JPS63277525A - Production of optical glass - Google Patents

Production of optical glass

Info

Publication number
JPS63277525A
JPS63277525A JP11221187A JP11221187A JPS63277525A JP S63277525 A JPS63277525 A JP S63277525A JP 11221187 A JP11221187 A JP 11221187A JP 11221187 A JP11221187 A JP 11221187A JP S63277525 A JPS63277525 A JP S63277525A
Authority
JP
Japan
Prior art keywords
gel
water
porous body
solution
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11221187A
Other languages
Japanese (ja)
Other versions
JPH0527575B2 (en
Inventor
Masayuki Yamane
正之 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP11221187A priority Critical patent/JPS63277525A/en
Publication of JPS63277525A publication Critical patent/JPS63277525A/en
Publication of JPH0527575B2 publication Critical patent/JPH0527575B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To contrive to improve refractive index distribution characteristics, by immersing sol obtained from a Si alkoxide in an organic solvent and optionally carrying out pretreatment of soaking a gelatinous porous material in a solution of a water-soluble salt of a metallic ion. CONSTITUTION:First a solution comprising a Si alkoxide as a main component is hydrolyzed to form sol and a gelatinous porous material is obtained from a solution containing a water-soluble salt of a metallic ion. Before the gelatinous porous material is dried and heated to form a glass material, the gelatinous porous material is immersed in an organic solvent which has low solubility of the water-soluble salt and is miscible with water. In the operation, water in the pores is replaced with the organic solvent, the metallic salt is precipitated to promote solidification of the metallic ion. Further optionally pretreatment of soaking the gelatinous porous material in a solution of a water-soluble salt of a different metallic ion is carried out to give a desired refractive index distribution. Promotion of the solidification of the metallic ion improves refractive index distribution characteristics.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、金属アルコキシドの加水分解で得られるゾル
に、金属塩水溶液を加えてゲル状多孔体を成形した後、
このゲル体を加熱してガラス体を製造する方法の改良に
関し、特にゲル体中における金属イオンの濃度分布を精
密に制御する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention involves adding a metal salt aqueous solution to a sol obtained by hydrolyzing a metal alkoxide to form a gel-like porous body.
The present invention relates to improvements in the method of manufacturing a glass body by heating this gel body, and particularly relates to a technique for precisely controlling the concentration distribution of metal ions in the gel body.

[従来の技術] Siアルコキシドを主要成分とする溶液を加水分解して
ゾルを得、ゾルをゲル化させた後、このゲル体を加熱し
て透明ガラス体を得る方法は、いわゆるゾルゲル法とし
て知られており、溶融法に比べてはるかに低い作業温度
でガラスを成形できるなど多くの利点があるため、最近
特に注目されている。かかるゾルゲル法を用いて多成分
ガラス体を得る方法として、ガラスを構成する金属酸化
物のすべてを、それらの金属アルコキシドの形で導入す
る方法があるが、それぞれの金属アルコキシドの加水分
解速度が異なるため、均質なゲル体、ひいては均質なガ
ラス体を得るのが難しく、この方法が適用できるガラス
組成は限られている。また、クラック発生の原因となる
溶媒のアルコールを用いず、加水分解を行なうためには
酸触媒が必要であり、加水分解に伴なう発熱がある。こ
れに対してSiなどの主成分はアルコキシドの形で導入
して加水分解によりゾルと成し、他のガラス構成金属酸
化物については、それらの水溶性金属塩の形で上記ゾル
に加えてこの混合物からゲル状多孔体を成形する改良方
法が提案されている。
[Prior Art] A method known as the so-called sol-gel method is to obtain a sol by hydrolyzing a solution containing Si alkoxide as a main component, gelatinize the sol, and then heat the gel body to obtain a transparent glass body. It has recently attracted particular attention because it has many advantages, such as being able to form glass at much lower working temperatures than the melting method. One way to obtain a multicomponent glass body using such a sol-gel method is to introduce all of the metal oxides that make up the glass in the form of their metal alkoxides, but the hydrolysis rate of each metal alkoxide is different. Therefore, it is difficult to obtain a homogeneous gel body and even a homogeneous glass body, and the glass compositions to which this method can be applied are limited. In addition, an acid catalyst is required to carry out hydrolysis without using alcohol as a solvent, which causes cracks, and heat is generated due to hydrolysis. On the other hand, main components such as Si are introduced in the form of alkoxide and formed into a sol by hydrolysis, and other glass constituent metal oxides are added to the above sol in the form of their water-soluble metal salts. An improved method for forming gel-like porous bodies from mixtures has been proposed.

上記改良方法によれば添加する金属元素の種類に対する
制約が少な(、多様なガラス組成に適用することができ
る。また水溶性塩であれば、加水分解反応による発熱も
少なくなる。
According to the above-mentioned improved method, there are fewer restrictions on the type of metal element to be added (it can be applied to a variety of glass compositions. Also, if it is a water-soluble salt, there is less heat generated by the hydrolysis reaction.

さらに上記改良方法では、ゲル状多孔体にさろに別種の
特定の金属塩を接触させて多孔体中の細孔を通して内部
に浸透させ、表面から中心に向けて濃度勾配を与えるこ
とにより、最終的に中心から表面に向けて屈折率が次第
に変化するガラス体を製作することもできる(J、Nc
n−Cr)’st、5olids、s5,1986年、
P244)。
Furthermore, in the above improved method, a specific metal salt of another type is brought into contact with the gel-like porous material and permeated into the interior through the pores in the porous material, thereby creating a concentration gradient from the surface to the center. It is also possible to fabricate a glass body whose refractive index gradually changes from the center to the surface (J, Nc
n-Cr)'st, 5olids, s5, 1986,
P244).

[発明が解決しようとする問題点コ 前述した従来の改良方法では、水溶性塩の形で導入され
た金属イオンのほとんどは、ゲル体の骨格形成には寄与
せず、ゲル体の細孔を満たす液相中にとどまることが多
い。このため、これらの金属イオンが、ゲル体の乾燥時
に水分とともにゲル体表面へと移動するという現象が生
じ、金属イオンの再分布がおこる。
[Problems to be Solved by the Invention] In the conventional improvement method described above, most of the metal ions introduced in the form of water-soluble salts do not contribute to the formation of the skeleton of the gel body, but rather close the pores of the gel body. It often remains in the liquid phase it fills. For this reason, a phenomenon occurs in which these metal ions move to the surface of the gel body together with water when the gel body dries, resulting in redistribution of metal ions.

このような金属イオンの移動を生じると、得られるガラ
ス体中での屈折率分布が均一とならず、不測の屈折率分
布乱れを生じることになる。
If such movement of metal ions occurs, the refractive index distribution in the resulting glass body will not be uniform, resulting in unexpected disturbances in the refractive index distribution.

また、ゲル状多孔体中にさらに他の水溶性塩を拡散させ
て7震度勾配を与え、最終的に所定形状(例えば放物状
)の屈折率勾配をもったガラス体を製造する場合でも同
様に、ゲル体の乾燥時に金属イオンの移動を生じる結果
、最終的に得られるガラス体中での屈折率分布は、当初
の目的とする分布形状から太き(外れた形状となったり
、分布勾配が平滑化される方向に変化して、充分な屈折
率差が得られないという問題があった。
The same applies when a glass body having a refractive index gradient of a predetermined shape (for example, parabolic shape) is produced by diffusing other water-soluble salts into the gel-like porous body to give a 7 seismic intensity gradient. As a result of the movement of metal ions when the gel body dries, the refractive index distribution in the final glass body may become thicker (deviate from the originally intended distribution shape, or the distribution gradient may change). There is a problem in that the refractive index changes in the direction of smoothing, making it impossible to obtain a sufficient refractive index difference.

本発明の主な目的は、上記従来の問題点を解決し、ゲル
状多孔体を乾燥、ガラス化加熱処理する前の段階で、ゲ
ル体中における金属イオンの分布を精密に制御できると
ともに、望ましい分布状態で確実に固定化できる方法を
提供することである。
The main object of the present invention is to solve the above-mentioned conventional problems, and to make it possible to precisely control the distribution of metal ions in the gel body at a stage before drying the gel-like porous body and heat-treating it for vitrification. It is an object of the present invention to provide a method that can reliably immobilize in a distributed state.

[問題点を解決するための手段] 本願の第1発明では、シリコンのアルコキシドを主体と
する溶液を加水分解して得られるゾルに、特定の金属イ
オンの水溶性塩を含む水溶液を加えてゲル状多孔体を得
た後、該ゲル状多孔体を乾燥、加熱してガラス体を得る
方法において、乾燥、加熱ガラス化処理を行なう前に、
上記金属塩に対する溶解度が低く且つ水と混和する有機
溶剤に上記ゲル状体を浸漬する処理を行なう。
[Means for Solving the Problems] In the first invention of the present application, an aqueous solution containing a water-soluble salt of a specific metal ion is added to a sol obtained by hydrolyzing a solution mainly composed of silicon alkoxide to form a gel. In the method of obtaining a glass body by drying and heating the gel-like porous body after obtaining the gel-like porous body, before performing the drying and heating vitrification treatment,
The gel-like body is immersed in an organic solvent that has low solubility in the metal salt and is miscible with water.

また本願の第2発明では、屈折率勾配をもったガラス体
を製造するに当り、ゲル状多孔体を、該ゲル状多孔体の
原料金属塩とは異なる金属塩の水溶液に浸漬して、ゲル
状多孔体の表面から内部に向けて変化する金属イオンの
濃度分布を与える処理、及び上記両種の金属塩に対する
溶解度が低く、且つ水と混和する有機溶剤に前記ゲル状
多孔体を浸漬する処理を行なう。
Further, in the second invention of the present application, in producing a glass body having a refractive index gradient, a gel-like porous body is immersed in an aqueous solution of a metal salt different from the raw material metal salt of the gel-like porous body, A treatment that provides a metal ion concentration distribution that changes from the surface to the inside of the gel-like porous body, and a process that immerses the gel-like porous body in an organic solvent that has low solubility for both types of metal salts and is miscible with water. Do this.

本発明方法で、ゾルを生成するシリコン源としては、テ
トラメトキシシラン、テトラエトキシシラン等のアルコ
キシシランを用いることができ、このようなシリコンの
アルコキシドに、加水分解及び縮重合反応の触媒として
作用する塩酸等を微量加える。
In the method of the present invention, alkoxysilanes such as tetramethoxysilane and tetraethoxysilane can be used as the silicon source for producing the sol, and these silicon alkoxides act as catalysts for hydrolysis and polycondensation reactions. Add a small amount of hydrochloric acid, etc.

このゾルがゲル化する前に、ガラスの基礎組成をなすシ
リコン以外の金属酸化物を構成するPb。
Before this sol gels, Pb forms a metal oxide other than silicon, which forms the basic composition of the glass.

Tit Cst Rbt Bat Sr、Ta+ Nb
+ Laなどの金属イオンの水溶性塩を含む水溶液又は
アルコール性水溶液を上記のゾルに加える。この混合物
を適当な条件で静置すると縮重合反応が進行しゲル化す
るとともに、ゲル体の収縮がおこる。
Tit Cst Rbt Bat Sr, Ta+ Nb
+ An aqueous solution or an alcoholic aqueous solution containing a water-soluble salt of a metal ion such as La is added to the above sol. When this mixture is allowed to stand still under appropriate conditions, the polycondensation reaction progresses to form a gel, and the gel body contracts.

このようにして得られたゲル状多孔体は主として5i−
0−3tの結合より成る骨格と、その骨格体に囲まれた
細孔より成り、細孔はアルコール、水などの液相物によ
って占められる。
The gel-like porous material thus obtained is mainly 5i-
It consists of a skeleton made of 0-3t bonds and pores surrounded by the skeleton, and the pores are occupied by liquid phase substances such as alcohol and water.

次に望ましくは、ゲル状多孔体中に含まれる溶媒を一部
揮発させるよう若干乾燥させた後、再度上記金属塩溶液
に浸漬する。
Next, desirably, the porous gel material is slightly dried to partially volatilize the solvent contained in the gel-like porous material, and then immersed in the metal salt solution again.

すなわち、上記前者の揮発処理は、ゲル状多孔体の保形
性を高めるため、多孔体中に含まれる液分の一部を除去
するものであり、収縮によって多孔体中の連通細孔が消
失しない範囲で、好ましくは直径が70%程度になるま
で乾燥させる。この過程でイオンの移動が起るので、そ
れをもう一度均一に分布させるため、このゲル状多孔体
を、シ+jコンアルコキシドのゾルに添加した金属塩溶
液と同一の金属塩溶液中に浸漬する。
That is, the above-mentioned former volatilization treatment removes a portion of the liquid contained in the porous body in order to improve the shape retention of the gel-like porous body, and the communicating pores in the porous body disappear due to contraction. It is preferably dried until the diameter is reduced to about 70%. Since ion movement occurs during this process, in order to once again distribute the ions uniformly, this gel-like porous body is immersed in the same metal salt solution as that added to the sol of Si+jcon alkoxide.

次いで、上記のゲル状多孔体を上記金属塩に対する溶解
度が低く且つ水と混和する有機溶剤中に浸漬する。
Next, the gel-like porous body is immersed in an organic solvent that has low solubility in the metal salt and is miscible with water.

本発明で使用する有機溶剤については特に限定されるも
のではなく、使用する水溶性金属塩に応じて適宜選択さ
れるべきものである。
The organic solvent used in the present invention is not particularly limited, and should be appropriately selected depending on the water-soluble metal salt used.

例えば、Pbs Tit Cs等について水溶性塩とし
て一般に硝酸塩、酢酸塩、炭酸塩等が使用でき、これら
に対する有機溶剤として、エチルアルコール、プロピル
アルコール、第2ブチルアルコール、第3ブチルアルコ
ール等のアルコール類、アセトン等のケトン類、ジメチ
ルエーテルなどのエーテル類などが使用できる。
For example, nitrates, acetates, carbonates, etc. can generally be used as water-soluble salts for Pbs Tit Cs, etc., and organic solvents for these include alcohols such as ethyl alcohol, propyl alcohol, sec-butyl alcohol, tertiary-butyl alcohol, etc. Ketones such as acetone, ethers such as dimethyl ether, etc. can be used.

以上に説明した処理を終えたゲル状多孔体は、屈折率が
一様なガラス体を製造する場合であれば、乾燥処理を施
した後、透明化焼結処理を施してガラス体とする。また
、屈折率分布型レンズ用の母材など断面内で屈折率勾配
をもつガラス体を成形する場合には、上記乾燥、透明化
焼結処理を行なう前に、ゲル状多孔体に対して以下に述
べる二次処理を行なう。例えば、屈折率が中心部で最大
で周辺に向けて放物線状に次第に減少する分布をもつガ
ラス体をつくる場合なら、Pbs Tl、Csなどガラ
ス中で屈折率を高めるイオンを前述した一次処理によっ
てゲル状多孔体中で均一に分布させるとともに固定化し
、しかる後、ガラス中での屈折率に対する寄与の比較的
少ないKs Na、 Znなどのイオンの水溶性金属塩
の水溶液あるいはアルコール水溶液に浸漬する。この工
程により、ゲル体の細孔中の液相を通してpbなどの高
屈折率成分の金属塩と、Kなどの低屈折率成分の金属塩
の相互拡散が生じる。所定の拡散処理時間の後、すなわ
ち中心から表面に向けて次第に変化する金属イオンの濃
度分布が生成された段階でゲル状多孔体を上記溶液から
取り出し、高屈折率成分塩および低屈折率成分塩の両者
に対して溶解度が低く且つ水と混和する有機溶剤中に浸
漬する。この有機溶剤浸漬により、金属塩間で相互拡散
した金属イオンの細孔内への固定が達成される。
If a glass body having a uniform refractive index is to be manufactured, the gel-like porous body that has been subjected to the above-described treatment is subjected to a drying treatment and then subjected to a transparent sintering treatment to form a glass body. In addition, when molding a glass body with a refractive index gradient within the cross section, such as a base material for a gradient index lens, the gel-like porous body should be Perform the secondary processing described in . For example, if you want to create a glass body with a distribution in which the refractive index is maximum in the center and gradually decreases in a parabolic manner toward the periphery, ions that increase the refractive index in the glass, such as Pbs, Tl, and Cs, are added to the gel by the primary treatment described above. After that, it is immersed in an aqueous solution of a water-soluble metal salt of an ion such as KsNa or Zn, which has a relatively small contribution to the refractive index in the glass, or an aqueous alcohol solution. This step causes interdiffusion of a metal salt of a high refractive index component such as PB and a metal salt of a low refractive index component such as K through the liquid phase in the pores of the gel body. After a predetermined diffusion treatment time, that is, when a metal ion concentration distribution that gradually changes from the center to the surface is generated, the gel-like porous body is taken out from the solution, and a high refractive index component salt and a low refractive index component salt are added. It is immersed in an organic solvent that has low solubility for both and is miscible with water. This organic solvent immersion achieves fixation of the metal ions interdiffused between the metal salts into the pores.

更に有機溶剤の種類により金属塩の溶解度および水の抽
出速度が異なるため、有機溶剤の組成、処理時間を調整
することにより、ゲル体内に形成される金属イオンの分
布を制御することが可能になる。
Furthermore, since the solubility of metal salts and the extraction rate of water differ depending on the type of organic solvent, it is possible to control the distribution of metal ions formed within the gel body by adjusting the composition of the organic solvent and treatment time. .

以上のような処理を経たゲル状多孔体は、次に乾燥処理
を施した後、通常の透明化焼結処理によりガラス体に転
換される。
The gel-like porous body subjected to the above-described treatment is then subjected to a drying treatment and then converted into a glass body by a normal transparent sintering treatment.

すなわち、上記ガラス組成物のガラス転移点温度よりや
や高い温度にまで徐々に加熱することにより、ゲル体中
の水分、アルコール分、有機溶剤が飛散し、更にゲル体
の細孔が閉じて透明体となる。この加熱過程の高温度域
において、雰囲気をヘリウムガスにすることにより透明
化を促進することができる。
That is, by gradually heating the glass composition to a temperature slightly higher than the glass transition temperature, the water, alcohol, and organic solvent in the gel body are scattered, and the pores of the gel body are further closed to form a transparent body. becomes. In the high temperature range of this heating process, transparency can be promoted by using a helium gas atmosphere.

[作 用] ゲル状多孔体の生成原料の1つとして水溶性金属塩を用
い、成形したゲル状多孔体を上記金属塩に対する溶解度
の低いを機溶剤に浸すことにより、ゲル体の細孔中に存
在した水が仔機溶剤と置換され、この有機溶剤に対する
上記塩の溶解性が低いため、細孔中で該金属塩の沈積が
生じるので、細孔中への金属イオンの固定が促進される
。このため乾燥工程におけて、細孔中の液相がゲル体表
面に移動する際に上記金属イオンを伴う現象が抑制され
る。
[Function] A water-soluble metal salt is used as one of the raw materials for producing a gel-like porous body, and by soaking the formed gel-like porous body in a organic solvent that has low solubility for the metal salt, the pores of the gel body are dissolved. The water present in the organic solvent is replaced by the child solvent, and the salt has low solubility in this organic solvent, causing precipitation of the metal salt in the pores, promoting the fixation of metal ions in the pores. Ru. Therefore, in the drying process, the phenomenon that occurs when the liquid phase in the pores moves to the surface of the gel body with the metal ions described above is suppressed.

この結果、透明焼結処理後得られるガラス体中には、所
期通りの屈折率分布形状が実現される。
As a result, the desired refractive index distribution shape is realized in the glass body obtained after the transparent sintering process.

すなわち本発明方法によれば分布形成の制御性が向上す
る。以下本発明を具体的実施例について詳しく説明する
That is, according to the method of the present invention, controllability of distribution formation is improved. The present invention will be described in detail below with reference to specific examples.

口実 施 例] 実施例1 テトラメトキシシラン5mlとテトラエトキシシラン5
1に、0.8モル/lのホウ酸水溶液10m1及び0.
025m1の濃塩酸を添加し、撹拌した後液温が室温に
冷却するまで放置した。
Example] Example 1 5 ml of tetramethoxysilane and 5 ml of tetraethoxysilane
1, 10 ml of 0.8 mol/l boric acid aqueous solution and 0.8 mol/l boric acid aqueous solution.
After adding 0.025 ml of concentrated hydrochloric acid and stirring, the mixture was left to stand until the liquid temperature cooled to room temperature.

得られた溶液15m1に0.25モル/1の酢酸鉛30
m1及び0.5モ、I+//lの硝酸鉛5mlを加え混
合した液を内径24+mmのポリプロピレン容器に注入
した。
0.25 mol/1 lead acetate 30 in 15 ml of the resulting solution
A mixed solution of 5 ml of lead nitrate of m1 and 0.5 mm, I+//l was poured into a polypropylene container with an inner diameter of 24+ mm.

この容器を密封し放置することによりゲル化して収縮し
容器壁より離脱する。次にゲル体を容器から取り出し、
大気中30℃の条件で一昼夜放置することにより直径1
5+amのゲル状多孔体を得た。
By sealing this container and leaving it as it is, it gels, contracts, and separates from the container wall. Next, remove the gel body from the container,
By leaving it in the atmosphere at 30℃ for a day and night, the diameter of
A gel-like porous material of 5+am was obtained.

このゲル状多孔体を、80m1のインプロパツールと2
0m1の水に50gの酢酸鉛を溶かした溶液中に浸し、
60℃で2日間保持した。
This gel-like porous material was mixed with 80m1 of Improper Tool and 2
Immerse it in a solution of 50g of lead acetate in 0ml of water.
It was held at 60°C for 2 days.

その後、上記ゲル状多孔体を30℃のインプロパツール
に浸し、2日間保持したのち、大気中60℃で乾燥した
。乾燥後に、雰囲気制御の可能な管状電気炉内で加熱し
た。
Thereafter, the gel-like porous body was immersed in an impropat tool at 30°C, held for 2 days, and then dried at 60°C in the air. After drying, it was heated in a tubular electric furnace where the atmosphere could be controlled.

加熱条件は、室温から460℃までは30°C/時間の
昇温スピードとし、240℃と460°Cでそれぞれ1
2時間保持し、460℃からは15℃/時間の割合で昇
温し、600℃で16時間保持したのち、室温まで10
0℃/時間の割合で冷却した。460℃よりやや高い温
度までは酸素ガスを毎分501流し、その後冷却開始ま
では酸素にかわりヘリウムガスを流した。
The heating conditions were a heating rate of 30°C/hour from room temperature to 460°C, and a heating rate of 1 hour at 240°C and 460°C.
Hold for 2 hours, raise the temperature from 460℃ at a rate of 15℃/hour, hold at 600℃ for 16 hours, and then raise the temperature to room temperature for 10 hours.
It was cooled at a rate of 0°C/hour. Oxygen gas was flowed at 501/min until the temperature was slightly higher than 460° C., and then helium gas was flowed instead of oxygen until cooling started.

上記加熱処理により、直径7腸鵬、長さ9膳鵬の透明で
泡などのないガラス体を得た。得られた円柱状ガラス体
の断面内における半径方向の鉛の濃度分布をX線マイク
ロアナライザーで測定した結果を第1図に示す。また比
較例として、ゲル状多孔体を30℃のインプロパツール
に浸漬する処理を省略し、他は上述実施例と同じ方法で
ガラス試料を作成した。同試料における鉛の濃度分布を
測定した結果を第1図中に「比較例」として示す。
By the above heat treatment, a transparent, bubble-free glass body with a diameter of 7 mm and a length of 9 mm was obtained. FIG. 1 shows the results of measuring the radial lead concentration distribution in the cross section of the obtained cylindrical glass body using an X-ray microanalyzer. Further, as a comparative example, a glass sample was prepared in the same manner as in the above-mentioned example except that the process of immersing the gel-like porous body in a 30° C. impropat tool was omitted. The results of measuring the lead concentration distribution in the same sample are shown in FIG. 1 as a "comparative example".

第1図から明らかなように、ゲル状多孔体をインプロパ
ツールに浸漬する処理を行なうことにより、後の乾燥工
程での鉛イオンの移動が抑止されて、鉛の分布が半径方
向に均一となる。
As is clear from Figure 1, by immersing the gel-like porous material in the Improper Tool, the movement of lead ions in the subsequent drying process is suppressed, and the distribution of lead becomes uniform in the radial direction. Become.

なお、第1図の測定ではガラス体表面端での鉛の濃度が
測定されていないが、比較例はその鉛濃度分布から見て
、乾燥工程で表面へ移動する水分とともに鉛イオンも表
面に運ばれ表面端で濃縮されていると考えられる。
Although the lead concentration at the edge of the glass body surface was not measured in the measurements shown in Figure 1, the lead concentration distribution in the comparative example suggests that lead ions are also transported to the surface along with the moisture that moves to the surface during the drying process. It is thought that it is concentrated at the edges of the cracked surface.

実施例2,3 実施例1と全く同じ方法で直径15mmのゲル状多孔体
を製作した。
Examples 2 and 3 A gel-like porous body with a diameter of 15 mm was manufactured in exactly the same manner as in Example 1.

次に、このゲル状多孔体を5モル/lの硝酸カリウムの
水溶液中に30℃で2時間浸漬した後、実施例2では3
0℃のインプロパツール、実施例3では30℃のアセト
ンに2時間浸漬した。その後は実施例1と全(同様の乾
燥及び加熱透明化処理を施して直径7■■、長さ9mm
の円柱状ガラス体を得た。このガラス体資料の半体方向
の鉛イオンの濃度分布をX線の透過強度から測定した結
果を第2図に示した。
Next, this gel-like porous material was immersed in a 5 mol/l aqueous solution of potassium nitrate at 30°C for 2 hours, and then
It was immersed in 0°C Improper Tools, and in Example 3, 30°C acetone for 2 hours. After that, it was made into a whole (diameter 7■■, length 9mm by applying the same drying and heating transparency treatment as in Example 1).
A cylindrical glass body was obtained. The concentration distribution of lead ions in the half-body direction of this glass sample was measured from the transmitted intensity of X-rays, and the results are shown in FIG.

第2図に示されるように、実施例2,3とも中央部で高
く周辺に向けて次第に低下する鉛濃度分布を有している
と同時に、その分布勾配が両者で明瞭に相違しており、
ゲル状多孔体を浸漬する有機溶剤の種類によって鉛イオ
ンの移動を抑制する効果が異なることがわかる。つまり
、有機溶剤の種類、処理時間等の選択によって、鉛イオ
ンの濃度分布形状の精密な制御が可能であることを示し
ている。
As shown in FIG. 2, both Examples 2 and 3 have lead concentration distributions that are high in the center and gradually decrease toward the periphery, and at the same time, the distribution slopes are clearly different between the two.
It can be seen that the effect of suppressing the movement of lead ions differs depending on the type of organic solvent in which the gel-like porous material is immersed. In other words, this shows that it is possible to precisely control the shape of the concentration distribution of lead ions by selecting the type of organic solvent, treatment time, etc.

第3図は実施例3で得られたガラス体から厚さ0.5+
amのディスクを切り出し、マツハツエンダ−干渉計に
より屈折率の分布を測定した結果を示しており、中心か
ら3IIIまでの範囲では放物線状の分布をなし、周辺
と中心部との屈折率差は0.037であった。
Figure 3 shows the glass body obtained in Example 3 with a thickness of 0.5+
The graph shows the results of cutting out an am disk and measuring the refractive index distribution using a Matsuhatsu Ender interferometer.The distribution is parabolic in the range from the center to 3III, and the refractive index difference between the periphery and the center is 0. It was 037.

一方、有機溶剤への浸漬処理を行なわない従来方法によ
り得られる屈折率差はo、oieであり(J、Non−
Cryst、5olids+ 85*1986年、P2
44)、本発明方法によれば、乾燥時におけるゲル状多
孔体中での金属イオンの移動が抑止される結果、金属塩
相互拡散に基づく濃度分布が保たれて、ガラス化後に中
心部と周辺部間で大きな屈折率差の得られることが確認
された。
On the other hand, the refractive index difference obtained by the conventional method without immersion in an organic solvent is o, oie (J, Non-
Cryst, 5olids+ 85*1986, P2
44) According to the method of the present invention, the movement of metal ions in the gel-like porous material during drying is suppressed, and as a result, the concentration distribution based on metal salt interdiffusion is maintained, and the concentration distribution between the center and the periphery after vitrification is maintained. It was confirmed that a large difference in refractive index could be obtained between the parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明方法で製作したガラス中における鉛濃
度分布および従来方法で製作したガラス中における鉛濃
度分布を示す図、第2図は第2発明方法で、有機溶剤の
種類を変えて製作したガラス中における鉛濃度分布の比
較を示す図、第3図は、第2図中の実施例3のガラスに
ついて断面内における屈折率分布を測定した結果を示す
図である。 特許出願人 日本板硝子株式会社 lct二1′I良¥ 第1図 第2図 第3図
Figure 1 is a diagram showing the lead concentration distribution in the glass produced by the first invention method and the lead concentration distribution in the glass produced by the conventional method. FIG. 3 is a diagram showing a comparison of the lead concentration distribution in the produced glasses, and is a diagram showing the results of measuring the refractive index distribution in the cross section of the glass of Example 3 in FIG. 2. Patent applicant: Nippon Sheet Glass Co., Ltd. LCT21'Iryo Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)シリコンのアルコキシドを主体とする溶液を加水
分解して得られるゾルに、特定の金属イオンの水溶性塩
を含む溶液を加えてゲル状多孔体を得た後、該ゲル状多
孔体を乾燥、加熱してガラス体を得る方法において、ガ
ラス化処理前に、前記塩に対する溶解度が低く、且つ水
と混和する有機溶剤に前記ゲル状多孔体を浸漬すること
を特徴とする光学ガラスの製造方法。
(1) A gel-like porous body is obtained by adding a solution containing a water-soluble salt of a specific metal ion to a sol obtained by hydrolyzing a solution mainly composed of silicon alkoxide, and then the gel-like porous body is A method for obtaining a glass body by drying and heating, wherein the gel-like porous body is immersed in an organic solvent that has low solubility in the salt and is miscible with water before the vitrification treatment. Method.
(2)特許請求の範囲第1項において、前記有機溶剤へ
の浸漬処理に先立ち、前記ゲル状多孔体中に含まれる溶
媒を一部揮発させた後、前記塩と同一の水溶性塩を含む
溶液中に浸漬する処理を行なうようにした光学ガラスの
製造方法。
(2) In claim 1, after partially volatilizing the solvent contained in the gel-like porous material prior to the immersion treatment in the organic solvent, the gel-like porous material contains the same water-soluble salt as the salt. A method for manufacturing optical glass that involves immersing it in a solution.
(3)シリコンのアルコキシドを主体とする溶液を加水
分解して得られるゾルに、特定の金属イオンの水溶性塩
を含む溶液を加えてゲル状多孔体を得た後、該ゲル状多
孔体を乾燥、加熱してガラス体を得る方法において、ゲ
ル状多孔体を、前記イオンとは異なる金属イオンの水溶
性塩を含む溶液中に浸漬して、前記ゲル状多孔体の表面
から内部に向けて次第に変化する金属イオンの濃度分布
を与える工程と、前記両種の水溶性塩に対して溶解度が
低く、且つ水と混和する有機溶剤に前記ゲル状多孔体を
浸漬する工程、とを備えたことを特徴とする屈折率勾配
をもつ光学ガラスの製造方法。
(3) A gel-like porous body is obtained by adding a solution containing a water-soluble salt of a specific metal ion to a sol obtained by hydrolyzing a solution mainly composed of silicon alkoxide, and then the gel-like porous body is In a method of obtaining a glass body by drying and heating, a gel-like porous body is immersed in a solution containing a water-soluble salt of a metal ion different from the above-mentioned ions, and the gel-like porous body is immersed in a solution from the surface of the gel-like porous body to the inside. A step of providing a gradually changing concentration distribution of metal ions, and a step of immersing the gel-like porous body in an organic solvent that has low solubility for both types of water-soluble salts and is miscible with water. A method for producing optical glass having a refractive index gradient characterized by:
JP11221187A 1987-05-08 1987-05-08 Production of optical glass Granted JPS63277525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11221187A JPS63277525A (en) 1987-05-08 1987-05-08 Production of optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11221187A JPS63277525A (en) 1987-05-08 1987-05-08 Production of optical glass

Publications (2)

Publication Number Publication Date
JPS63277525A true JPS63277525A (en) 1988-11-15
JPH0527575B2 JPH0527575B2 (en) 1993-04-21

Family

ID=14581035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11221187A Granted JPS63277525A (en) 1987-05-08 1987-05-08 Production of optical glass

Country Status (1)

Country Link
JP (1) JPS63277525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374024A1 (en) * 1988-12-16 1990-06-20 Rhone-Poulenc Chimie Glass compound, precursor of said compound and gel based on silica, lead and an alkaline metal, and process for preparing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606293A (en) * 1983-06-01 1985-01-12 チバ− ガイギ− ア−ゲ− Method and apparatus for aligning focus of light to object
JPS6021928A (en) * 1983-07-18 1985-02-04 Toyoda Autom Loom Works Ltd Device for detecting position of bobbin rail in roving frame
JPS6035294A (en) * 1983-08-08 1985-02-23 株式会社東芝 Intake device for seawater of nuclear power plant
JPS60186424A (en) * 1984-03-06 1985-09-21 Hoya Corp Manufacture of glass rod having refractive index gradient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606293A (en) * 1983-06-01 1985-01-12 チバ− ガイギ− ア−ゲ− Method and apparatus for aligning focus of light to object
JPS6021928A (en) * 1983-07-18 1985-02-04 Toyoda Autom Loom Works Ltd Device for detecting position of bobbin rail in roving frame
JPS6035294A (en) * 1983-08-08 1985-02-23 株式会社東芝 Intake device for seawater of nuclear power plant
JPS60186424A (en) * 1984-03-06 1985-09-21 Hoya Corp Manufacture of glass rod having refractive index gradient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374024A1 (en) * 1988-12-16 1990-06-20 Rhone-Poulenc Chimie Glass compound, precursor of said compound and gel based on silica, lead and an alkaline metal, and process for preparing same
FR2640617A1 (en) * 1988-12-16 1990-06-22 Rhone Poulenc Chimie GLASS COMPOUND, PRECURSOR OF THIS COMPOUND AND GEL BASED ON SILICA, LEAD AND ALKALI METAL AND PROCESS FOR PREPARING THE SAME

Also Published As

Publication number Publication date
JPH0527575B2 (en) 1993-04-21

Similar Documents

Publication Publication Date Title
EP0293064B1 (en) Sol-gel method for making ultra-low expansion glass
US4686195A (en) Method and composition for the manufacture of gradient index glass
JPH1053422A (en) Production of refractive index distribution type optical element
US5047369A (en) Fabrication of semiconductor devices using phosphosilicate glasses
US5069700A (en) method of manufacturing gradient-index glass
US5439495A (en) Solution doping of sol gel bodies to make graded index glass articles
JPS63277525A (en) Production of optical glass
EP2305612B1 (en) Method of producing grin lens
JP3209533B2 (en) Method of manufacturing refractive index distribution type optical element
JP3476864B2 (en) Glass manufacturing method
JPH04260608A (en) Production of optical element with refractive index distribution type
JP3523748B2 (en) Method for producing refractive index distribution type glass
JP3290714B2 (en) Method of manufacturing refractive index distribution type optical element
JPH059036A (en) Production of quartz glass having refractive index distribution
JPH05306126A (en) Distributed index optical element and its production
JPH05178622A (en) Production of quartz glass having refractive index distribution
JPH0812342A (en) Production of glass
JPH0710551A (en) Production of refractive index distribution type optical device
JP3670682B2 (en) Manufacturing method of gradient index optical element
JPS6340731A (en) Preparation of refractive index dispersion type lens
JPH06321562A (en) Production of optical element having refractive index distribution
JPH0372574B2 (en)
JPS6227012B2 (en)
JPH044261B2 (en)
JPS589842A (en) Preparation of optical glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees