JPH0372574B2 - - Google Patents

Info

Publication number
JPH0372574B2
JPH0372574B2 JP3011284A JP3011284A JPH0372574B2 JP H0372574 B2 JPH0372574 B2 JP H0372574B2 JP 3011284 A JP3011284 A JP 3011284A JP 3011284 A JP3011284 A JP 3011284A JP H0372574 B2 JPH0372574 B2 JP H0372574B2
Authority
JP
Japan
Prior art keywords
gel
glass
porous
pores
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3011284A
Other languages
Japanese (ja)
Other versions
JPS60176934A (en
Inventor
Kunio Nakaguchi
Makoto Kume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP3011284A priority Critical patent/JPS60176934A/en
Publication of JPS60176934A publication Critical patent/JPS60176934A/en
Publication of JPH0372574B2 publication Critical patent/JPH0372574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光学用や電子機器用として有用な高純
度ガラスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing high-purity glass useful for optical and electronic devices.

〔従来技術〕[Prior art]

内部で相互に連絡している気孔を有する多孔性
シリケート又はゲルミネートの気孔中に酸化物又
は分解若しくは反応して酸化物となる化合物の溶
液をしみ込ませ、さらに乾燥又は焼成してドーパ
ントを沈積させた後焼成してガラス体を作る方法
は公知である。(例えば特開昭50−28339)従来こ
の方法によりガラスを製造する場合は、例えば多
孔質バイコール(コーニング社商標)ガラスと呼
ばれているような多孔質ガラスが母体として用い
られてきた。バイコールガラスは周知のように
SiO2−B2O3−Na2O系の均質なガラスを作り、熱
処理によつて、ほぼSiO2からなる部分と、ほぼ
B2O3−Na2Oからなる部分とにガラスを分相さ
せ、塩酸などの酸によりB2O3−Na2O系の部分を
リーチングさせ、ほぼSiO2のみからなるガラス
である。しかしこの方法によつて得られる多孔質
ガラスは100%のSiO2ガラスではなく、約4%の
(B2O3+Na2O)が残ること、及び気孔の径が均
一でなく、例えば丸棒の母体ガラスからリーチン
グした場合は、丸棒の中心部の気孔の径が小さく
なるという欠点を有する。このために例えば光学
用ガラス素材などをつくる場合に、母体の多孔質
ガラスとしてバイコールを用いると、ドーパント
の分布が不均一で屈折率分布が丸棒の中心部でお
ちてしまうという欠陥を生じる。これは丸棒中心
部の気孔径が小さいため、ドーパントの析出が十
分行なわれなかつたことによる。これらの不具合
を避けるために例えば特開昭56−104733に示され
ているように、大寸法の多孔質バイコールをつく
り、その中心部(そこでは気孔の径が小さい)を
さけて、リーマーにより丸棒をきりだして、気孔
径のほぼ均一な多孔質ガラスを得た後、気孔中に
ドーパントを析出させ加熱処理して、丸棒の中心
部に歪のない光学ガラス素材を得ている。
A solution of an oxide or a compound that decomposes or reacts to become an oxide is impregnated into the pores of a porous silicate or gelminate that has internally interconnected pores, and the dopant is further deposited by drying or baking. Methods for producing glass bodies by post-firing are known. (For example, Japanese Patent Application Laid-open No. 50-28339.) Conventionally, when glass is manufactured by this method, a porous glass such as porous Vycor (trademark of Corning Inc.) glass has been used as a matrix. Vycor glass is well known
A homogeneous glass of the SiO 2 −B 2 O 3 −Na 2 O system is made, and by heat treatment, a portion consisting mostly of SiO 2 and a portion consisting mostly of
The glass is phase-separated into a portion consisting of B 2 O 3 −Na 2 O, and the B 2 O 3 −Na 2 O portion is leached with an acid such as hydrochloric acid, resulting in a glass consisting almost only of SiO 2 . However, the porous glass obtained by this method is not 100% SiO 2 glass, but about 4% (B 2 O 3 + Na 2 O) remains, and the diameter of the pores is not uniform. When leaching is performed from the base glass of the round bar, the disadvantage is that the diameter of the pores in the center of the round bar becomes small. For this reason, when Vycor is used as a porous glass matrix when producing optical glass materials, for example, the defect is that the dopant distribution is uneven and the refractive index distribution falls at the center of the round bar. This is because the dopant was not sufficiently precipitated because the pore diameter at the center of the round rod was small. In order to avoid these problems, for example, as shown in Japanese Patent Application Laid-open No. 56-104733, a large porous Vycor is made, and the central part (where the pores are small) is rounded using a reamer. After cutting out a rod to obtain porous glass with a substantially uniform pore diameter, a dopant is precipitated into the pores and heat treatment is performed to obtain an optical glass material with no distortion in the center of the round rod.

しかし最近になつて多孔質ガラスはいわゆるゾ
ルーゲル法によつても製造可能となつてきた。こ
の方法によれば多孔質ガラスの気孔の径の分布
は、バイコールの場合とは異つて、ほぼ均一にす
ることができるが、ガラスにするためには、その
ガラスの転移点近くに迄加熱しなければならず、
その際加熱によつてゲルの状態で有していた気孔
が焼きしまつてその気孔径が小さくなるという問
題がある。多孔質の気孔中にドーパントを十分な
量析出せしめるには、50〜100Å程度の気孔径が
望ましいが、ゲルの加熱によつて、気孔径はより
小さなものになつてしまうからである。
However, recently it has become possible to produce porous glass by the so-called sol-gel method. According to this method, the distribution of pore diameters in porous glass can be made almost uniform, unlike in the case of Vycor, but in order to make glass, it is necessary to heat the glass to near its transition point. must,
At that time, there is a problem in that the pores that were present in the gel state are burned out by heating, and the pore diameter becomes smaller. In order to precipitate a sufficient amount of dopant into the porous pores, a pore diameter of about 50 to 100 Å is desirable, but the pore diameter becomes smaller when the gel is heated.

従つて気孔径の大きな多孔質ゲルをあらかじめ
ドーパントの溶液に浸漬して気孔中に該化合物を
析出させた後加熱処理してガラスを得ることが望
ましい。ところが、多孔質ゲルをそのまま化合物
の溶液に浸漬するとゲルが割れるという不都合を
生じる。ゲルの気孔表面に多量の水が一度に吸着
し、吸着熱によつて多孔質ゲルが割れると考えら
れる。
Therefore, it is desirable to pre-immerse a porous gel with a large pore size in a dopant solution to precipitate the compound in the pores, and then heat-treat the gel to obtain glass. However, if the porous gel is immersed as it is in a compound solution, the gel will break, which is a problem. It is thought that a large amount of water is adsorbed on the pore surface of the gel at once, and the porous gel is cracked by the heat of adsorption.

〔発明の目的〕[Purpose of the invention]

本発明は前記多孔質ゲルを用いて、ドーパント
溶液を含浸させるときに割れることのないガラス
の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing glass that does not break when impregnated with a dopant solution using the porous gel.

〔発明の構成〕[Structure of the invention]

本発明のガラスの製造方法はゾルゲル法で製造
した連続気孔を有する多孔質ゲルに水蒸気処理を
施した後にドーパント溶液に浸漬し、乾燥、焼成
することを特徴とする。
The method for producing glass of the present invention is characterized in that a porous gel having continuous pores produced by a sol-gel method is subjected to steam treatment, then immersed in a dopant solution, dried, and fired.

本発明で言うゾルゲル法とは金属化合物溶液か
ら金属化合物ゾルを生成せしめ、そのゾルを重合
せしめてゲルとなし、ゲル中の溶媒を揮発ないし
は分解せしめて多孔質ゲルを得、その多孔質ゲル
をガラスの転移点以上の温度で焼成することによ
つてガラス化せしめるとともに、気孔をつぶすガ
ラスの製造方法である。具体的には古くからシリ
カゲルの製法として知られる、水ガラスに撹拌し
ながら酸を加え、先ずゾルを生成させ引続いてゲ
ルに重合させ乾燥せしめる方法や、特開58−
55344号の様にシリコンアルコレートと他の金属
アルコレートとを混合し、水を加えて加水分解を
起こさせて先ずゾルを生成させ、さらに反応を進
めさせてゲルに重合させて該ゲルからガラスを製
造する方法をいう。
The sol-gel method referred to in the present invention is to generate a metal compound sol from a metal compound solution, polymerize the sol to form a gel, volatilize or decompose the solvent in the gel, and obtain a porous gel. This is a method for producing glass in which glass is vitrified by firing at a temperature above the transition point of glass and pores are crushed. Specifically, silica gel has been manufactured by adding acid to water glass while stirring to first form a sol, which is then polymerized into a gel and dried, which has been known for a long time.
As in No. 55344, silicon alcoholate and other metal alcoholates are mixed, water is added to cause hydrolysis, first a sol is produced, and the reaction is further advanced to polymerize into a gel, which is then converted into glass. A method of manufacturing.

ゾルゲル法により得られるゲルは溶媒や水を多
量に含んでおり、加熱乾燥すると溶媒が揮発ない
しは分解揮発し、又は燃焼消失しあとに連続した
気孔が残留する。ゾルゲル法で多成分ガラスを製
造することは特開58−55344号にも記載されてい
るが、金属化合物溶液の組合せによつては両者の
反応速度の違いにより任意に均一組成の多成分ガ
ラスを得ることが出来ない。
The gel obtained by the sol-gel method contains a large amount of solvent and water, and when heated and dried, the solvent evaporates, decomposes and evaporates, or disappears by combustion, leaving behind continuous pores. JP-A-58-55344 also describes the production of multi-component glass using the sol-gel method, but depending on the combination of metal compound solutions, it is possible to arbitrarily produce multi-component glass with a uniform composition due to the difference in reaction rate between the two. I can't get it.

しかし、前記多孔質ゲルに残留した連続気孔は
ゲル全体に均一に分布するので、気孔表面に添加
したい金属化合物のドーパントを析出させてから
ガラス化させることにより種々の成分の組合せの
均質なガラスを製造することが可能である。
However, the continuous pores remaining in the porous gel are uniformly distributed throughout the gel, so by precipitating the dopant of the metal compound to be added to the pore surface and then vitrifying it, it is possible to create homogeneous glasses with various combinations of components. It is possible to manufacture.

本発明で言う水蒸気処理とは相対湿度90%RH
以上の雰囲気にさらし、ゲル表面および気孔表面
に水を吸着させることを言う。ゾルゲル法により
生成したゲルは溶媒除去の必要上、高温乾燥され
るが、そのため乾燥した多孔質ゲルは極めて水分
を吸着し易い性質を持つている。したがつていき
なり高相対湿度の雰囲気にさらすと破損を招きや
すいので、徐々に雰囲気湿度を上げて行き、最終
的に湿度を90%RH以上にまで上げてやることが
望ましい。この様に処理することにより、ドーパ
ントを含む溶液に浸漬してもゲルが割れることは
稀である。
The steam treatment referred to in the present invention refers to a relative humidity of 90% RH.
Exposure to the above atmosphere causes water to be adsorbed on the gel surface and pore surface. Gels produced by the sol-gel method are dried at high temperatures in order to remove the solvent, and as a result, the dried porous gels have the property of adsorbing water extremely easily. However, if suddenly exposed to an atmosphere with high relative humidity, it is likely to cause damage, so it is desirable to gradually increase the atmospheric humidity and eventually raise the humidity to 90% RH or higher. By treating in this manner, the gel rarely cracks even when immersed in a solution containing a dopant.

本発明のドーパントとは、ガラスに添加すべき
金属酸化物を熱分解によつて生成する物質であ
り、水溶液の形でゲル中の気孔に浸透し、乾燥に
よつて気孔表面に析出し、焼成により酸化物に分
解するとともにゲル基体成分とともにガラス化す
る。したがつてドーパントとしては金属の水酸化
物や金属塩が主として用いられる。金属塩の場合
は水に対する溶解度や、酸化物への分解のしやす
さの点から硝酸塩が好ましい。またドーパントに
用いられる金属は1種と限らず複数種類用いるこ
ともできる。
The dopant of the present invention is a substance produced by thermal decomposition of a metal oxide to be added to glass, which penetrates into the pores in the gel in the form of an aqueous solution, precipitates on the surface of the pores by drying, and is then fired. It is decomposed into oxides and vitrified together with the gel base components. Therefore, metal hydroxides and metal salts are mainly used as dopants. In the case of metal salts, nitrates are preferred in terms of solubility in water and ease of decomposition into oxides. Further, the number of metals used for the dopant is not limited to one type, but multiple types can also be used.

〔実施例〕〔Example〕

Si(OCH3476gとCH3OH73.6gを三角フラス
コに入れ約15分超音波撹拌した後、0.00008%ア
ンモニア水36gを徐々に加えて更に15分間超音波
撹拌した。この混合液を直径15mm長さ150mmのテ
フロン製容器に入れ容器の上部をアルミホイルで
蓋をし、70℃の恒温槽に入れ24時間保持した後ア
ルミホイルに約0.5mmのピンホールを1コあけて
そのまま70℃の恒温槽中で14日間保持して直径7
mm長さ70mmのシリカゲルを得た。このゲル中には
水とアルコールが残存しているのでこれを除去す
るために真空中(10-3TOrr)で室温から400℃迄
ゆつくりと加熱して水をとり、酸化雰囲気中で
400℃で16時間保持してアルコールを燃焼させた
後、再び真空中で徐々に加熱して700℃で16時間
保持した後常温に迄降温してシリカ質の多孔質ゲ
ルを得た。300mlのビーカーに水150gに
CsNO3100gを溶かした溶液を入れその上部に先
きに得られたシリカゲルの丸棒を横にして吊し、
ビーカー上部を時計皿で塞ぎビーカーをウオータ
ーバスに入れて徐々に加熱した。60℃で4時間保
持し、シリカゲルの丸棒の気孔に十分水蒸気を吸
着させた後、該シリカゲルの丸棒をビーカー中の
CsNO3溶液中に入れ、ウオーターバスの温度を
95℃にあげて4時間保持し、CsNO3の水溶液を
シリカゲル丸棒中の気孔に浸透させた。丸棒をと
りだして常温で48時間真空乾燥させてCsNO3
シリカゲルの気孔中に析出させた後、真空中でゆ
つくりと加熱して700℃に昇温した後700℃のまま
酸化雰囲気中で16時間保持する。次に真空中
(10-3TOrr)でゆつくりと1050℃迄加熱して16時
間保持した後常温に迄下げるとSiO284重量%、
Cs2O16%のガラス体が得られた。このガラス丸
棒の断面の直径方向のCs成分をX線マイクロア
ナライザーで分析したがCs成分は中央部で濃度
低下することなく一様な濃度であつた。
76 g of Si(OCH 3 ) 4 and 73.6 g of CH 3 OH were placed in an Erlenmeyer flask and stirred with ultrasonic waves for about 15 minutes, and then 36 g of 0.00008% aqueous ammonia was gradually added and stirred with ultrasonic waves for an additional 15 minutes. Place this mixed solution in a Teflon container with a diameter of 15 mm and a length of 150 mm, cover the top of the container with aluminum foil, and place it in a constant temperature bath at 70°C for 24 hours. After that, make one pinhole of about 0.5 mm in the aluminum foil. Open it and keep it in a thermostat at 70℃ for 14 days until it has a diameter of 7.
A silica gel with a length of 70 mm was obtained. Water and alcohol remain in this gel, so in order to remove them, the gel is heated slowly from room temperature to 400°C in a vacuum (10 -3 TOrr) to remove water, and then placed in an oxidizing atmosphere.
After holding at 400°C for 16 hours to burn off the alcohol, it was gradually heated again in a vacuum, held at 700°C for 16 hours, and then cooled to room temperature to obtain a siliceous porous gel. 150g of water in a 300ml beaker
Pour a solution containing 100g of CsNO 3 and hang the silica gel rod obtained earlier on its top.
The top of the beaker was covered with a watch glass, and the beaker was placed in a water bath and gradually heated. After holding at 60°C for 4 hours to allow the pores of the silica gel rod to sufficiently adsorb water vapor, the silica gel rod was placed in a beaker.
into the CsNO3 solution and set the temperature of the water bath to
The temperature was raised to 95° C. and held for 4 hours to allow an aqueous solution of CsNO 3 to permeate into the pores in the silica gel rod. The round bar was taken out and dried under vacuum at room temperature for 48 hours to precipitate CsNO 3 into the pores of the silica gel. After that, it was slowly heated in a vacuum to raise the temperature to 700℃, and then dried at 700℃ in an oxidizing atmosphere. Hold for 16 hours. Next, it was slowly heated to 1050°C in a vacuum (10 -3 TOrr), held for 16 hours, and then lowered to room temperature, resulting in 84% by weight of SiO 2 .
A glass body containing 16% Cs 2 O was obtained. The Cs component in the diametrical direction of the cross section of this glass round rod was analyzed using an X-ray microanalyzer, and the Cs component was found to have a uniform concentration in the center without a decrease in concentration.

本実施例においてCsNO3溶液をシリカゲルの
気孔に浸透させ、気孔表面に析出させた後、該ゲ
ルを95℃の水中に10分間程度浸漬して、シリカゲ
ルの気孔中のCsNO3溶液に濃度勾配をつけてか
ら、本実施例と同様のガラス化操作を行なえば、
半径方向に連続した屈析率分布をもつたSiO2
Cs2O系の丸棒レンズを得ることができる。
In this example, a CsNO 3 solution was infiltrated into the pores of silica gel and precipitated on the pore surface, and then the gel was immersed in water at 95°C for about 10 minutes to create a concentration gradient in the CsNO 3 solution in the pores of the silica gel. After attaching it, if you perform the same vitrification operation as in this example,
SiO 2 − with a continuous refractive index distribution in the radial direction
A Cs 2 O-based round bar lens can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明のガラス製造方法によると、ゾルゲル法
によつて製造される多孔質ゲルにドーパントを析
出させるので、ドーパントの分布が均一で、均質
なガラスが得られ、しかも多孔質ゲルを水蒸気処
理を施してからドーパント液に浸漬するので、浸
漬工程での多孔質ゲルの破損を低減することが出
来る。
According to the glass manufacturing method of the present invention, a dopant is precipitated into a porous gel manufactured by a sol-gel method, so that a homogeneous glass with a uniform dopant distribution can be obtained. Since the porous gel is then immersed in the dopant solution, damage to the porous gel during the immersion process can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 ゾルゲル法で製造した連続気孔を有する多孔
質ゲルに水蒸気処理を施した後にドーパントを含
む溶液に浸漬し、乾燥焼成することを特徴とする
ガラスの製造方法。
1. A method for producing glass, which comprises subjecting a porous gel having continuous pores produced by a sol-gel method to steam treatment, immersing it in a solution containing a dopant, and drying and firing.
JP3011284A 1984-02-20 1984-02-20 Production of glass Granted JPS60176934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011284A JPS60176934A (en) 1984-02-20 1984-02-20 Production of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011284A JPS60176934A (en) 1984-02-20 1984-02-20 Production of glass

Publications (2)

Publication Number Publication Date
JPS60176934A JPS60176934A (en) 1985-09-11
JPH0372574B2 true JPH0372574B2 (en) 1991-11-19

Family

ID=12294692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011284A Granted JPS60176934A (en) 1984-02-20 1984-02-20 Production of glass

Country Status (1)

Country Link
JP (1) JPS60176934A (en)

Also Published As

Publication number Publication date
JPS60176934A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
CA1188896A (en) High-silica glasses
US4786618A (en) Sol-gel method for making ultra-low expansion glass
US3804647A (en) Porous glass supports for automotive emissions control catalysts
US6127295A (en) Silica glass composition and method for manufacturing silica glass using the same
JPH08511232A (en) Method for preventing oxidation of porous carbon-containing material and material obtained thereby
KR970005142B1 (en) Fabrication of semiconductor devices using phosphosilicate glasses
Hoffman et al. Preparation of a diphasic photosensitive xerogel
JPH03295818A (en) Production of glass having distribution of refractive index
EP2305612B1 (en) Method of producing grin lens
JPH0372574B2 (en)
US4039339A (en) Method of preparing glazes
JPS6027615A (en) Production of optical glass
JPS621584B2 (en)
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
JPH02293332A (en) Production of rare earth element-doped silica glass
JPH0776093B2 (en) Quartz glass manufacturing method
JPS63176315A (en) Production of quartz glass containing rare earth element
GB2075003A (en) Method for Producing Optical Glass
JPH05306125A (en) Production of glass
JP2828284B2 (en) Method for producing rare earth element doped glass
JPH0527575B2 (en)
JPH05306126A (en) Distributed index optical element and its production
RU1716756C (en) Method for luminescence coating production
JP2757031B2 (en) Method for producing mullite sintered body
JPS6144727A (en) Production of glass for optical fiber