JPH02293332A - Production of rare earth element-doped silica glass - Google Patents

Production of rare earth element-doped silica glass

Info

Publication number
JPH02293332A
JPH02293332A JP11263089A JP11263089A JPH02293332A JP H02293332 A JPH02293332 A JP H02293332A JP 11263089 A JP11263089 A JP 11263089A JP 11263089 A JP11263089 A JP 11263089A JP H02293332 A JPH02293332 A JP H02293332A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
compound
solution
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11263089A
Other languages
Japanese (ja)
Other versions
JP2604466B2 (en
Inventor
Kazuo Kamiya
和雄 神屋
Yoshiharu Konya
義治 紺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
KDDI Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Kokusai Denshin Denwa KK filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1112630A priority Critical patent/JP2604466B2/en
Publication of JPH02293332A publication Critical patent/JPH02293332A/en
Application granted granted Critical
Publication of JP2604466B2 publication Critical patent/JP2604466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the title silica glass with desired dope level without causing rare earth element migration and/or volatilization by immersing a porous glass matrix produced by deposition of silica glass particles in a solution capable of forming insoluble compounds through reaction with rare earth element compounds followed by high-temperature sintering. CONSTITUTION:A porous glass matrix (bulk density: 0.3-1.0g/cm<3>) produced by deposition of silica particles formed by flame hydrolysis such as CVD process is immersed in a rare earth element compound solution such as an alcoholic solution of chloride of Nd, Er, Eu and/or Ce to impregnate said matrix with the rare earth metal compound(s). The resultant glass matrix is then immersed in an alcoholic solution containing oxalic acid and an alkali (pref. NH3) to effect fixation of the rare earth element(s) followed by drying, heat treatment (at 250-500 deg.C) and then sintering at 1400-1700 deg.C in a He atmosphere, thus obtaining the objective rare earth element-doped silica glass useful for optical fiber lasers, light amplifiers, sensor elements, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類元素ドープ石英ガラスの製造方法、特に
は光機能を有していることから光ファイバーレーザー、
光増幅器、センサ素子として有用とされる希土類元素ド
ープ石英ガラスの製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing rare earth element-doped quartz glass, and in particular to an optical fiber laser, since it has an optical function.
The present invention relates to a method for manufacturing rare earth element-doped silica glass that is useful as optical amplifiers and sensor elements.

(従来の技術) 光機能を有する石英ガラスについては、石英ガラスに希
土類元素を添加した希土類元素ドープ石英ガラスが公知
とされている。
(Prior Art) Regarding quartz glass having optical functions, rare earth element-doped quartz glass, which is obtained by adding a rare earth element to quartz glass, is known.

しかして、この希土類元素ドープ石英ガラスの製造につ
いては、内付けCvD法(MCVD法)による方法(特
公表63−501711号公報参照)、火炎加水分解外
付けCVD法で作った多孔質ガラス母材に希土類元素を
含む化合物を添加したのち、高温で焼結して透明ガラス
化する方法(特公昭53−3980号公報参照)などが
知られている。
Therefore, regarding the production of this rare earth element-doped quartz glass, there are two methods: an internal CVD method (MCVD method) (see Japanese Patent Publication No. 63-501711), and a porous glass base material made by a flame hydrolysis external CVD method. A method is known in which a compound containing a rare earth element is added to a material, and then sintered at a high temperature to form transparent glass (see Japanese Patent Publication No. 53-3980).

(発明により解決されるべき課題) しかし、このMCVD法では希土類元素化合物の供給が
希土類元素塩化物の高温加熱での蒸発で行なわれるため
に、供給量の制御が極めて困難であるし、大型の母材を
得ることも難しいという不利があり、火炎加水分解で得
た多孔質ガラス母材に希土類元素化合物を添加し、高温
焼結するという方法にはこの希土類元素化合物の添加が
多孔質ガラス母材を希土類元素化合物の溶液に浸漬する
という方法で行なわれるので、このドープ量の制御が容
易であり、蒸気圧の低い化合物にも適用することができ
るという利点があるものの、これには希土類元素化合物
の溶液に浸漬したのちの乾燥時に毛細管現象によって溶
媒が多孔買ガラス母材の表面を移動し、このときに溶質
も同時に穆勅してこれが表面近くに蓄積されるために、
得られる石英ガラスにドーパントの濃度分布ができてし
まい、極端な場合には表面と内部との熱膨張係数の差に
よってこれが割れるという問題があり、さらには焼結、
ガラス化の際に希土類元素化合物の一部が揮敗するため
に所望のドープ量が得られなくなるという欠点がある。
(Problems to be Solved by the Invention) However, in this MCVD method, the rare earth element compound is supplied by evaporating the rare earth element chloride by heating at high temperature, so it is extremely difficult to control the supply amount, and it is difficult to control the supply amount. The disadvantage is that it is difficult to obtain a base material, and the method of adding a rare earth element compound to a porous glass base material obtained by flame hydrolysis and sintering at high temperature does not require the addition of this rare earth element compound. This method involves immersing the material in a solution of a rare earth element compound, which has the advantage that the amount of doping can be easily controlled and can be applied to compounds with low vapor pressure. During drying after being immersed in a compound solution, the solvent moves across the surface of the porous glass matrix due to capillary action, and at this time, the solute is also eluted and accumulated near the surface.
This creates a dopant concentration distribution in the resulting quartz glass, and in extreme cases there is a problem that it can crack due to the difference in thermal expansion coefficient between the surface and the inside.
There is a drawback that a desired doping amount cannot be obtained because part of the rare earth element compound evaporates during vitrification.

そのため、この後者の問題を解決する方法として、多孔
質ガラス母材中に添加された希土類元素化合物をその融
点以下の温度に保持された酸化7囲気内において酸化す
るという方法も提案されている(特開昭63−1012
1号公報参照)が、この方法では希土類元素化合物が完
全には酸化されず、酸化されない希土類元素化合物、例
えば希土類元素塩化物はガラス工程でかなり揮敗するし
、揮散せずにガラス中に残存しても、塩化物はガラスネ
ットワークの中に入ることができず、微小結晶となるの
で、目的とする石英ガラスが白濁した状態となって光伝
送損失を招くことになり、さらにはレーザー発振効率も
低いものとなるという不利がある。
Therefore, as a method to solve this latter problem, a method has been proposed in which the rare earth element compound added to the porous glass base material is oxidized in an oxidation atmosphere maintained at a temperature below its melting point ( JP-A-63-1012
However, in this method, the rare earth element compound is not completely oxidized, and the rare earth element compound that is not oxidized, such as rare earth element chloride, is considerably volatilized in the glass process, and remains in the glass without volatilizing. However, the chloride cannot enter the glass network and turns into microcrystals, which causes the target quartz glass to become cloudy, causing optical transmission loss and further reducing laser oscillation efficiency. This has the disadvantage that it also has a low value.

(課題を解決するための手段) 本発明はこのような不利欠点を解決した希土類元素ドー
プ石英ガラスの製造方法に関するもので、これは火炎加
水分解によって生成するシリカガラス微粒子を堆積して
得られる多孔質ガラス母材に希土類元素を含む化合物を
添加した後、高温で焼結して透明ガラス化する方法にお
いて、焼結工程の前に、該多孔買ガラス母材を該希土類
元素を含む化合物と反応して不溶性の化合物を生成する
溶液中に浸漬して希土類元素化合物を固定することを特
徴とするものである。
(Means for Solving the Problems) The present invention relates to a method for producing rare earth element-doped quartz glass that solves these disadvantages. In the method of adding a rare earth element-containing compound to a transparent glass base material and then sintering it at high temperature to make it transparent, the porous glass base material is reacted with the rare earth element-containing compound before the sintering step. This method is characterized by fixing the rare earth element compound by immersing it in a solution that produces an insoluble compound.

すなわち、本発明者らは希土類元素をドープした石英ガ
ラスにおける希土類元素化合物の移動、揮敗に伴なう不
利を解決する方法について種々検討した結果、これにつ
いては火炎加水分解法で製造した多孔質ガラス母材に希
土類元素を含む化合物を添加したのち、この希土類元素
化合物を化学的処理で不溶性の固体としておけば、これ
が溶媒に溶けて多孔買ガラス母材の表面に移動すること
もなくなるし、焼結時に揮敗することもなくなるので、
希土頚元素の供給量の制御が容易となつて、所望のドー
プ量をもつ石英ガラスを得ることができるということを
見出し、この希土類元素化合物の固定化方法についての
研究を進めて本発明を完成させた。
That is, the present inventors have studied various ways to solve the disadvantages associated with the movement and volatilization of rare earth element compounds in quartz glass doped with rare earth elements. After adding a compound containing a rare earth element to the glass base material, if this rare earth element compound is made into an insoluble solid by chemical treatment, it will not dissolve in the solvent and migrate to the surface of the porous glass base material. There will be no volatilization during sintering, so
It was discovered that the supply amount of rare earth elements can be easily controlled and silica glass with a desired doping amount can be obtained.The present invention was achieved by conducting research on a method for immobilizing this rare earth element compound. Completed.

以下にこれをさらに詳述する。This will be explained in further detail below.

(作用) 本発明の希土類元素ドープ石英ガラスの製造は、前記し
たように火炎加水分解法で製造した多孔質ガラス母材に
希土類元素を含む化合物を添加したのち、この多孔質ガ
ラス母材を希土類元素化合物と反応して不溶性化合物を
生成する溶液に浸漬するという方法で行なわれる。
(Function) The rare earth element-doped quartz glass of the present invention is produced by adding a compound containing a rare earth element to a porous glass base material produced by the flame hydrolysis method as described above, and then adding a compound containing a rare earth element to the porous glass base material. This is done by immersion in a solution that reacts with elemental compounds to form insoluble compounds.

この火炎加水分解法による多孔質ガラス母材の製造は公
知の方法、例えば光ファイバー用母材の製造法としてよ
く知られれいるCVD法,VAD法で行えばよい。した
がって、これは公知の酸水素火炎バーナーに四塩化けい
素などのけい素化合物を必要に応じドーバントとなる四
塩化ゲルマニウムなどのゲルマニウム化合物と共に供給
し、ここでの加水分解で生成したシリカガラス微粒子ま
たはシリカ微粒子と酸化ゲルマニウム微粒子とからなる
ガラス微粒子を石英ガラス棒なとの担体上に堆積させる
ことによって作ればよい。しかし、このようにして得ら
れた多孔質ガラス母材についクてはこれを希土類元素化
合物を含む溶液に浸漬したときに、微粒子間の凝集力が
失なわれて破壊しないだけの機械的強度をもつものとす
る必要があるので、平均かさ密度が0.3g/cm3よ
り大きいものとすることがよいし、これはまたこの多孔
質ガラス母材を希土類元素化合物溶液に浸漬したとき、
またこの希土類元素化合物を固定化する溶液に浸漬した
とき、これらの溶液が多孔貿ガラス母材の中を容易に拡
散移動することが必要とされるために平均かさ密度が1
.0g/cm’より小さいものとすることがよい。
The production of the porous glass preform by this flame hydrolysis method may be carried out by a known method, such as the CVD method or VAD method, which is well known as a method for producing preforms for optical fibers. Therefore, in this method, a silicon compound such as silicon tetrachloride is supplied to a known oxyhydrogen flame burner together with a germanium compound such as germanium tetrachloride as a dopant as necessary, and silica glass fine particles or It may be produced by depositing glass particles consisting of silica particles and germanium oxide particles on a carrier such as a quartz glass rod. However, when the porous glass base material obtained in this way is immersed in a solution containing a rare earth element compound, the cohesive force between the fine particles is lost and the mechanical strength is insufficient to prevent breakage. Therefore, it is preferable that the average bulk density be larger than 0.3 g/cm3, and this also means that when this porous glass base material is immersed in a rare earth element compound solution,
In addition, when this rare earth element compound is immersed in a solution that fixes it, the average bulk density is 1 because these solutions need to easily diffuse and move through the porous glass matrix.
.. It is preferable that it be smaller than 0 g/cm'.

このようにして得られた多孔貿ガラス母材はついで希土
類元素を含む化合物溶液に漫潰され、これに希土類元素
化合物を含む溶液がその内部にまで浸透させられる。こ
の希土類元素を含む化合物としてはネオジム、エルビウ
ム、ユーロピウム、セリウムなどの希土類元素の塩化物
、硝酸塩、硫酸塩などが例示され、これは溶剤に対して
十分な溶解度を有するものであれば特に限定する必要は
ないが、一般には入手が容易であり、十分な溶解度を有
するということから塩化物とすることが好ましい。また
、この溶剤も多孔質ガラス母材と化学的に反応しないも
のであればよいので特に限定されるものではないが、水
は多孔質ガラス母材の微粒子間の凝集力を弱める作用が
強いので好ましいものではなく、これには上記した希土
類元素化合物の溶解度、多孔質ガラス母材への作用およ
び乾燥速度が早いということからメタノール、エタノー
ルのような低級アルコールとすることがよい。なお、こ
の希土類元素化合物によるドープは二種以上の化合物を
使用して共ドープとしてもよいが、この場合にクロムの
ような遷移金属を光増感剤として添加することは任意と
される。
The porous glass base material thus obtained is then crushed in a compound solution containing a rare earth element, and the solution containing a rare earth element compound is allowed to penetrate into the inside thereof. Examples of compounds containing rare earth elements include chlorides, nitrates, and sulfates of rare earth elements such as neodymium, erbium, europium, and cerium, and these are particularly limited as long as they have sufficient solubility in solvents. Although not necessary, chloride is preferred because it is generally easily available and has sufficient solubility. Also, this solvent is not particularly limited as long as it does not chemically react with the porous glass base material, but water has a strong effect of weakening the cohesive force between fine particles of the porous glass base material. It is not preferable to use a lower alcohol such as methanol or ethanol because of the solubility of the above-mentioned rare earth element compound, its effect on the porous glass base material, and its quick drying rate. Note that the doping with the rare earth element compound may be performed as co-doping using two or more kinds of compounds, but in this case, it is optional to add a transition metal such as chromium as a photosensitizer.

本発明はこのようにして製造した希土類元素を含む化合
物を含浸させた多孔質ガラス母材をこの希土類元素化合
物を固定化する溶液に浸漬して希土類元素化合物を固定
するのであるが、この希土類元素化合物を不溶性の化合
物とする溶液としてはしゅう酸溶液、アルカリ溶液が例
示される。このしゅう酸については希土類元素化合物と
反応して不溶性の錯体を形成することがよく知られてお
り、アルカリ溶液も希土類元素化合物と反応して不溶性
の水酸化物を形成するが、この反応で得られるしゅう酸
塩、水酸化物は事後における加熱処理によって容易に酸
化物となり、ガラスネットワークに入り易いものとなる
ので、高濃度であっても焼結後に得られる石英ガラスは
透明なものになる。なお、ここに使用されるしゅう酸溶
液は上記した希土類元素化合物と同様の理由から水溶液
ではなく、メタノール、エタノール溶液とすることが好
ましく、このアルカリ溶液もアルコール溶液とすること
がよレ)が、このアノレカリ溶冫夜はこれを水酸化ナト
リウム溶液とすると目的とする石英ガラス中にナトリウ
ムが残留するおそれがあるので、これはアンモニア溶液
とすることが好ましい。
In the present invention, the porous glass base material impregnated with a compound containing a rare earth element produced in this manner is immersed in a solution for fixing the rare earth element compound to fix the rare earth element compound. Examples of solutions that make compounds insoluble include oxalic acid solutions and alkaline solutions. It is well known that oxalic acid reacts with rare earth element compounds to form insoluble complexes, and alkaline solutions also react with rare earth element compounds to form insoluble hydroxides. The oxalates and hydroxides easily become oxides through subsequent heat treatment and easily enter the glass network, so the quartz glass obtained after sintering becomes transparent even at high concentrations. Note that the oxalic acid solution used here is preferably a methanol or ethanol solution rather than an aqueous solution for the same reason as the above-mentioned rare earth element compound, and this alkaline solution is also preferably an alcohol solution. When melting this anolekali, if it is used as a sodium hydroxide solution, there is a risk that sodium may remain in the target quartz glass, so it is preferable to use an ammonia solution.

また、ここに使用する希土類元素化合物の固化剤として
はしゅう酸溶液とアルカリ溶液を例示したが、これは希
土類元素化合物と反応して不溶性の化合物を形成するも
のであればこれ以外のものであってもよい。
Furthermore, although oxalic acid solution and alkaline solution are exemplified as the solidifying agent for the rare earth element compound used here, other substances may be used as long as they react with the rare earth element compound to form an insoluble compound. It's okay.

本発明の希土類元素ドープ石英ガラスは上記で得た希土
類元素化合物を固化した希土類元素ドープ多孔質ガラス
母材を焼結することによって得ることかでぎるが、この
焼結に当っては予じめこの多孔買ガラス母材を空気中で
風乾するか、50〜150℃に加温して溶媒を除去した
のち、 1,400〜1,700℃に加熱して焼結すれ
ばよい。この焼結は不活性ガス雰囲気で行なうことがよ
いので、例えば、ヘリウムガス雰囲気で行えばよいが、
この多孔貿ガラス母材についてはここに含有されている
希土類元素化合物を固化物としてのしゆう酸塩、水酸化
物を酸素雰囲気下で加熱処理して酸化物としておくこと
がよいので、これについてはこの多孔貿ガラス母材を空
気中において250〜500℃に加熱処理することがよ
い。なお、この焼結は上記したようにヘリウムガス雰囲
気で行えばよいが、これは脱水を目的としてハロゲンガ
スを微量混合した形で行なってもよいし、さらには上記
したしゅう酸塩、水酸化物の酸化物への転換を完全なも
のとするために酸素ガスを微量混合した状態で行なって
もよい。
The rare earth element-doped quartz glass of the present invention can be obtained by sintering the rare earth element-doped porous glass base material obtained by solidifying the rare earth element compound obtained above. This perforated glass base material may be air-dried in the air or heated to 50 to 150°C to remove the solvent, and then heated to 1,400 to 1,700°C for sintering. This sintering is preferably performed in an inert gas atmosphere, so for example, it may be performed in a helium gas atmosphere.
Regarding this porous trade glass base material, it is best to heat-treat the rare earth element compounds contained therein as solidified oxalates and hydroxides in an oxygen atmosphere to form oxides. It is preferable to heat-treat this porous glass base material at 250 to 500° C. in air. Note that this sintering may be performed in a helium gas atmosphere as described above, but it may also be performed in the form of a mixture of a small amount of halogen gas for the purpose of dehydration. In order to complete the conversion to oxide, the reaction may be carried out with a small amount of oxygen gas mixed therein.

(実施例) つぎに本発明の実施例、比較例をあげる。(Example) Next, examples of the present invention and comparative examples will be given.

実施例1 石英製同心多重管バーナーに水素ガス5.51/分、酸
素ガス8.Oj2/分を供給し、着火して酸水素火炎を
形成させ、このバーナー中心に四塩化けい素0.75I
l./分をキャリャガスとしての酸素ガス0.17℃/
分と共に供給l八この火炎加水分解で発生したシリカガ
ラス微粒子を担体としての石英ガラスロンドの軸方向に
8時間堆積、成長させて、外径45mm,長さ300I
llm,重さ170gで平灼かさ密度が0.35g/c
m’である多孔質ガラス母材を作った。
Example 1 A quartz concentric multi-tube burner was charged with hydrogen gas at 5.51/min and oxygen gas at 8.51/min. Oj2/min is ignited to form an oxyhydrogen flame, and 0.75I of silicon tetrachloride is placed in the center of this burner.
l. /min with oxygen gas as carrier gas 0.17℃/
The silica glass fine particles generated by this flame hydrolysis were deposited and grown for 8 hours in the axial direction of the silica glass iron as a carrier, and the outer diameter was 45 mm and the length was 300 mm.
llm, weight 170g, flat bulk density 0.35g/c
A porous glass base material of m' was prepared.

ついでこの多孔質ガラス母材を塩化エルビウムの1重量
%メタノール溶液に浸漬してその内部にまで塩化エルビ
ウムを浸透させ、これを空気中に放置して風乾させたの
ち、しゆう酸1重量%メタノール溶液に浸漬して塩化エ
ルビウムを不溶性のしゅう酸塩としてシリカ徴粒子の表
面に付着させた。
Next, this porous glass base material is immersed in a 1% by weight methanol solution of erbium chloride so that the erbium chloride penetrates into the inside of the material, and after being left in the air to air dry, 1% by weight methanol solution of oxalic acid is added. Erbium chloride was attached as an insoluble oxalate to the surface of the silica particles by immersion in the solution.

つぎにこのように処理をした多孔質ガラス母材を空気中
に放置して風乾させたのち、電気炉内でヘリウムガス雰
囲気下に1,600℃で加熱、焼結処理して透明ガラス
化したところ、得られた石英ガラスは酸化エルビウムを
0.5重量含有するものであり、このものはEPMAで
測定したところ、第1図に示したように酸化エルビウム
によって半径方向にほぼ均一にドープされているもので
あることが確認された。
Next, the porous glass base material treated in this way was left in the air to air dry, and then heated and sintered at 1,600°C in a helium gas atmosphere in an electric furnace to form transparent glass. However, the obtained quartz glass contained 0.5 weight of erbium oxide, and when measured by EPMA, it was found that it was doped almost uniformly in the radial direction with erbium oxide, as shown in Figure 1. It was confirmed that there is.

また、このようにして得た石英ガラスをコアとし、フッ
素ドープした石英ガラスをクラツドとした光ファイバー
用ブリフォームを作成して、光ファイバーでの分光特性
を測定したところ、第2図に示した通りの結果が得られ
、このものはエルビウム特有の吸収久ベクトルを示した
In addition, we created an optical fiber preform with the quartz glass obtained in this way as the core and fluorine-doped silica glass as the cladding, and measured the spectral characteristics of the optical fiber, as shown in Figure 2. Results were obtained, which showed an absorption longitude vector characteristic of erbium.

実施例2 実施例1における多孔買ガラス母材の製造時に、酸水素
火炎に供給する四塩化けい素に同時に四塩化ゲルマニウ
ムo.liy分をキャリャガスとして酸素ガスo.oe
u /分と共に供給したほかは実施例1と同様に処理し
て酸化ゲルマニウムを含む多孔買ガラス母材を作り、こ
れを塩化ネオジムの0.5重量%メタノール溶液に浸潰
させて多孔質ガラス母材の内部にまで塩化ネオジムを浸
透させ、空気中に放置して風乾させたのち、アンモニア
の3重量%メタノール溶液に浸漬して塩化ネオジムを不
溶性の水酸化物として微粒子の表面に付着させた。
Example 2 During the production of the perforated glass base material in Example 1, germanium tetrachloride o. Oxygen gas o.liy is used as carrier gas. oe
A porous glass matrix containing germanium oxide was prepared in the same manner as in Example 1, except that the porous glass matrix was immersed in a 0.5% by weight methanol solution of neodymium chloride to form a porous glass matrix. Neodymium chloride was infiltrated into the inside of the material, left in the air to air dry, and then immersed in a 3% by weight ammonia methanol solution to make neodymium chloride adhere to the surface of the fine particles as an insoluble hydroxide.

ついで、このように処理された多孔質ガラス母材を空気
中に放置して風乾させたのち、電気炉内においてヘリウ
ムガス7囲気下に1,600℃で加熱、焼結処理して透
明ガラス化したところ、得られた石英ガラスは酸化ネオ
ジムを0.3重量%含有するものであった。
Next, the porous glass base material treated in this way was left in the air to air dry, and then heated and sintered at 1,600°C under 7 atmospheres of helium gas in an electric furnace to form transparent glass. As a result, the obtained quartz glass contained 0.3% by weight of neodymium oxide.

比較例 実施例1と同様の方法で作成した多孔質ガラス母材を塩
化エルビウムの1重量%メタノール溶液に浸漬して多孔
質ガラス母材の内部にまで塩化エルビウムを浸透させ、
空気中に放置して風乾させたのち、これを直ちに電気炉
においてヘリウムガス7囲気下に1,600℃で加熱、
焼結処理して透明ガラス化したところ、得られた石英ガ
ラスには酸化エルビウムが0.09重量含有されていた
が、このものはEPM^で測定したところ、第3図に示
したようにこの表面は酸化エルビウムによって高濃度に
ドープされていたが、中心部はとのドープ量が少なく、
半径方向における分布が不均一であることが確認された
. また、このようにした石英ガラスをコアとし、フッ素ド
ープした石英ガラスをクラツドとした光ファイバー用ブ
リフォームを作成し、光ファイバーでの分光特性を測定
したところ、このものは散乱損失が大きく、ファイバー
長Ionでの測定が不可能であるという結果を示した。
Comparative Example A porous glass base material prepared in the same manner as in Example 1 was immersed in a 1% by weight methanol solution of erbium chloride to allow erbium chloride to penetrate into the inside of the porous glass base material.
After leaving it in the air to air dry, it was immediately heated at 1,600°C in an electric furnace under 7 atmospheres of helium gas.
When the quartz glass was sintered and made into transparent glass, it was found that the resulting quartz glass contained 0.09 weight of erbium oxide, but when this glass was measured with an EPM^, as shown in Figure 3, The surface was heavily doped with erbium oxide, but the center was less doped with erbium oxide.
It was confirmed that the distribution in the radial direction was non-uniform. In addition, we created an optical fiber preform with a core made of quartz glass and a cladding made of fluorine-doped silica glass, and measured the spectral characteristics of the optical fiber.We found that this product had a large scattering loss and a fiber length of Ion. The results showed that measurement was impossible.

(発明の効果) 4. 本発明による希土類元素ドープ石英ガラスの製造は、前
記したように火炎加水分解で得られた多孔質ガラス母材
に希土類元素を含む化合物を添加したのち、これをこの
希土類元素化合物と反応して不溶性を生成する溶液中に
浸漬して希土類元素化合物を固定化し、ついでこれを焼
結して透明ガラス化するものであるが、これによれば多
孔質ガラス母材に添加された希土類元素化合物が不溶性
の固体とされるので、焼結工程における希土類元素化合
物の移動、揮散が防止され、結果において所定量の希土
類元素化合物で均一にドープされた希土類元素ドープ石
英ガラスを容易に得ることができるという工業的な有利
性が与えられる。
(Effect of invention) 4. In the production of rare earth element-doped quartz glass according to the present invention, a compound containing a rare earth element is added to the porous glass base material obtained by flame hydrolysis as described above, and then the compound is reacted with the rare earth element compound to make it insoluble. The rare earth element compound is immobilized by immersion in a solution that produces a porous glass material, and then sintered to form transparent glass. This is an industrial technology that prevents the movement and volatilization of the rare earth element compound during the sintering process, making it possible to easily obtain rare earth element doped quartz glass that is uniformly doped with a predetermined amount of the rare earth element compound. advantage is given.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1で得られたエルビウムドープ
石英ガラスの濃度分布のEPMA測定グラフ、第2図は
この実施例1で得られたエルビウムドープ石英ガラスを
コアとし、フッ素ドープ石英ガラスをクラッドとした光
ファイバーの分光特性図、第3図は比較例として得られ
たエルビウムド一ブ石英ガラスの濃度分布のEPMA測
定グラフを示したものである。 表面 一一◆半桂 (r) 第 図 中心 表面 ?半径 ?5!L長 第2図
FIG. 1 is an EPMA measurement graph of the concentration distribution of the erbium-doped quartz glass obtained in Example 1 of the present invention, and FIG. 2 is a fluorine-doped quartz glass with the erbium-doped quartz glass obtained in Example 1 as the core. FIG. 3 shows an EPMA measurement graph of the concentration distribution of erbium doped silica glass obtained as a comparative example. Surface 11◆Hangai (r) Diagram center surface? radius? 5! L length figure 2

Claims (1)

【特許請求の範囲】 1、火炎加水分解によって生成するシリカガラス微粒子
を堆積して得られる多孔質ガラス母材に希土類元素を含
む化合物を添加した後、高温で焼結して透明ガラス化す
る方法において、焼結工程の前に、該多孔質ガラス母材
を該希土類元素を含む化合物と反応して不溶性の化合物
を生成する溶液中に浸漬して希土類元素化合物を固定す
ることを特徴とする希土類元素ドープ石英ガラスの製造
方法。 2、希土類元素を含む化合物と反応して不活性の化合物
を生成する溶液がしゅう酸溶液である請求項1に記載の
希土類元素ドープ石英ガラスの製造方法。 3、希土類元素を含む化合物と反応して不活性の化合物
を生成する溶液がアルカリ溶液である請求項1に記載の
希土類元素ドープ石英ガラスの製造方法。 4、多孔質ガラス母材が平均かさ密度0.3〜1.0g
/cm^3のものである請求項1に記載の希土類元素ド
ープ石英ガラスの製造方法。
[Claims] 1. A method of adding a compound containing a rare earth element to a porous glass base material obtained by depositing silica glass particles produced by flame hydrolysis, and then sintering it at high temperature to make it transparent vitrified. , the rare earth element compound is fixed by immersing the porous glass base material in a solution that reacts with the rare earth element-containing compound to produce an insoluble compound before the sintering step. Method for manufacturing element-doped quartz glass. 2. The method for producing rare earth element-doped quartz glass according to claim 1, wherein the solution that reacts with the rare earth element-containing compound to produce an inert compound is an oxalic acid solution. 3. The method for producing rare earth element-doped quartz glass according to claim 1, wherein the solution that reacts with the rare earth element-containing compound to produce an inert compound is an alkaline solution. 4. Porous glass base material has an average bulk density of 0.3 to 1.0 g
2. The method for producing a rare earth element-doped quartz glass according to claim 1, wherein the quartz glass has a doped quartz glass of /cm^3.
JP1112630A 1989-05-01 1989-05-01 Method for producing rare earth element doped quartz glass Expired - Fee Related JP2604466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112630A JP2604466B2 (en) 1989-05-01 1989-05-01 Method for producing rare earth element doped quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112630A JP2604466B2 (en) 1989-05-01 1989-05-01 Method for producing rare earth element doped quartz glass

Publications (2)

Publication Number Publication Date
JPH02293332A true JPH02293332A (en) 1990-12-04
JP2604466B2 JP2604466B2 (en) 1997-04-30

Family

ID=14591538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112630A Expired - Fee Related JP2604466B2 (en) 1989-05-01 1989-05-01 Method for producing rare earth element doped quartz glass

Country Status (1)

Country Link
JP (1) JP2604466B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946281B1 (en) * 2003-05-15 2010-03-08 주덕래 Energy Transferable Erbium doped Silica and its making method
WO2012008358A1 (en) * 2010-07-14 2012-01-19 旭硝子株式会社 Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof
CN103193386A (en) * 2013-03-22 2013-07-10 中国科学院上海光学精密机械研究所 Preparation method of europium-doped aluminum phosphate mesoporous glass
CN106430920A (en) * 2016-09-07 2017-02-22 中国建筑材料科学研究总院 Method for preparing quartz glass and quartz glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258639A (en) * 1989-03-31 1990-10-19 Mitsubishi Gas Chem Co Inc Production of quartz glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258639A (en) * 1989-03-31 1990-10-19 Mitsubishi Gas Chem Co Inc Production of quartz glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946281B1 (en) * 2003-05-15 2010-03-08 주덕래 Energy Transferable Erbium doped Silica and its making method
WO2012008358A1 (en) * 2010-07-14 2012-01-19 旭硝子株式会社 Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof
CN103193386A (en) * 2013-03-22 2013-07-10 中国科学院上海光学精密机械研究所 Preparation method of europium-doped aluminum phosphate mesoporous glass
CN106430920A (en) * 2016-09-07 2017-02-22 中国建筑材料科学研究总院 Method for preparing quartz glass and quartz glass

Also Published As

Publication number Publication date
JP2604466B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US5262365A (en) Quartz glass doped with rare earth element and production thereof
EP0565439B1 (en) Manufacturing method for erbium-doped silica glass optical fibre preforms
EP0443781A1 (en) Method for doping optical fibers
JP2599511B2 (en) Method for producing rare earth element doped quartz glass
JPS62256737A (en) Manufacture of optical fiber mother material
JPH02293332A (en) Production of rare earth element-doped silica glass
JP2931026B2 (en) Method for producing rare earth element doped glass
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JPH038744A (en) Rare earth element-doped quartz glass fiber preform and preparation thereof
CA2481204A1 (en) A method of fabricating rare earth doped optical fibre
JPH04260632A (en) Production of optical fiber containing rare earths added thereto
US7058269B2 (en) Reconstructed glass for fiber optic applications
JP3027075B2 (en) Method for producing rare earth element-doped quartz glass fiber preform
JP3475109B2 (en) Rare earth element doped glass
DiGiovanni Fabrication of rare-earth-doped optical fiber
JP3157000B2 (en) Optical waveguide
JPH03218947A (en) Rare-earth element and halogen element-doped quartz glass-based optical fiber preform and its production
JPH05330831A (en) Production of rare-earth-element-doped quartz glass
JPH03218935A (en) Rare earth element-doped quartz glass and its production
JPH03218936A (en) Rare earth element-doped quartz glass and its production
JPH04300224A (en) Production of quartz glass doped with rare-earth element
JP2828284B2 (en) Method for producing rare earth element doped glass
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JP4676118B2 (en) Manufacturing method of optical fiber preform

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees