WO2012008358A1 - Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof - Google Patents

Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof Download PDF

Info

Publication number
WO2012008358A1
WO2012008358A1 PCT/JP2011/065604 JP2011065604W WO2012008358A1 WO 2012008358 A1 WO2012008358 A1 WO 2012008358A1 JP 2011065604 W JP2011065604 W JP 2011065604W WO 2012008358 A1 WO2012008358 A1 WO 2012008358A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
synthetic quartz
quartz glass
cut filter
porous
Prior art date
Application number
PCT/JP2011/065604
Other languages
French (fr)
Japanese (ja)
Inventor
朝敬 小川
小池 章夫
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012008358A1 publication Critical patent/WO2012008358A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1438Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. solution doping of the article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3423Cerium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/44Gas-phase processes using silicon halides as starting materials chlorine containing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment

Definitions

  • the present invention relates to a synthetic quartz glass for an ultraviolet cut filter that maintains a low transmittance of ultraviolet light, while maintaining a high transmittance of visible light and near infrared light, and a method for manufacturing the same.
  • the present invention relates to a synthetic quartz glass for an ultraviolet cut filter and a method for producing the same.
  • the synthetic quartz glass of the present invention is a synthetic quartz glass doped with 0.015 mass or more and less than 0.4 mass% of Ce, and 90% or more of the doped Ce is Ce 3+ . Exists in a state.
  • the method for producing synthetic quartz glass of the present invention is a porous glass in which SiO 2 glass fine particles obtained by flame hydrolysis of a raw material Si compound are deposited and grown on a substrate to form a porous SiO 2 glass body.
  • Body formation process After the Ce compound-containing solution is contained in the obtained porous SiO 2 glass body, a Ce doping step of doping Ce by removing the solvent, And a vitrification step of heating the SiO 2 porous glass doped with Ce to a vitrification temperature under a reduced pressure of less than 100 Pa or in an inert gas atmosphere to obtain a transparent glass body.
  • the synthetic quartz glass and the method for producing the same of the present invention it is possible to provide a synthetic quartz glass having an improved ultraviolet absorption rate and a high visible light / near infrared light transmittance.
  • this synthetic quartz glass By incorporating this synthetic quartz glass into an optical system for a high-power laser, it is possible to suppress damage due to ultraviolet rays of the optical system parts, and to reduce labor and cost for parts replacement.
  • the concentration of Ce 4+ in the doped Ce can be determined by acid decomposition of the sample and oxidation / reduction titration.
  • the concentration of Ce 3+ is obtained by subtracting the concentration of Ce 4+ from the total content of Ce.
  • This doping step may be a porous SiO 2 glass body in such the presence of Ce compound-containing solution, for example, coating a Ce compound containing solution into the porous SiO 2 glass body, or in contact dripping, spraying, etc.
  • the porous SiO 2 glass body is immersed in a Ce compound-containing solution.
  • This vitrification is preferably performed under a reduced pressure of 100 Pa or less (preferably under vacuum) or in an inert gas atmosphere of 90% or more, preferably 100% of an inert gas such as He, nitrogen, or argon.
  • an inert gas such as He, nitrogen, or argon.
  • Ce 4+ for example, CeO 2
  • oxygen is contained in the atmosphere, it is preferably less than 20%, more preferably less than 10%, and particularly preferably not contained.
  • the transparent vitrification temperature is preferably 1300 to 1550 ° C., and a transparent glass body containing substantially no bubbles or bubbles can be obtained by producing synthetic quartz glass by the above production method.
  • Example 2 Glass body (synthetic quartz glass) in the same manner as in Example 1 except that the concentration of cerium chloride hydrate in the ethanol solution was 0.1% by mass and the atmosphere during the transparent vitrification treatment was He / O 2 (80/20). Manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

The present invention relates to a synthetic quartz glass for an ultraviolet ray cut filter, in which not less than 0.015 mass% and less than 0.4 mass% of Ce is doped, and which is characterized in that 90% or more of the doped Ce is present in the form of Ce3+.

Description

紫外線カットフィルタ用合成石英ガラス及びその製造方法Synthetic quartz glass for ultraviolet cut filter and method for producing the same
 本発明は、紫外線の透過率は低いものとし、一方、可視光・近赤外光の透過率は高く維持する紫外線カットフィルタ用合成石英ガラス及びその製造方法に係り、特に、高出力レーザー用の紫外線カットフィルタ用合成石英ガラス及びその製造方法に関する。 The present invention relates to a synthetic quartz glass for an ultraviolet cut filter that maintains a low transmittance of ultraviolet light, while maintaining a high transmittance of visible light and near infrared light, and a method for manufacturing the same. The present invention relates to a synthetic quartz glass for an ultraviolet cut filter and a method for producing the same.
 近年、高出力レーザーを用いた技術は、半導体製造のためのリソグラフィー技術、レーザー加工技術、レーザー核融合技術、医療技術、純粋科学の検証等様々な分野で注目されている。 In recent years, technology using high-power lasers has attracted attention in various fields such as lithography technology for semiconductor manufacturing, laser processing technology, laser fusion technology, medical technology, and verification of pure science.
 さらに、高出力レーザーの波長を短波長化し紫外領域の光を使用することでリソグラフィー技術の微細化やレーザー加工の微細化などが進められており、紫外光を使うことで熱による影響を抑えた加工も可能となり、金属やガラスの他にプラスチックなども加工可能となっている。このような高出力の紫外線レーザー光源としては、ArF(波長193nm)やKrF(波長248nm)等のガスレーザーであるエキシマレーザーや、固体レーザーであるYAGレーザー、YLFレーザーなどの第3高調波(350nm付近)、第4高調波(265nm付近)がある。 Furthermore, miniaturization of lithography technology and laser processing have been promoted by shortening the wavelength of high-power lasers and using light in the ultraviolet region, and the influence of heat has been suppressed by using ultraviolet light. Processing is also possible, and plastics can be processed in addition to metal and glass. As such a high-power ultraviolet laser light source, an excimer laser that is a gas laser such as ArF (wavelength 193 nm) or KrF (wavelength 248 nm), or a third harmonic (350 nm) such as a solid-state laser YAG laser or YLF laser. Near) and the fourth harmonic (around 265 nm).
 このような固体レーザーの基本発振波長は1050nm付近の近赤外線であるため、波長変換素子(結晶)を使って高次高調波の紫外線レーザーとしている。しかし、この波長変換素子を使って波長変換を行う場合、変換されたエネルギーの高い紫外線レーザー光の一部がその後の光学系を構成するレンズやミラーにより散乱または反射し、波長変換前のレーザー光学系部品へ戻り、ダメージを与える場合があった。 Since the fundamental oscillation wavelength of such a solid-state laser is near-infrared near 1050 nm, it is a high-order harmonic ultraviolet laser using a wavelength conversion element (crystal). However, when wavelength conversion is performed using this wavelength conversion element, part of the converted high-energy UV laser light is scattered or reflected by the lenses and mirrors that make up the subsequent optical system, and laser optics before wavelength conversion. Returned to system parts and sometimes caused damage.
 ダメージを受けた部品は、その都度交換しなければならないため、操作を停止して製品の製造も一旦止めなければならず、また、部品交換のコストもかかっていたため、高出力レーザー用の光学系部品に対する紫外線によるダメージを低減する技術が求められていた。 Damaged parts must be replaced each time, so operation must be stopped and production of the product must be stopped, and the cost of replacing parts was high, so the optical system for high-power lasers There has been a demand for a technique for reducing damage to parts caused by ultraviolet rays.
 なお、従来、高出力レーザー用ではないが、紫外線カットフィルタガラスとしては、ガラスに多層膜を積層して紫外線を透過させないようにしたガラスや、紫外線吸収ドーピング材をドープした石英ガラスにより紫外線を透過させないようにした石英ガラス(特許文献1参照)などの技術が知られている。 Although not conventionally used for high-power lasers, UV-cut filter glass is made of glass that has been laminated with a multilayer film to prevent UV transmission, and quartz glass doped with UV-absorbing doping material that transmits UV light. A technique such as quartz glass (see Patent Document 1) that is not allowed to occur is known.
日本国特開平7-315863号公報Japanese Unexamined Patent Publication No. 7-315863
 しかしながら、ガラスに多層膜を積層したものを高出力レーザー用に用いた場合、例えば、反射型多層膜の場合は多重散乱を引き起こし迷光となり光学部品へ紫外線が照射されてしまう可能性があり、吸収型多層膜の場合は膜が損傷してしまう問題があった。 However, when a multilayered glass film is used for a high-power laser, for example, in the case of a reflective multilayer film, it may cause multiple scattering, resulting in stray light and irradiating optical components with ultraviolet rays. In the case of the mold multilayer film, there is a problem that the film is damaged.
 また、特許文献1の紫外線吸収ドーピング材をドープした従来の石英ガラスでは、紫外線を充分カットしようとすると、紫外線吸収ドーピング材の濃度を高くしなければならず、そうするとできるだけカットしたくない可視光を吸収して、可視光透過率が低くなってしまい、逆に、紫外線吸収ドーピング材の濃度を低くして、可視光透過率を維持しようとすると、紫外線を十分にカットできないという問題があった。 In addition, in the conventional quartz glass doped with the ultraviolet absorbing doping material of Patent Document 1, the concentration of the ultraviolet absorbing doping material has to be increased if enough ultraviolet rays are to be cut. However, if the concentration of the UV-absorbing doping material is lowered to maintain the visible light transmittance, the UV light cannot be sufficiently cut.
 そこで、本発明は、上記の問題点に着目してなされたもので、不要な紫外線の透過率を充分に低下させ、可視光・近赤外光の透過率は高いまま維持できる、特に、高出力レーザー用に適した紫外線カットフィルタ用合成石英ガラスの提供を目的とする。 Therefore, the present invention has been made paying attention to the above problems, and can sufficiently reduce the transmittance of unnecessary ultraviolet rays, and can maintain the transmittance of visible light and near infrared light at a high level. An object of the present invention is to provide a synthetic quartz glass for an ultraviolet cut filter suitable for an output laser.
 本発明者らは、鋭意検討した結果、合成石英ガラス中に電子価数を調節した特定の元素成分を含有させることで上記問題を解決できることを見出し、本発明を完成したものである。 As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by including a specific element component having an adjusted electronic valence in synthetic quartz glass, and have completed the present invention.
 すなわち、本発明の合成石英ガラスは、0.015質量以上、0.4質量%未満のCeがドープされた合成石英ガラスであって、前記ドープされたCeのうち、90%以上がCe3+の状態で存在する。 That is, the synthetic quartz glass of the present invention is a synthetic quartz glass doped with 0.015 mass or more and less than 0.4 mass% of Ce, and 90% or more of the doped Ce is Ce 3+ . Exists in a state.
 本発明において、前記紫外線カットフィルタ用石英ガラスの厚みを、波長351nmの光の内部透過率が5%となるように調整したとき、波長375nmの光の内部透過率が50%以上、波長400nmの光の内部透過率が90%以上、かつ波長500~1100nmの領域の光の内部透過率が95%以上であるであることが好ましい。 In the present invention, when the thickness of the quartz glass for ultraviolet cut filter is adjusted so that the internal transmittance of light with a wavelength of 351 nm is 5%, the internal transmittance of light with a wavelength of 375 nm is 50% or more and the wavelength is 400 nm. It is preferable that the internal transmittance of light is 90% or more and the internal transmittance of light in a wavelength region of 500 to 1100 nm is 95% or more.
 本発明において、前記合成石英ガラスの内部欠陥の密度が5×10-4個/cm以下であることが好ましい。 In the present invention, the density of internal defects of the synthetic quartz glass is preferably 5 × 10 −4 pieces / cm 3 or less.
 本発明において、前記紫外線カットフィルタ用合成石英ガラスの厚みを、波長351nmの光の内部透過率が5%となるように調整したときの厚みが5mm~45mmであることが好ましい。 In the present invention, it is preferable that the thickness of the synthetic quartz glass for an ultraviolet cut filter is 5 mm to 45 mm when the internal transmittance of light having a wavelength of 351 nm is adjusted to 5%.
 また、本発明において、前記合成石英ガラスが、高出力レーザーの透過に用いられることが好ましい。 In the present invention, the synthetic quartz glass is preferably used for transmission of a high-power laser.
 また、本発明の合成石英ガラスの製造方法は、原料のSi化合物を火炎加水分解して得られるSiOガラス微粒子を基材に堆積、成長させて多孔質SiOガラス体を形成する多孔質ガラス体形成工程と、
 得られた多孔質SiOガラス体に、Ce化合物含有溶液を含有させた後、溶剤を除去することによりCeをドープするCeドープ工程と、
 CeがドープされたSiO多孔質ガラスを、100Pa未満の減圧下または不活性ガス雰囲気下でガラス化温度まで昇温して、透明ガラス体を得るガラス化工程と、を含む。
Further, the method for producing synthetic quartz glass of the present invention is a porous glass in which SiO 2 glass fine particles obtained by flame hydrolysis of a raw material Si compound are deposited and grown on a substrate to form a porous SiO 2 glass body. Body formation process,
After the Ce compound-containing solution is contained in the obtained porous SiO 2 glass body, a Ce doping step of doping Ce by removing the solvent,
And a vitrification step of heating the SiO 2 porous glass doped with Ce to a vitrification temperature under a reduced pressure of less than 100 Pa or in an inert gas atmosphere to obtain a transparent glass body.
 さらに、本発明の他の合成石英ガラスの製造方法は、原料のSi化合物およびCe化合物を火炎加水分解して得られるSiOガラス微粒子を基材に堆積、成長させてCeがドープされた多孔質SiOガラス体を形成するCeドープ多孔質ガラス体形成工程と、
 Ceがドープされた多孔質SiOガラス体を、100Pa未満の減圧下または不活性ガス雰囲気下でガラス化温度まで昇温して、透明ガラス体を得るガラス化工程と、を含む。
Furthermore, another synthetic quartz glass manufacturing method of the present invention is a porous porous material in which SiO 2 glass fine particles obtained by flame hydrolysis of raw material Si compound and Ce compound are deposited and grown on a substrate, and Ce is doped. A Ce-doped porous glass body forming step for forming a SiO 2 glass body;
And a vitrification step of heating the porous SiO 2 glass body doped with Ce to a vitrification temperature under a reduced pressure of less than 100 Pa or in an inert gas atmosphere to obtain a transparent glass body.
 本発明の合成石英ガラス及びその製造方法によれば、紫外線の吸収率を向上させ、かつ、可視光・近赤外光の透過率を高いまま維持した合成石英ガラスを提供できる。この合成石英ガラスを高出力レーザー用の光学系に組み込むことで、光学系部品の紫外線によるダメージを抑制し、部品交換の手間、コスト等を削減することができる。 According to the synthetic quartz glass and the method for producing the same of the present invention, it is possible to provide a synthetic quartz glass having an improved ultraviolet absorption rate and a high visible light / near infrared light transmittance. By incorporating this synthetic quartz glass into an optical system for a high-power laser, it is possible to suppress damage due to ultraviolet rays of the optical system parts, and to reduce labor and cost for parts replacement.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の紫外線カットフィルタ用合成石英ガラスは、上記の通り0.015質量%以上、0.4質量%未満のCeがドープされた合成石英ガラスであって、このドープされたCeのうち、90%以上がCe3+の状態で存在しているものである。 The synthetic quartz glass for an ultraviolet cut filter of the present invention is a synthetic quartz glass doped with 0.015% by mass or more and less than 0.4% by mass of Ce as described above. Of the doped Ce, 90% % Or more is present in the Ce 3+ state.
 ここで、ドープされたCeのうち90%以上をCe3+の状態で存在させることで、波長351nmの紫外線を有効にカットするとともに、波長375nm、波長400nm等の光は十分に透過させ、高出力レーザーを用いた装置において、紫外線カットフィルタ用として好ましい特性を有する合成石英ガラスとなる。
 Ceのドープ量は、0.015~0.3質量%が好ましい。また、ドープされたCeのうち95%以上をCe3+の状態で存在させることがより好ましい。本明細書において、“0.015~0.3質量%”とは“0.015質量%以上、0.3質量%以下”であることを意味し、他も同様である。
Here, 90% or more of the doped Ce is present in the state of Ce 3+ so that the ultraviolet light having a wavelength of 351 nm is effectively cut, and light having a wavelength of 375 nm, a wavelength of 400 nm, etc. is sufficiently transmitted, and a high output In an apparatus using a laser, a synthetic quartz glass having preferable characteristics for an ultraviolet cut filter is obtained.
The doping amount of Ce is preferably 0.015 to 0.3% by mass. More preferably, 95% or more of the doped Ce is present in a Ce 3+ state. In this specification, “0.015 to 0.3 mass%” means “0.015 mass% or more and 0.3 mass% or less”, and the same applies to others.
 具体的には、紫外線カットフィルタ用石英ガラスの厚みを、波長351nmの光の内部透過率が5%となるように調整したとき、波長375nmの光の内部透過率が50%以上、波長400nmの光の内部透過率が90%以上、かつ波長500~1100nmの領域の光の内部透過率が95%以上である合成石英ガラスであることが好ましい。より好ましくは波長375nmの光の内部透過率が55%以上、波長400nmの光の内部透過率が90%以上、かつ波長500~1100nmの領域の光の内部透過率が98%以上である合成石英ガラスである。このような特性を有する紫外線カットフィルタは、高出力レーザーからなる装置において光学系部品が紫外線から受けるダメージを効果的に抑制し、かつ、必要な光を十分に透過させることができる。
 また、紫外線カットフィルタ用石英ガラスの厚みを、波長351nmの光の内部透過率が5%となるように調整したときの厚みが5mm~45mmであることが好ましい。5~20mmがより好ましく、5~15mmがより好ましい。
Specifically, when the thickness of the quartz glass for an ultraviolet cut filter is adjusted so that the internal transmittance of light with a wavelength of 351 nm is 5%, the internal transmittance of light with a wavelength of 375 nm is 50% or more and the wavelength of 400 nm is A synthetic quartz glass having an internal light transmittance of 90% or more and an internal light transmittance of 95% or more in a wavelength region of 500 to 1100 nm is preferable. More preferably, synthetic quartz having an internal transmittance of 55% or more for light having a wavelength of 375 nm, an internal transmittance of 90% or more for light having a wavelength of 400 nm, and an internal transmittance of 98% or more for light having a wavelength of 500 to 1100 nm. It is glass. The ultraviolet cut filter having such characteristics can effectively suppress damage to the optical system parts from the ultraviolet rays in an apparatus composed of a high-power laser, and can sufficiently transmit necessary light.
The thickness of the quartz glass for ultraviolet cut filter is preferably 5 mm to 45 mm when the thickness is adjusted so that the internal transmittance of light having a wavelength of 351 nm is 5%. 5 to 20 mm is more preferable, and 5 to 15 mm is more preferable.
 高出力レーザー装置においては大型のフィルタガラス、具体的には外形寸法が数百mmのものが使用されることが想定されるため、ガラスの板厚が薄いと板の反りや強度不足になる可能性がある。一方で板厚が厚すぎるとフィルタガラスの重量が大きくなりハンドリングが難しくなりまたガラスの使用量も増えるためコスト的にも好ましくない。よってフィルタガラスとしての厚みは5mm~45mmが好ましい。 In high-power laser devices, it is assumed that large filter glasses, specifically those with external dimensions of several hundreds of millimeters, are used, so if the glass plate thickness is thin, warping of the plate and insufficient strength may occur. There is sex. On the other hand, if the plate thickness is too thick, the weight of the filter glass increases, handling becomes difficult, and the amount of glass used increases, which is not preferable in terms of cost. Therefore, the thickness of the filter glass is preferably 5 mm to 45 mm.
 なお、従来の紫外線カットフィルタ用のガラスにおいても、Ceを紫外線カット機能を付与するための成分として配合しているが、従来のガラスでは、ガラス中に主としてCe4+の状態(例えば、CeO)で安定的に存在している。この場合、上記した高出力レーザー用途に用いる場合には、波長351nmの紫外線をカットする能力が十分とは言えず、これをカットしようとしてCeの濃度を上げると、透過させたい波長375nmや400nmの光の透過を妨げてしまい、この用途としては適当なものではなかった。またCe4+の状態(例えばCeO)ではSiOガラス中で析出しやすく、Ce3+の状態と比べて低濃度においてもCeOとして析出してしまいガラスが白濁し、フィルタガラスとして使用できなくなる可能性がある。 In addition, in the glass for a conventional ultraviolet cut filter, Ce is blended as a component for imparting an ultraviolet cut function. However, in the conventional glass, a state of Ce 4+ (for example, CeO 2 ) is mainly contained in the glass. Exist stably. In this case, when used in the above-described high-power laser application, it cannot be said that the ability to cut ultraviolet rays having a wavelength of 351 nm is sufficient, and if the concentration of Ce is increased in order to cut this, the wavelength of 375 nm or 400 nm to be transmitted is desired. This hinders the transmission of light and is not suitable for this application. Moreover, in the Ce 4+ state (for example, CeO 2 ), it is likely to precipitate in the SiO 2 glass, and even in a low concentration compared to the Ce 3+ state, it is precipitated as CeO 2 , and the glass becomes cloudy and cannot be used as a filter glass. There is sex.
 本発明の合成石英ガラスは、主成分がSiOの高純度の石英ガラスであって、典型的には、含有されるアルカリ金属(Li、Na、K等)濃度は合量で20ppb以下、アルカリ土類金属(Ca、Mg等)濃度は合量で10ppb以下、遷移金属(Cr、Fe、Ni、Mo、W、Cu、Ti等)濃度は合量で10ppb以下である。これら不純物が前記の濃度以下であれば不純物起因による紫外~近赤外領域における光の透過率低下やレーザー照射によって発生する誘起吸収の発生を抑えることが出来、レーザー耐久性を損なうことがない。 The synthetic quartz glass of the present invention is a high-purity quartz glass whose main component is SiO 2. Typically, the concentration of alkali metals (Li, Na, K, etc.) contained is 20 ppb or less in total. The total amount of earth metal (Ca, Mg, etc.) is 10 ppb or less, and the concentration of transition metals (Cr, Fe, Ni, Mo, W, Cu, Ti, etc.) is 10 ppb or less. If these impurities are less than the above-mentioned concentrations, it is possible to suppress a decrease in light transmittance in the ultraviolet to near-infrared region due to impurities and generation of induced absorption caused by laser irradiation, and laser durability is not impaired.
 本発明において、合成石英ガラス中にドープされたCeの濃度(総含有量)はICP発光分光分析法、他の不純物濃度は、ICP-MS分光分析法により求められる。 In the present invention, the concentration (total content) of Ce doped in the synthetic quartz glass is obtained by ICP emission spectroscopy, and the other impurity concentrations are obtained by ICP-MS spectroscopy.
 また、ドープされたCeのうち、Ce4+の濃度は試料を酸分解し、酸化・還元滴定により定量できる。Ce3+の濃度はCeの総含有量からCe4+の濃度を差し引くことで求められる。 The concentration of Ce 4+ in the doped Ce can be determined by acid decomposition of the sample and oxidation / reduction titration. The concentration of Ce 3+ is obtained by subtracting the concentration of Ce 4+ from the total content of Ce.
 一方、シリカガラス中のCe3+とCe4+はそれぞれ波長320nm付近および250nm付近に吸収があることが知られている。その吸光度からもそれぞれの濃度を算出できる。具体的には、まずCe3+とCe4+について、それぞれ単独で存在する場合の透過率スペクトルを測定し、これを吸光スペクトルに変換しそれぞれのモル吸光係数を求める。次いで、サンプルについて波長200nm-500nmの範囲において光の透過率測定を行い、得られた透過率スペクトルを吸光スペクトルに変換し、Ce3+及びCe4+の吸光スペクトルにピーク分離して、3価及び4価のそれぞれのピーク波長における吸光度から各サンプルのCe3+とCe4+の濃度を算出する。 On the other hand, it is known that Ce 3+ and Ce 4+ in silica glass have absorption near wavelengths of 320 nm and 250 nm, respectively. Each concentration can also be calculated from the absorbance. Specifically, first, for Ce 3+ and Ce 4+ , the transmittance spectrum when present alone is measured, converted into an absorption spectrum, and the molar extinction coefficient is obtained. Next, the sample was subjected to light transmittance measurement in the wavelength range of 200 nm to 500 nm, the obtained transmittance spectrum was converted into an absorption spectrum, and the peaks were separated into Ce 3+ and Ce 4+ absorption spectra. The concentration of Ce 3+ and Ce 4+ of each sample is calculated from the absorbance at each peak wavelength.
 本発明の紫外線カットフィルタ用合成石英ガラスにおいては、前記合成石英ガラスの内部欠陥の密度が5×10-4個/cm以下であることが好ましい。5×10-4個/cmを超えると、例えば400mm×400mm×10mm厚のような大型サイズのガラスで実用上問題となるおそれがあり、大型のフィルタガラス用には適さない。また、このような内部欠陥の少ないものであれば、高出力レーザー光学系への使用に特に適したものとなる。 In the synthetic quartz glass for ultraviolet cut filter of the present invention, the density of internal defects of the synthetic quartz glass is preferably 5 × 10 −4 pieces / cm 3 or less. If it exceeds 5 × 10 −4 pieces / cm 3 , for example, a large glass having a thickness of 400 mm × 400 mm × 10 mm may cause a practical problem and is not suitable for a large filter glass. Moreover, if there are few such internal defects, it will be particularly suitable for use in a high-power laser optical system.
 本明細書において、内部欠陥は輝度2000ルクス以上の高輝度光源を用いて、ガラス表面を鏡面研磨した状態で目視検査することにより評価する。なお、この評価では、5μm以上の大きさの泡や異物を検出できる。 In the present specification, the internal defect is evaluated by visual inspection in a state where the glass surface is mirror-polished using a high-luminance light source having a luminance of 2000 lux or more. In this evaluation, bubbles and foreign matters having a size of 5 μm or more can be detected.
 なお、内部欠陥とは泡や金属異物、脈理のことを意味する。泡や異物があると、例えばレーザーなどが照射された場合、泡や異物を起点にダメージを受ける。ひどい場合はガラスが破壊してしまうおそれがある。 Note that internal defects mean bubbles, metal foreign objects, and striae. If there are bubbles or foreign matter, for example, when a laser or the like is irradiated, damage is caused starting from the foam or foreign matter. In severe cases, the glass may break.
 次に、本発明の合成石英ガラスの製造方法について説明する。
 (1)本発明の合成石英ガラスの製造方法の一例としては、次の工程による製造方法が挙げられる。
Next, the manufacturing method of the synthetic quartz glass of this invention is demonstrated.
(1) As an example of the manufacturing method of the synthetic quartz glass of this invention, the manufacturing method by the following process is mentioned.
〔多孔質ガラス体成形工程〕
 まず、原料のSi化合物を火炎加水分解して得られるSiOガラス微粒子を基材に堆積、成長させて多孔質SiOガラス体を形成する多孔質ガラス体形成工程を行う。
[Porous glass body forming process]
First, a porous glass body forming step is performed in which SiO 2 glass fine particles obtained by flame hydrolysis of a raw material Si compound are deposited and grown on a substrate to form a porous SiO 2 glass body.
 この多孔質ガラス体形成工程は、従来用いられている多孔質SiOガラス体を得る工程そのものであり、公知のMCVD法、OVD法、およびVAD法などの多孔質ガラス体を製造する方法であれば特に制限なく用いることができる。 This porous glass body forming step is a process for obtaining a porous SiO 2 glass body that has been conventionally used, and may be a method for manufacturing a porous glass body such as a known MCVD method, OVD method, and VAD method. It can be used without particular limitation.
 ここで用いられる原料のSi化合物としては、SiCl、SiHCl、SiHCl、SiHClなどの塩化物、SiF、SiHF、SiHなどのフッ化物、SiBr、SiHBrなどの臭化物、SiIなどのヨウ化物といったハロゲン化ケイ素化合物、またRSi(OR)4-n(ここにRは炭素数1~4のアルキル基であり、複数のRは互いに同じであっても異なってもよく、nは0~3の整数)で示されるアルコキシシラン等が挙げられる。 The raw material Si compound used here includes chlorides such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 and SiH 3 Cl, fluorides such as SiF 4 , SiHF 3 and SiH 2 F 2 , SiBr 4 and SiHBr 3. Silicon halide compounds such as bromides such as SiI 4 and iodides such as SiI 4, and R n Si (OR) 4-n (wherein R is an alkyl group having 1 to 4 carbon atoms, and a plurality of Rs are the same as each other) Or n may be different, and n is an integer of 0 to 3).
〔ドープ工程〕
 次に、得られた多孔質SiOガラス体に、Ce化合物含有溶液を含有させた後、溶剤を除去することによりCeをドープするドープ工程を行う。
[Doping process]
Next, the resulting porous SiO 2 glass body is made to contain a Ce compound-containing solution, and then a dope step of doping Ce by removing the solvent is performed.
 このドープ工程は、多孔質SiOガラス体中にCe化合物含有溶液を存在させるようにすればよく、例えば、多孔質SiOガラス体へCe化合物含有溶液を塗布、滴下、噴霧等により接触させたり、Ce化合物含有溶液中に多孔質SiOガラス体を浸漬させたりすることにより行われる。 This doping step may be a porous SiO 2 glass body in such the presence of Ce compound-containing solution, for example, coating a Ce compound containing solution into the porous SiO 2 glass body, or in contact dripping, spraying, etc. The porous SiO 2 glass body is immersed in a Ce compound-containing solution.
 このようにして、多孔質SiOガラス体にCe化合物含有溶液を含有させておき、溶液中の溶剤を除去することによりCe化合物を有する多孔質SiOガラス体が得られる。このとき、溶剤の除去は、加熱や減圧、またはその両方を行うことにより溶剤を気化させて除去すればよい。ここで用いる溶剤としては、Ce化合物を溶解でき、気化による除去が容易なものであることが好ましく、例えば、メタノール、エタノールなどのアルコール類もしくは純水が挙げられる。 In this way, it is made to contain a Ce compound containing solution into the porous SiO 2 glass body, the porous SiO 2 glass body having a Ce compound is obtained by removing the solvent in the solution. At this time, the solvent may be removed by evaporating the solvent by heating, reducing the pressure, or both. The solvent used here is preferably one that can dissolve the Ce compound and can be easily removed by vaporization, and examples thereof include alcohols such as methanol and ethanol, or pure water.
 また、Ce化合物としては、セリウムアルコキシド、セリウムカルボキシレート、セリウムアセチルアセトネートなどセリウムのβジケトン錯体等のセリウム有機化合物の他、硝酸塩、塩酸塩、硫酸塩、塩化物等のハロゲン化物を使用することができる。 As Ce compounds, cerium organic compounds such as cerium β-diketone complexes such as cerium alkoxide, cerium carboxylate, cerium acetylacetonate, and halides such as nitrates, hydrochlorides, sulfates and chlorides should be used. Can do.
 ドープ工程について、具体的には、特に、塩化セリウム水和物を、ガラス化後に目標とするCeドープ量になるように、多孔質SiO母材の嵩密度から算出される必要量を溶かした溶液に多孔質SiO母材を含浸させた後、母材を1kPa以下の減圧条件下で30~150℃の間で加熱して、溶剤を除去する方法が好ましい。 About the dope process, specifically, the necessary amount calculated from the bulk density of the porous SiO 2 base material was dissolved so that the cerium chloride hydrate became the target Ce dope amount after vitrification. A method in which the solvent is removed by impregnating the porous SiO 2 base material into the solution and then heating the base material at 30 to 150 ° C. under a reduced pressure of 1 kPa or less.
〔ガラス化工程〕
 最後に、上記ドープ工程により得られたCeがドープされたSiO多孔質ガラス体を100Pa未満の減圧下またはヘリウム等の不活性雰囲気下でガラス化温度まで昇温して、透明ガラス体とするガラス化工程を行う。
[Vitrification process]
Finally, the SiO 2 porous glass body doped with Ce obtained by the above doping step is heated to the vitrification temperature under a reduced pressure of less than 100 Pa or in an inert atmosphere such as helium to obtain a transparent glass body. A vitrification process is performed.
 このガラス化工程においては、SiO多孔質ガラス体を還元性の雰囲気下でガラス化させるものであり、このような還元性の雰囲気とすることで、SiO多孔質ガラス体に含まれるCeの価数が酸化側であるCe4+になることを抑制しCe3+の割合が増加する。またガラスをより還元性下で処理する方法としてカーボン炉を使用することが好ましい。 In this vitrification step, the SiO 2 porous glass body is vitrified under a reducing atmosphere, and by making such a reducing atmosphere, Ce of the SiO 2 porous glass body is contained. The valence is suppressed from becoming Ce 4+ on the oxidation side, and the ratio of Ce 3+ increases. Moreover, it is preferable to use a carbon furnace as a method of processing glass under more reducing conditions.
 このガラス化は、100Pa以下の減圧下(好ましくは真空下)で行うか、Heや窒素、アルゴン等の不活性ガスが90%以上、好ましくは100%の不活性ガス雰囲気下で行うことが好ましい。たとえば大気中でガラス化を行うと、Ce4+(例えば、CeO)が安定的に存在してしまい、本願発明の合成石英ガラスは得られない。よって雰囲気中に酸素が含まれる場合は、20%未満が好ましく、10%未満がより好ましく、含まれないことが特に好ましい。 This vitrification is preferably performed under a reduced pressure of 100 Pa or less (preferably under vacuum) or in an inert gas atmosphere of 90% or more, preferably 100% of an inert gas such as He, nitrogen, or argon. . For example, when vitrification is performed in the atmosphere, Ce 4+ (for example, CeO 2 ) exists stably, and the synthetic quartz glass of the present invention cannot be obtained. Therefore, when oxygen is contained in the atmosphere, it is preferably less than 20%, more preferably less than 10%, and particularly preferably not contained.
 このとき、透明ガラス化温度は、1300~1550℃であることが好ましく、上記の製造方法により合成石英ガラスを製造することで実質的に泡や気泡を含有しない透明ガラス体が得られる。 At this time, the transparent vitrification temperature is preferably 1300 to 1550 ° C., and a transparent glass body containing substantially no bubbles or bubbles can be obtained by producing synthetic quartz glass by the above production method.
 (2)次に、本発明の合成石英ガラスの製造方法の他の例としては、次の工程による製造方法が挙げられる。 (2) Next, as another example of the method for producing the synthetic quartz glass of the present invention, a production method according to the following steps may be mentioned.
〔Ceドープ多孔質ガラス体形成工程〕
 まず、原料のSi化合物およびCe化合物を火炎加水分解して得られるSiOガラス微粒子を基材に堆積、成長させて多孔質SiOガラス体を形成するCeドープ多孔質ガラス体形成工程を行う。
[Ce-doped porous glass body forming step]
First, a Ce-doped porous glass body forming step is performed in which SiO 2 glass fine particles obtained by flame hydrolysis of raw material Si compounds and Ce compounds are deposited and grown on a substrate to form a porous SiO 2 glass body.
 ここでは、Si化合物およびCe化合物を同時に火炎加水分解することにより、Ceがドープされた多孔質ガラス成形体を一工程で作成することができる。CeをドープするためにCe化合物を用いている以外は、上記(1)の多孔質ガラス体成形工程と同一の操作により行うものである。 Here, by simultaneously subjecting the Si compound and Ce compound to flame hydrolysis, a porous glass molded body doped with Ce can be produced in one step. Except for using a Ce compound to dope Ce, the same operation as in the porous glass body forming step (1) is performed.
 ここで用いられる原料のSi化合物としては、SiCl、SiHCl、SiHCl、SiHClなどの塩化物、SiF、SiHF、SiHなどのフッ化物、SiBr、SiHBrなどの臭化物、SiIなどのヨウ化物といったハロゲン化ケイ素化合物、またRSi(OR)4-n(ここにRは炭素数1~4のアルキル基であり、複数のRは互いに同じであっても異なってもよく、nは0~3の整数)で示されるアルコキシシラン等が挙げられる。 The raw material Si compound used here includes chlorides such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 and SiH 3 Cl, fluorides such as SiF 4 , SiHF 3 and SiH 2 F 2 , SiBr 4 and SiHBr 3. Silicon halide compounds such as bromides such as SiI 4 and iodides such as SiI 4, and R n Si (OR) 4-n (wherein R is an alkyl group having 1 to 4 carbon atoms, and a plurality of Rs are the same as each other) Or n may be different, and n is an integer of 0 to 3).
 ここで用いられる原料のCe化合物としては、セリウムアルコキシド、セリウムアセチルアセトネートなどのセリウムのβジケトン錯体などが挙げられる。 Examples of the Ce compound used as a raw material include cerium β-diketone complexes such as cerium alkoxide and cerium acetylacetonate.
〔ガラス化工程〕
 次に、上記Ceドープ多孔質ガラス体形成工程により得られたCeがドープされたSiO多孔質ガラス体を100Pa未満の減圧下またはヘリウム等の不活性雰囲気下でガラス化温度まで昇温して、透明ガラス体とするガラス化工程を行う。
[Vitrification process]
Then, the temperature was raised up to vitrification temperature under an inert atmosphere such as under vacuum or helium of less than 100Pa the SiO 2 porous glass body above Ce-doped Ce obtained by the porous glass body formation step doped The vitrification process which makes a transparent glass body is performed.
 このガラス化工程においては、SiO多孔質ガラス体を還元性の雰囲気下でガラス化させるものであり、このような還元性の雰囲気とすることで、SiO多孔質ガラス体に含まれるCeの価数が酸化側であるCe4+になることを抑制しCe3+の割合が増加する。またガラスをより還元性下で処理する方法としてカーボン炉を使用することが好ましい。 In this vitrification step, the SiO 2 porous glass body is vitrified under a reducing atmosphere, and by making such a reducing atmosphere, Ce of the SiO 2 porous glass body is contained. The valence is suppressed from becoming Ce 4+ on the oxidation side, and the ratio of Ce 3+ increases. Moreover, it is preferable to use a carbon furnace as a method of processing glass under more reducing conditions.
 このガラス化工程は、上記(1)の製造方法におけるガラス化工程と同一の条件で行えばよく、実質的に泡や気泡を含有しない透明ガラス体が得られる。 This vitrification step may be performed under the same conditions as the vitrification step in the production method (1) above, and a transparent glass body substantially containing no bubbles or bubbles is obtained.
 上記(1)または(2)の製造方法により得られた透明ガラス体を、成形温度まで昇温して所望の形状に成形し、成形ガラス体製品が得られる。ここで、製品とするための成形温度は、1600~1800℃であることが好ましい。得られたガラス体は必要に応じて研磨して、最終製品とする。 The transparent glass body obtained by the production method of (1) or (2) above is heated to a molding temperature and formed into a desired shape to obtain a molded glass body product. Here, the molding temperature for producing the product is preferably 1600 to 1800 ° C. The obtained glass body is polished as necessary to obtain a final product.
 以下、本発明を実施例および比較例によりさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
(例1)
 公知の火炎加水分解法(VAD法)によりSiCl4を火炎加水分解して、石英ガラス微粒子を回転する基材に堆積及び成長させ多孔質合成石英ガラス母材を作成した。
 得られた多孔質母材から重量が約100g程度になるように一部を切り出し、切り出した母材を1kPa以下程度に減圧出来る容器に入れ1kPa以下に減圧し、2時間保持した。
(Example 1)
SiCl 4 was flame hydrolyzed by a known flame hydrolysis method (VAD method), and quartz glass fine particles were deposited and grown on a rotating substrate to prepare a porous synthetic quartz glass base material.
A part was cut out from the obtained porous base material so as to have a weight of about 100 g, and the cut out base material was put in a container capable of reducing the pressure to about 1 kPa or less, and the pressure was reduced to 1 kPa or less and held for 2 hours.
 次いで、塩化セリウム水和物0.4質量%エタノール溶液を容器に導入し多孔質体を浸漬して24時間保持し、その内部まで塩化セリウムを浸透させた。その後、母材を取り出し、加熱可能な減圧炉にて減圧しつつ4日間かけて30℃から150℃まで昇温させ母材を乾燥させた。 Next, a cerium chloride hydrate 0.4% by mass ethanol solution was introduced into the container, the porous body was immersed therein and maintained for 24 hours, and cerium chloride was infiltrated into the inside thereof. Thereafter, the base material was taken out and heated from 30 ° C. to 150 ° C. over 4 days while reducing the pressure in a heatable vacuum furnace, and the base material was dried.
 次に、このように処理した多孔質ガラス母材をアルミナ製の雰囲気炉を用いHe雰囲気下で1450℃に加熱して透明なガラス体(合成石英ガラス)を製造した。 Next, the porous glass base material thus treated was heated to 1450 ° C. in a He atmosphere using an alumina atmosphere furnace to produce a transparent glass body (synthetic quartz glass).
(例2)
 エタノール溶液の塩化セリウム水和物濃度を0.1質量%、透明ガラス化処理時の雰囲気をHe/O(80/20)とした以外は例1と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 2)
Glass body (synthetic quartz glass) in the same manner as in Example 1 except that the concentration of cerium chloride hydrate in the ethanol solution was 0.1% by mass and the atmosphere during the transparent vitrification treatment was He / O 2 (80/20). Manufactured.
(例3、4)
 透明ガラス化処理を、アルミナ製の雰囲気炉をカーボン製の雰囲気炉に替え、100Pa未満の減圧下とした以外は例1と同じ方法でガラス体(合成石英ガラス)を製造した。
(Examples 3 and 4)
A glass body (synthetic quartz glass) was produced in the same manner as in Example 1 except that the transparent vitrification treatment was performed under the reduced pressure of less than 100 Pa by replacing the atmosphere furnace made of alumina with a carbon atmosphere furnace.
(例5)
 エタノール溶液の塩化セリウム水和物濃度を1.5質量%とした以外は例3,4と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 5)
A glass body (synthetic quartz glass) was produced in the same manner as in Examples 3 and 4 except that the concentration of cerium chloride hydrate in the ethanol solution was 1.5% by mass.
(例6)
 エタノール溶液の塩化セリウム水和物濃度を0.2質量%とした以外は例2と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 6)
A glass body (synthetic quartz glass) was produced in the same manner as in Example 2 except that the concentration of cerium chloride hydrate in the ethanol solution was 0.2% by mass.
(例7)
 エタノール溶液の塩化セリウム水和物濃度を0.2質量%、とした以外は例3,4と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 7)
A glass body (synthetic quartz glass) was produced in the same manner as in Examples 3 and 4 except that the concentration of cerium chloride hydrate in the ethanol solution was 0.2% by mass.
 (例8)
 エタノール溶液の塩化セリウム水和物濃度を0.8質量%、とした以外は例2と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 8)
A glass body (synthetic quartz glass) was produced in the same manner as in Example 2 except that the concentration of cerium chloride hydrate in the ethanol solution was 0.8% by mass.
 (例9)
 エタノール溶液の塩化セリウム水和物濃度を0.8質量%、とした以外は例1と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 9)
A glass body (synthetic quartz glass) was produced in the same manner as in Example 1 except that the concentration of cerium chloride hydrate in the ethanol solution was 0.8% by mass.
 (例10)
 エタノール溶液の塩化セリウム水和物濃度を0.05質量%、とした以外は例2と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 10)
A glass body (synthetic quartz glass) was produced in the same manner as in Example 2 except that the concentration of cerium chloride hydrate in the ethanol solution was 0.05% by mass.
 (例11)
 溶媒を純水とし、塩化セリウム水和物濃度を0.7質量%、とした以外は例3,4と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 11)
A glass body (synthetic quartz glass) was produced in the same manner as in Examples 3 and 4 except that the solvent was pure water and the cerium chloride hydrate concentration was 0.7% by mass.
 (例12)
 エタノール溶液の塩化セリウム水和物濃度を0.6質量%、とした以外は例3,4と同じ方法でガラス体(合成石英ガラス)を製造した。
(Example 12)
A glass body (synthetic quartz glass) was produced in the same manner as in Examples 3 and 4 except that the concentration of cerium chloride hydrate in the ethanol solution was 0.6% by mass.
(試験例)
 例1~12で得られた透明ガラス体から15mm角のサンプルを切り出し、内部透過率用サンプルを作成した。内部透過率の算出は波長351nmの光の内部透過率が5%となるように厚みを調整し、そのときの波長375nm、波長400nm、532nm、666nm、1053nmの光の内部透過率を算出し、その結果を表1に示した。また、同時に例1~12で得られた透明ガラス体中のCe濃度と、Ce中のCe3+の割合を表1に併せて示した。さらに、得られた透明ガラス体の欠陥を目視で検査した。例1、2、3、4、7、9~12は欠陥は認められなかった。一方、例5、6、8はいずれも欠陥が多すぎて白濁しており、検査不能であった。
(Test example)
Samples of 15 mm square were cut out from the transparent glass bodies obtained in Examples 1 to 12, and samples for internal transmittance were prepared. The internal transmittance is calculated by adjusting the thickness so that the internal transmittance of light having a wavelength of 351 nm is 5%, and calculating the internal transmittance of light having a wavelength of 375 nm, wavelengths of 400 nm, 532 nm, 666 nm, and 1053 nm. The results are shown in Table 1. At the same time, the Ce concentration in the transparent glass bodies obtained in Examples 1 to 12 and the ratio of Ce 3+ in Ce are also shown in Table 1. Furthermore, the obtained transparent glass body was visually inspected for defects. In Examples 1, 2, 3, 4, 7, and 9 to 12, no defect was observed. On the other hand, all of Examples 5, 6 and 8 were too cloudy and cloudy, and could not be inspected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
*1 内部透過率:製造されたガラス体から15mm角の任意の2種類の厚みのサンプルを用意し、紫外可視近赤外分光光度計(PerkineLmer社製、商品名:LAMBDA 950)を用いて評価した。波長351nmにおける光の内部透過率が5%となるようにサンプル厚みを調整した。このときの厚みを「351nmにおいて光の内部透過率が5%となる厚みt5(mm)」として表1に表わし、その厚みにおける各波長での光の内部透過率(%)を求めた。
 具体的には、縦15mm×横15mm×厚さ1~10mmの任意の厚み2種類の両面を光学研磨したガラスサンプルを準備し、測定を行った。厚みt1及び厚みt2の2種類の試料の351nmでの光透過率T1、T2を式(1)に適用し、波長351nmにおいて内部透過率Tλが5%となるような厚みt5(mm)を求めた。さらに、上記算出された厚みt5(mm)において、その他の波長の内部透過率Tλを式(1)により求めた。
 Tλ(%/t5mm)=
exp(ln(T1/T2)/(t2-t1)×t5)×100・・(1)
* 1 Internal transmittance: Samples of any two types of 15 mm square thickness are prepared from the manufactured glass body and evaluated using an ultraviolet-visible near-infrared spectrophotometer (trade name: LAMBDA 950, manufactured by PerkinLmer). did. The sample thickness was adjusted so that the internal transmittance of light at a wavelength of 351 nm was 5%. The thickness at this time is shown in Table 1 as “thickness t5 (mm) at which the internal transmittance of light is 5% at 351 nm”, and the internal transmittance (%) of light at each wavelength at the thickness was obtained.
Specifically, glass samples were prepared by optically polishing two surfaces of two types of arbitrary thicknesses of 15 mm in length, 15 mm in width, and 1 to 10 mm in thickness. The light transmittance T1, T2 of the two types of 351nm of sample thickness t1 and the thickness t2 is applied to Equation (1), the thickness t5 (mm) such that the internal transmittance T lambda is 5% at a wavelength of 351nm Asked. Further, in the thickness is the calculated t5 (mm), the internal transmittance T lambda of other wavelengths was determined by equation (1).
T λ (% / t5 mm) =
exp (ln (T1 / T2) / (t2-t1) × t5) × 100 (1)
*2 Ce濃度(質量%):ICP発光分光分析法によりCe濃度を算出した。
*3 Ce3+の割合〔Ce3+/Ce〕(%):前述した方法により透過率スペクトルの測定からCe3+及びCe4+の濃度を算出して、Ce中のCe3+の割合を算出した。
* 2 Ce concentration (mass%): Ce concentration was calculated by ICP emission spectrometry.
* Ratio of 3 Ce 3+ [Ce 3+ / Ce] (%): to calculate the concentration of Ce 3+ and Ce 4+ by measuring the transmittance spectrum by the method mentioned above, to calculate the percentage of Ce 3+ in the Ce.
 以上に示したように、本発明の紫外線カットフィルタ用合成石英ガラスは、紫外線の遮蔽効果に優れ、それでいて、近赤外光及び可視光の透過率も良好であり、高出力レーザーを用いた半導体製造のためのリソグラフィー技術に好適であることがわかった。 As described above, the synthetic quartz glass for ultraviolet cut filter according to the present invention has an excellent ultraviolet shielding effect, and also has good transmittance of near infrared light and visible light, and a semiconductor using a high output laser. It has been found suitable for lithographic techniques for manufacturing.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2010年7月14日出願の日本特許出願2010-159941に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2010-159941 filed on Jul. 14, 2010, the contents of which are incorporated herein by reference.
 本発明の紫外線カットフィルタ用合成石英ガラスは、高出力レーザーを用いた半導体製造のためのリソグラフィー技術において、光学系部品の紫外線によるダメージ防止に好適に使用できる。また、それ以外に、紫外線カットフィルタ用のガラスとして広く使用することができる。 The synthetic quartz glass for ultraviolet cut filter of the present invention can be suitably used for preventing damage to optical parts due to ultraviolet rays in lithography technology for semiconductor production using a high-power laser. In addition, it can be widely used as glass for ultraviolet cut filters.

Claims (7)

  1.  0.015質量%以上、0.4質量%未満のCeがドープされた合成石英ガラスであって、
     前記ドープされたCeのうち、90%以上がCe3+の状態で存在する、紫外線カットフィルタ用合成石英ガラス。
    A synthetic quartz glass doped with 0.015 mass% or more and less than 0.4 mass% of Ce,
    90% or more of the doped Ce exists in a state of Ce 3+ , synthetic quartz glass for an ultraviolet cut filter.
  2.  前記紫外線カットフィルタ用石英ガラスの厚みを、波長351nmの光の内部透過率が5%となるように調整したとき、波長375nmの光の内部透過率が50%以上、波長400nmの光の内部透過率が90%以上、かつ波長500~1100nmの領域の光の内部透過率が95%以上である請求項1記載の紫外線カットフィルタ用合成石英ガラス。 When the thickness of the quartz glass for ultraviolet cut filter is adjusted so that the internal transmittance of light having a wavelength of 351 nm is 5%, the internal transmittance of light having a wavelength of 375 nm is 50% or more, and the internal transmission of light having a wavelength of 400 nm is performed. 2. The synthetic quartz glass for ultraviolet cut filter according to claim 1, wherein the transmittance is 90% or more and the internal transmittance of light in the wavelength region of 500 to 1100 nm is 95% or more.
  3.  前記合成石英ガラスの内部欠陥の密度が5×10-4個/cm以下である請求項1又は2記載の紫外線カットフィルタ用合成石英ガラス。 3. The synthetic quartz glass for ultraviolet cut filter according to claim 1, wherein the density of internal defects of the synthetic quartz glass is 5 × 10 −4 pieces / cm 3 or less.
  4.  前記紫外線カットフィルタ用合成石英ガラスの厚みを、波長351nmの光の内部透過率が5%となるように調整したときの厚みが5mm~45mmである請求項1乃至3のいずれか1項記載の紫外線カットフィルタ用合成石英ガラス。 The thickness of the synthetic quartz glass for an ultraviolet cut filter is 5 mm to 45 mm when the thickness is adjusted so that the internal transmittance of light having a wavelength of 351 nm is 5%. Synthetic quartz glass for UV cut filter.
  5.  前記合成石英ガラスが、高出力レーザーの透過に用いられる請求項1乃至4のいずれか1項記載の紫外線カットフィルタ用合成石英ガラス。 The synthetic quartz glass for an ultraviolet cut filter according to any one of claims 1 to 4, wherein the synthetic quartz glass is used for transmission of a high-power laser.
  6.  原料のSi化合物を火炎加水分解して得られるSiOガラス微粒子を基材に堆積、成長させて多孔質SiOガラス体を形成する多孔質ガラス体形成工程と、
     得られた多孔質SiOガラス体に、Ce化合物含有溶液を含有させた後、溶剤を除去することによりCeをドープするCeドープ工程と、
     前記CeがドープされたSiO多孔質ガラスを、100Pa未満の減圧下または不活性ガス雰囲気下でガラス化温度まで昇温して、透明ガラス体を得るガラス化工程と、
     を含む、合成石英ガラスの製造方法。
    A porous glass body forming step of depositing and growing SiO 2 glass fine particles obtained by flame hydrolysis of a raw material Si compound on a base material to form a porous SiO 2 glass body;
    After the Ce compound-containing solution is contained in the obtained porous SiO 2 glass body, a Ce doping step of doping Ce by removing the solvent,
    Vitrification step of obtaining a transparent glass body by heating the Ce-doped SiO 2 porous glass to a vitrification temperature under a reduced pressure of less than 100 Pa or under an inert gas atmosphere;
    A method for producing synthetic quartz glass, comprising:
  7.  原料のSi化合物およびCe化合物を火炎加水分解して得られるSiOガラス微粒子を基材に堆積、成長させてCeがドープされた多孔質SiOガラス体を形成するCeドープ多孔質ガラス体形成工程と、
     前記Ceがドープされた多孔質SiOガラス体を、100Pa未満の減圧下または不活性ガス雰囲気下でガラス化温度まで昇温して、透明ガラス体を得るガラス化工程と、を含む、合成石英ガラスの製造方法。
    Ce-doped porous glass body forming step for forming porous SiO 2 glass body doped with Ce by depositing and growing SiO 2 glass fine particles obtained by flame hydrolysis of raw material Si compound and Ce compound When,
    A vitrification step of obtaining a transparent glass body by heating the Ce-doped porous SiO 2 glass body to a vitrification temperature under a reduced pressure of less than 100 Pa or in an inert gas atmosphere. Glass manufacturing method.
PCT/JP2011/065604 2010-07-14 2011-07-07 Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof WO2012008358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010159941A JP2013189321A (en) 2010-07-14 2010-07-14 Synthetic quartz glass for ultraviolet cut filter, and method for manufacturing the same
JP2010-159941 2010-07-14

Publications (1)

Publication Number Publication Date
WO2012008358A1 true WO2012008358A1 (en) 2012-01-19

Family

ID=45469361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065604 WO2012008358A1 (en) 2010-07-14 2011-07-07 Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof

Country Status (2)

Country Link
JP (1) JP2013189321A (en)
WO (1) WO2012008358A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944619B1 (en) 2014-05-13 2023-08-09 Ivoclar Vivadent AG Method for the preparation of lithium silicate glasses and lithium silicate glass ceramics
JP7257100B2 (en) * 2017-09-11 2023-04-13 東洋製罐グループホールディングス株式会社 Transparent substrate, thin film supporting substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428243A (en) * 1987-07-22 1989-01-30 Seiko Epson Corp Cerium-doped quartz glass and production thereof
JPH02293332A (en) * 1989-05-01 1990-12-04 Shin Etsu Chem Co Ltd Production of rare earth element-doped silica glass
JPH04231343A (en) * 1990-09-27 1992-08-20 Philips Gloeilampenfab:Nv Cerium containing quartz glass object and method of its production
JPH04300218A (en) * 1991-03-28 1992-10-23 Kokusai Denshin Denwa Co Ltd <Kdd> Production of quartz glass doped with rare-earth element
JPH0769671A (en) * 1993-09-07 1995-03-14 Shinetsu Quartz Prod Co Ltd Ultraviolet ray absorbing silica glass and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428243A (en) * 1987-07-22 1989-01-30 Seiko Epson Corp Cerium-doped quartz glass and production thereof
JPH02293332A (en) * 1989-05-01 1990-12-04 Shin Etsu Chem Co Ltd Production of rare earth element-doped silica glass
JPH04231343A (en) * 1990-09-27 1992-08-20 Philips Gloeilampenfab:Nv Cerium containing quartz glass object and method of its production
JPH04300218A (en) * 1991-03-28 1992-10-23 Kokusai Denshin Denwa Co Ltd <Kdd> Production of quartz glass doped with rare-earth element
JPH0769671A (en) * 1993-09-07 1995-03-14 Shinetsu Quartz Prod Co Ltd Ultraviolet ray absorbing silica glass and production thereof

Also Published As

Publication number Publication date
JP2013189321A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US6492072B2 (en) Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass
US7506522B2 (en) High refractive index homogeneity fused silica glass and method of making same
JP4957249B2 (en) Silica glass containing TiO2 and method for producing the same
JP4792705B2 (en) Silica glass containing TiO2 and method for producing the same
KR101869979B1 (en) Titania-doped quartz glass and making method
JP4492123B2 (en) Silica glass
EP2463250B1 (en) Methods for producing and for heat-treating a tio2-sio2 glass body
US8541326B2 (en) Optical member for deep ultraviolet and process for producing same
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
US8039409B2 (en) TiO2-containing silica glass for optical member for EUV lithography
US7964522B2 (en) F-doped silica glass and process of making same
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JPH09235134A (en) High-purity synthetic silica glass for far ultraviolet ray and production thereof
TWI384329B (en) Mask blanks
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP5471478B2 (en) Method for producing synthetic quartz glass for excimer laser
KR101740067B1 (en) OPTICAL MEMBER COMPRISING SILICA GLASS CONTAINING TiO
WO2012008358A1 (en) Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof
JP2008189547A (en) Synthetic quartz glass and its production method
JP4085633B2 (en) Synthetic quartz glass for optical components
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2008063151A (en) Synthetic quartz glass substrate for excimer laser and its production method
JP5417889B2 (en) Silica glass containing TiO2 and optical member for lithography using the same
US7265070B2 (en) Synthetic silica glass optical material having high resistance to optically induced index change
JP4159852B2 (en) Synthetic quartz glass material for optical components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP