバまたは先導波路が得られ
る。
In order to process the rare earth element-doped glass rod obtained in this way into an optical fiber, for example, existing techniques such as forming a clad glass layer using an external method and then heating and drawing and spinning this are used. can be used. In this way, it is possible to obtain a rare earth element doped optical fiber or a guiding waveguide in which the entire or part of the light guiding portion is made of the rare earth element doped glass according to claims 1 to 4 of the present invention.

以上の説明はVAD溶液含浸法により製作した石英ガラ
ススート母材を用いる場合であるが、もちろん外付は法
やゾル−ゲル法で作製した石英ガラススート母材を使用
することもできる。
The above description is based on the case where a quartz glass soot base material manufactured by the VAD solution impregnation method is used, but of course, a quartz glass soot base material manufactured by the external method or sol-gel method can also be used.

本発明の希土類元素ドープガラスの製造方法によれば薄
膜先導波路を製作することもできる。薄膜形状の多孔質
石英系ガラスの形成には、例えば、既存の技術である火
炎加水分解法を使用することができる。このときの反応
成膜機構はVAD法や外付は法と同じである。この成膜
には熱CVD法を用いてもよい、この場合は、通常のシ
リカガラス膜を堆積するときよりも基板温度を低く設定
しておけば、スート状の多孔質ガラス膜が形成される。
According to the method for producing rare earth element-doped glass of the present invention, it is also possible to produce a thin film guided waveguide. For example, a flame hydrolysis method, which is an existing technique, can be used to form a thin film of porous quartz glass. The reaction film formation mechanism at this time is the same as the VAD method and the external method. A thermal CVD method may be used for this film formation. In this case, if the substrate temperature is set lower than when depositing a normal silica glass film, a soot-like porous glass film will be formed. .

以下は前記の希土類元素ドープ光フアイバ用のガラス母
材を製作する場合と同様に、溶液含浸乾燥・酸化−フッ
素雰囲気焼結を行って、希土類元素+へ!共ドープガラ
ス薄膜を得る。
Hereafter, in the same manner as in the case of manufacturing the glass base material for the rare earth element-doped optical fiber, solution impregnation drying, oxidation and sintering in a fluorine atmosphere are performed to obtain the rare earth element +! A co-doped glass thin film is obtained.

この方法に、既存の微細加工技術(チャネル形成ンとク
ラッドガラス層形成技術を組合せれば、任意形状の希土
類ドープ光導波路を作製することができる。
By combining this method with existing microfabrication techniques (channel formation and clad glass layer formation techniques), it is possible to fabricate a rare earth-doped optical waveguide of any shape.

(実施例1) VAD法で作製された、平均かさ密度0.4〜0.5g
/cm”の純石英組成のスートを、種々の異なる濃度の
塩化エルビウム及びアルミニウムが溶解されたメチルア
ルコール溶液に12〜24時間浸漬して含浸を行った。
(Example 1) Average bulk density 0.4 to 0.5 g produced by VAD method
Impregnation was carried out by immersing a soot with a pure quartz composition of 1/cm" in a methyl alcohol solution in which various concentrations of erbium chloride and aluminum were dissolved for 12 to 24 hours.

溶液中のA Q / E rモル比は1〜5に設定した
。含浸終了後、溶媒を蒸発させて乾燥し、酸素気流中で
約950℃まで加熱して、前記スート中に残留したEr
及びA9の塩を酸化・定着した。
The AQ/Er molar ratio in the solution was set to 1-5. After the impregnation, the solvent is evaporated and dried, and the Er remaining in the soot is removed by heating to about 950°C in an oxygen stream.
and A9 salts were oxidized and fixed.

次に、中心温度1000℃の電気炉中を、体積比にして
1%のC20と10%の02を含むHeガス雰囲気に保
ちつつ、毎分3mmの速度でスートを下降させて脱水処
理を行った。脱水終了後スートを一旦低温部にまで引き
上げ、電気炉中心温度を1300℃まで昇温した。引き
続いて、炉内雰囲気を0.5vo[、%のSiF4を含
むHeガスに変更し、毎分2 m mの速度でスートを
下降させて焼結した。
Next, dehydration treatment was performed by lowering the soot at a rate of 3 mm per minute while maintaining a He gas atmosphere containing 1% C20 and 10% 02 by volume in the electric furnace with a center temperature of 1000°C. Ta. After the dehydration was completed, the soot was once raised to the low temperature section, and the temperature at the center of the electric furnace was raised to 1300°C. Subsequently, the atmosphere in the furnace was changed to He gas containing 0.5 vo[,% SiF4, and the soot was lowered at a rate of 2 mm per minute for sintering.

この結果、種々の異なる濃度のErとAβが共ドープさ
れたEr203−AAzO3−5iOz−F系ガラスロ
ッドを得た。Erがおよそ03wt、%以上ドープされ
たガラスは、焼結直後は失透しておりピンク色のオパー
ルガラス状の外観を呈していた。失透した母材のX線回
折図形の一例を第3図に示す、この図から明らかなよう
に回折角2θ=22°を中心とする明瞭なハローが現わ
れている。また、残留結晶相(ムライト及び未知相)の
回折強度は、第1図及び第2図に比べてはるかに小さい
0以上から明らかなように、母材の大部分はガラス相で
ある。
As a result, Er203-AAzO3-5iOz-F glass rods co-doped with Er and Aβ at various different concentrations were obtained. The glass doped with approximately 0.3 wt.% or more of Er was devitrified immediately after sintering and had a pink opal glass-like appearance. An example of the X-ray diffraction pattern of the devitrified base material is shown in FIG. 3. As is clear from this figure, a clear halo centered at the diffraction angle 2θ=22° appears. Furthermore, as is clear from the fact that the diffraction intensity of the residual crystal phases (mullite and unknown phases) is much smaller than 0 or more compared to FIGS. 1 and 2, most of the base material is a glass phase.

この母材をガラス加工旋盤を用いて酸水素火炎で加熱し
たところ、直ちに透明化し、残留気泡のないガラスロッ
ドが得られた。
When this base material was heated with an oxyhydrogen flame using a glass processing lathe, it immediately became transparent and a glass rod without residual bubbles was obtained.

次に、これらのガラスロッドの外周に、外付は法でフッ
素ドープシリカガラスのクラッド層を形成した後、これ
を加熱延伸して、コア径7.5%m、外径125μm、
開口数0,12の単一モード光ファイバを作製した。
Next, a cladding layer of fluorine-doped silica glass was formed on the outer periphery of these glass rods by an external method, and then heated and stretched to obtain a core diameter of 7.5% m, an outer diameter of 125 μm,
A single mode optical fiber with a numerical aperture of 0.12 was fabricated.

得られたファイバのコアガラス組成と特性の一例を表2
に示す、比較のため純シリカホストガラスに0.09w
t、%のErをドープしたコアからなる単一モードファ
イバの特性を同表2に4(比較)として併せて示した。
Table 2 shows an example of the core glass composition and properties of the obtained fiber.
0.09W for pure silica host glass as shown in
The characteristics of a single mode fiber consisting of a core doped with t,% Er are also shown in Table 2 as 4 (comparison).

波長155μmの蛍光寿命は約0.5wt。The fluorescence lifetime at a wavelength of 155 μm is approximately 0.5wt.

%のErをドープしたファイバでも約10m5ecであ
り、低濃度の純シリカホストガラスファイバ(同表2の
4比較)と比べて何ら遜色がない。また、波長1.1L
Lmにおける伝送損失は3〜12d B / k mと
十分低い。これらより、本発明のガラス組成の素性の良
さを理解することができる。
% of Er doped fiber is about 10 m5ec, which is no inferior to the low concentration pure silica host glass fiber (4 comparisons in Table 2). Also, the wavelength is 1.1L
The transmission loss in Lm is sufficiently low at 3-12dB/km. From these, the merits of the glass composition of the present invention can be understood.

(実施例2) VAD法によりG e O2が約8清01%ドープされ
た、平均かさ密度0.4−0.45g/cm3の石英系
スート母材を作製し、このスートに種々の異なる濃度の
塩化エルビウムまたは塩化ネオジム、及び塩化アルミニ
ウムが溶解されたメチルアルコール溶液を含浸した後、
実施例1と同様にして乾燥・酸化、脱水処理を施した。
(Example 2) A quartz-based soot base material with an average bulk density of 0.4-0.45 g/cm3 doped with about 801% G e O2 by the VAD method was prepared, and various different concentrations were added to this soot. After impregnating a methyl alcohol solution in which erbium chloride or neodymium chloride and aluminum chloride were dissolved,
Drying, oxidation, and dehydration treatments were performed in the same manner as in Example 1.

続いて、slF、を3.0voff、%含むHeガス雰
囲気中で焼結を行った。この実施例では1200℃で完
全に無孔化することが可能であった。
Subsequently, sintering was performed in a He gas atmosphere containing 3.0% of sIF. In this example, it was possible to make it completely non-porous at 1200°C.

これらの組成の異なる種々のガラスロッドの外周に、外
付は法でフッ素ドープシリカガラスのクラッド層を形成
し、これを加熱延伸してコア径4〜6μm、外径125
ttm、開口数0.18の単モード光ファイバを作製し
た。
A cladding layer of fluorine-doped silica glass is formed on the outer periphery of these various glass rods with different compositions, and this is heated and stretched to a core diameter of 4 to 6 μm and an outer diameter of 125 μm.
A single mode optical fiber with a numerical aperture of 0.18 and a numerical aperture of 0.18 was fabricated.

これらファイバの蛍光寿命や損失特性は実施例1と同様
に良好であった。
The fluorescence lifetime and loss characteristics of these fibers were as good as in Example 1.

得られたファイバのうち、コア中のEr濃度=0.08
0wt、%、A℃濃度=0.091wt、%、F濃度=
0.97wt、%(Aj2/Er原子比=7.1)のフ
ァイバについて波長1.55μm付近の発光スペクトル
を測定した(第4図のI)、励起光源には、波長0.9
8μmのTi:サファイアレーザを使用した。ファイバ
長を10cmとし、入射励起パワーは30mWとした。
Among the obtained fibers, Er concentration in the core = 0.08
0wt, %, A℃ concentration = 0.091wt, %, F concentration =
The emission spectrum of a 0.97 wt, % (Aj2/Er atomic ratio = 7.1) fiber at a wavelength of around 1.55 μm was measured (I in Figure 4).
An 8 μm Ti:sapphire laser was used. The fiber length was 10 cm, and the incident pump power was 30 mW.

比較のためGe0z  5ift系ホストガラスに00
90wt、%のErをドープしたコアからなる単一モー
ドファイバのスペクトルを第4図のIIとして合わせて
示した6図のように、本実施例のファイバの発光スペク
トル■は、IIに比べてかなりブロードになっているの
がわかるにれは、増幅帯域が広がっていることを示して
いる。
For comparison, Ge0z 5ift type host glass was used.
As shown in Figure 6, which also shows the spectrum of a single mode fiber consisting of a core doped with 90wt% Er, as II in Figure 4, the emission spectrum ■ of the fiber of this example is considerably different from II. The fact that the signal becomes broad indicates that the amplification band is widening.

本実施例では約4wt、%までの希土類元素及び約3 
w t 、%までのA2が共ドープされた透明ガラスロ
ッドを得たが、この濃度がガラス化限界というわけでは
ない。更に高濃度のものまで作製可能である。
In this example, about 4 wt, up to % rare earth elements and about 3
Although we obtained transparent glass rods codoped with A2 up to w t %, this concentration is not the vitrification limit. Even higher concentrations can be produced.

(比較例1) 前記実験lと全く同じにしてガラスを製作したところ、
同実験lの結果の通り、本発明で得んとするガラスは得
られなかった。
(Comparative Example 1) When glass was manufactured in exactly the same manner as in Experiment 1,
As shown in the results of Experiment 1, the glass desired by the present invention could not be obtained.

(比較例2) 前記実験2と全く同じにしてガラスを製作したところ、
同実験2の結果の通り、本発明で得んとするガラスは得
られなかった。
(Comparative Example 2) Glass was produced in exactly the same manner as in Experiment 2, and
As shown in the results of Experiment 2, the glass intended by the present invention could not be obtained.

(発明の効果) 本発明の希土類元素ドープガラスおよびその製造方法で
は次のような効果がある。
(Effects of the Invention) The rare earth element-doped glass and the manufacturing method thereof of the present invention have the following effects.

(1)本発明の希土類元素ドープガラスは、希土類元素
とAI2に加えてさらにフッ素をドープした石英系の組
成からなる。希土類元素とAI2の共存効果により、発
光特性を損なわずに高濃度の希土類元素を添加すること
ができ、励起光との作用長さが短くても充分な増幅利得
が得られるので、レーザまたは光増幅器の小型化が実現
できる。さらに希土類元素がErの場合には、A!の共
存により1.55μm付近の光増幅を示す波長帯域が広
がるため、本発明のガラス組成は光増幅器用として好適
である。
(1) The rare earth element-doped glass of the present invention has a quartz-based composition doped with fluorine in addition to the rare earth element and AI2. Due to the coexistence effect of rare earth elements and AI2, it is possible to add a high concentration of rare earth elements without impairing the emission characteristics, and sufficient amplification gain can be obtained even if the interaction length with the excitation light is short. The amplifier can be made smaller. Furthermore, when the rare earth element is Er, A! The coexistence of the above widens the wavelength band exhibiting optical amplification around 1.55 μm, so the glass composition of the present invention is suitable for use in optical amplifiers.

(2)本発明の希土類元素ドープガラスは、基本的に高
シリカ、無アルカリの石英系組成であるため、熱膨張係
数、軟化温度等の性質が通常の光ファイバに使用される
石英系ガラスに近く、それらとの融着性が良い。従って
、本発明の希土類元素ドープガラスをコア材に、Fドー
プシリカ等の比較的低屈折率のガラスをクラツド材に使
用して、コアークラッド構造を有する光ファイバ(また
は先導波路)を容易に作製することができる。また、一
般の石英系光ファイバとの融着接続性にも優れたものと
なる。
(2) Since the rare earth element-doped glass of the present invention basically has a high-silica, alkali-free quartz-based composition, its thermal expansion coefficient, softening temperature, and other properties are comparable to those of the quartz-based glass used for ordinary optical fibers. It is close and has good fusion with them. Therefore, by using the rare earth element-doped glass of the present invention as a core material and a relatively low refractive index glass such as F-doped silica as a cladding material, an optical fiber (or guiding waveguide) having a core-clad structure can be easily produced. be able to. Furthermore, it has excellent fusion splicability with general silica-based optical fibers.

(3)本発明の希土類元素ドープガラスは、希土類元素
とAI2に加えてさらにフッ素が添加されているため、
製造プロセス上に大きな利、屯を有している。多孔質ガ
ラス母材から希土類元素+へβ共ドープガラスを作製す
るとき、本発明のガラス組成を用いれば、焼結温度が1
500℃以下の比較的低温でも容易に無孔化・透明ガラ
ス化できる。
(3) Since the rare earth element-doped glass of the present invention further contains fluorine in addition to the rare earth element and AI2,
It has great advantages and advantages in the manufacturing process. When producing β-codoped glass with rare earth element + from a porous glass base material, if the glass composition of the present invention is used, the sintering temperature can be reduced to 1.
It can be easily made non-porous and transparent glass even at a relatively low temperature of 500°C or less.

その理由は明確ではないが、■石英系母材のガラス粒子
にフッ素を添加したことによって溶融粘度が低下する。
Although the reason for this is not clear, (1) the addition of fluorine to the glass particles of the quartz-based matrix lowers the melt viscosity.

そのため焼結は速やかに進行し、また、希土類元素及び
八9.のガラス中への拡散・均質かも促進される。■希
土類及びAI2の酸化物がフッ素と反応して、表1に示
すような比較的低融点のフッ化物に変化するためと推定
される。従って、比較的焼結温度の低いVAD法等のア
ウトサイドプロセスによっても、透明で気泡の無い希土
類元素+AI2共ドープガラス製品が得られる。(4)
本発明の希土類元素ドープガラスの製造方法によれば、
機能性光ファイバや光導波路用とじてて好適な、高純度
で透明性に優れたロッド状あるいは膜状の希土類元素+
AJ2ドープガラスを容易に作製できる。
Therefore, sintering progresses rapidly, and rare earth elements and 89. Diffusion and homogeneity in the glass is also promoted. (2) It is presumed that this is because oxides of rare earth elements and AI2 react with fluorine and change into fluorides with relatively low melting points as shown in Table 1. Therefore, even by an outside process such as the VAD method, which uses a relatively low sintering temperature, a transparent, bubble-free rare earth element + AI2 co-doped glass product can be obtained. (4)
According to the method for producing rare earth element-doped glass of the present invention,
Rare earth elements in the form of rods or films with high purity and excellent transparency, suitable for use in functional optical fibers and optical waveguides.
AJ2 doped glass can be easily produced.

(以下余白) 表1(Margin below) Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々実験l及び実験2のガラススー
ト母材のX線回折の説明図、第3図は本発明の実施例1
のガラススート母材のX線回折の説明図、第4図は本発
明の実施例2により得られたErドドー光ファイアバの
発光スペクトルの説回折強度/CPS 回折強度/CPS 回折強度/CPS
Figures 1 and 2 are explanatory diagrams of X-ray diffraction of glass soot base materials in Experiment 1 and Experiment 2, respectively, and Figure 3 is Example 1 of the present invention.
FIG. 4 is an explanatory diagram of the X-ray diffraction of the glass soot base material.

Claims (7)

【特許請求の範囲】[Claims] (1)AlとFを共ドープしたSiO_2系の組成から
なるホストガラス中に、希土類元素が添加されてなるこ
とを特徴とする希土類元素ドープガラス。
(1) A rare earth element-doped glass characterized in that a rare earth element is added to a host glass having a SiO_2 composition co-doped with Al and F.
(2)請求項第1のホストガラス組成に、更にガラスの
屈折率を増大させる物質が添加されてなることを特徴と
する希土類元素ドープガラス。
(2) A rare earth element-doped glass, characterized in that a substance that increases the refractive index of the glass is further added to the host glass composition of claim 1.
(3)請求項第1のホストガラス組成に、更にガラスの
軟化温度を低下させる物質が添加されてなることを特徴
とする希土類元素ドープガラス。
(3) A rare earth element-doped glass, characterized in that a substance that lowers the softening temperature of the glass is further added to the host glass composition of claim 1.
(4)AlとFを共ドープしたGeO_2−SiO_2
系の組成からなるホストガラス中に、希土類元素が添加
されてなることを特徴とする希土類元素ドープガラス。
(4) GeO_2-SiO_2 co-doped with Al and F
A rare earth element-doped glass characterized in that a rare earth element is added to a host glass having a composition of the same type.
(5)連結した開気孔を有する石英系多孔質ガラス製の
母材を、希土類元素イオン及びアルミニウムイオンを含
む溶液に浸漬してその母材中に希土類元素およびアルミ
ニウムを含浸させるドープ工程と、該ドープ工程後の母
材を乾燥して希土類元素及びアルミニウムの塩を母材の
気孔内に沈積させ、あるいはさらに沈積した塩を酸化し
て安定させる乾燥工程と、該乾燥工程後の母材を焼結・
無孔化する焼結工程とを備えた希土類元素ドープガラス
の製造方法において、上記乾燥工程を終えた後から上記
焼結工程を終えるまでの間に、フッ素を含有する雰囲気
中で上記母材を加熱処理するフッ素ドープ工程が介在さ
れていることを特徴とする請求項第1、第2、第3、第
4に記載の希土類元素ドープガラスの製造方法。
(5) A doping step in which a base material made of silica-based porous glass having connected open pores is immersed in a solution containing rare earth element ions and aluminum ions to impregnate the rare earth elements and aluminum into the base material; After the doping step, the base material is dried to deposit rare earth element and aluminum salts into the pores of the base material, or further, the deposited salts are oxidized and stabilized, and the base material after the drying step is sintered. Conclusion/
In the method for producing rare earth element-doped glass, which includes a sintering step to make the glass non-porous, the base material is heated in an atmosphere containing fluorine between after the drying step and before the sintering step. 5. The method for producing rare earth element-doped glass according to claim 1, wherein a fluorine doping step of heat treatment is interposed.
(6)請求項第5におけるフッ素ドープ工程を、フッ化
アルミニウムの昇華温度である1276℃よりも低い温
度、好ましくは1000℃以下の温度で行なうことを特
徴とする希土類元素ドープガラスの製造方法。
(6) A method for producing rare earth element-doped glass, characterized in that the fluorine doping step according to claim 5 is carried out at a temperature lower than 1276° C., which is the sublimation temperature of aluminum fluoride, preferably at a temperature of 1000° C. or lower.
(7)請求項第5、第6において、乾燥工程を終えた後
から焼結工程を終えるまでの間に、Cl_2あるいはそ
の他の塩素化合物の気相およびO_2を含有する雰囲気
中で脱水処理を行なう工程を介在させることを特徴とす
る希土類元素ドープガラスの製造方法。
(7) In claims 5 and 6, the dehydration treatment is performed in an atmosphere containing Cl_2 or other chlorine compound gas phase and O_2 between after the drying step and before the sintering step. 1. A method for producing rare earth element-doped glass, which includes an intervening step.
JP2065150A 1990-02-05 1990-03-15 Method for producing rare earth element doped glass Expired - Fee Related JP2931026B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU71855/91A AU652351B2 (en) 1990-02-05 1991-02-05 Quartz glass doped with rare earth element and production thereof
ES91903617T ES2069877T3 (en) 1990-02-05 1991-02-05 QUARTZ GLASS DOPED WITH RARE EARTH ELEMENT AND ITS PRODUCTION.
EP91903617A EP0466932B1 (en) 1990-02-05 1991-02-05 Quartz glass doped with rare earth element and production thereof
PCT/JP1991/000134 WO1991011401A1 (en) 1990-02-05 1991-02-05 Quartz glass doped with rare earth element and production thereof
DE69106795T DE69106795T2 (en) 1990-02-05 1991-02-05 QUARTZ GLASS DOPED WITH A RARE EARTH ELEMENT AND METHOD FOR THE PRODUCTION THEREOF.
KR1019910701275A KR0163195B1 (en) 1990-02-05 1991-02-05 Quartz glass doped with rare earth element and production thereof
US07/778,062 US5262365A (en) 1990-02-05 1991-02-05 Quartz glass doped with rare earth element and production thereof
CA002051104A CA2051104C (en) 1990-02-05 1991-02-05 Quartz glass doped with rare earth element and production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2561390 1990-02-05
JP2-25613 1990-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP02500699A Division JP3475109B2 (en) 1999-02-02 1999-02-02 Rare earth element doped glass

Publications (2)

Publication Number Publication Date
JPH03265537A true JPH03265537A (en) 1991-11-26
JP2931026B2 JP2931026B2 (en) 1999-08-09

Family

ID=12170738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065150A Expired - Fee Related JP2931026B2 (en) 1990-02-05 1990-03-15 Method for producing rare earth element doped glass

Country Status (2)

Country Link
JP (1) JP2931026B2 (en)
KR (1) KR0163195B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001099244A1 (en) * 2000-06-23 2001-12-27 The Furukawa Electric Co., Ltd. Light amplifying optical fiber and light amplifier using it
WO2007049705A1 (en) 2005-10-26 2007-05-03 Fujikura Ltd. Rare earth-doped core optical fiber and method for manufacture thereof
JP2008503433A (en) * 2004-06-24 2008-02-07 ベネク・オサケユキテュア Method for doping materials and doped materials
JP2016519641A (en) * 2013-03-19 2016-07-07 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Method for fluorinating doped quartz glass
CN116947311A (en) * 2023-07-26 2023-10-27 连云港福京石英制品有限公司 Doped quartz glass for high-power laser gain medium and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5744380B2 (en) 2009-03-26 2015-07-08 株式会社フジクラ Optical fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001099244A1 (en) * 2000-06-23 2001-12-27 The Furukawa Electric Co., Ltd. Light amplifying optical fiber and light amplifier using it
US6463201B2 (en) 2000-06-23 2002-10-08 The Furukawa Electric Co., Ltd. Light amplification optical fiber and light amplifier using the same
JP2008503433A (en) * 2004-06-24 2008-02-07 ベネク・オサケユキテュア Method for doping materials and doped materials
WO2007049705A1 (en) 2005-10-26 2007-05-03 Fujikura Ltd. Rare earth-doped core optical fiber and method for manufacture thereof
US8340487B2 (en) 2005-10-26 2012-12-25 Fujikura Ltd. Rare earth-doped core optical fiber and manufacturing method thereof
JP2016519641A (en) * 2013-03-19 2016-07-07 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Method for fluorinating doped quartz glass
CN116947311A (en) * 2023-07-26 2023-10-27 连云港福京石英制品有限公司 Doped quartz glass for high-power laser gain medium and preparation method thereof
CN116947311B (en) * 2023-07-26 2024-03-08 连云港福京石英制品有限公司 Doped quartz glass for high-power laser gain medium and preparation method thereof

Also Published As

Publication number Publication date
JP2931026B2 (en) 1999-08-09
KR0163195B1 (en) 1998-11-16
KR920701061A (en) 1992-08-11

Similar Documents

Publication Publication Date Title
AU652351B2 (en) Quartz glass doped with rare earth element and production thereof
EP0490881A2 (en) Optical fibre with fluorescent additive
US20090317042A1 (en) Rare earth-doped core optical fiber and manufacturing method thereof
KR20010042513A (en) Antimony oxide glass with optical activity
US11780768B2 (en) Photodarkening-resistant ytterbium-doped quartz optical fiber and preparation method therefor
JP2003512988A (en) Manufacturing method of nanocrystalline glass ceramic fiber
JP4158910B2 (en) Manufacturing method of rare earth element doped glass and optical amplification fiber using the same
JP2931026B2 (en) Method for producing rare earth element doped glass
US8649650B2 (en) Method for fabricating rare earth (RE) doped optical fiber using a new codopant
JP3475109B2 (en) Rare earth element doped glass
US20030213268A1 (en) Process for solution-doping of optical fiber preforms
JP3157000B2 (en) Optical waveguide
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
DiGiovanni Fabrication of rare-earth-doped optical fiber
JP2604466B2 (en) Method for producing rare earth element doped quartz glass
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JPH038744A (en) Rare earth element-doped quartz glass fiber preform and preparation thereof
Kamrádek Nanoparticles-doped silica-glass-based optical fibers: fabrication and application
JP2628944B2 (en) Manufacturing method of rare earth element doped optical fiber
JPH04271329A (en) Partially erbium-added optical fiber coupler and production thereof
JPH03218947A (en) Rare-earth element and halogen element-doped quartz glass-based optical fiber preform and its production
KR20020011469A (en) Process for the preparation of metal ion-doped optical device
JPH04285030A (en) Rare-earth element-added optical fiber and its production
JPH054832A (en) Production of optical fiber preform
JPS5849492B2 (en) Manufacturing method of glass fiber for optical transmission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees