JPH04300218A - Production of quartz glass doped with rare-earth element - Google Patents

Production of quartz glass doped with rare-earth element

Info

Publication number
JPH04300218A
JPH04300218A JP8974191A JP8974191A JPH04300218A JP H04300218 A JPH04300218 A JP H04300218A JP 8974191 A JP8974191 A JP 8974191A JP 8974191 A JP8974191 A JP 8974191A JP H04300218 A JPH04300218 A JP H04300218A
Authority
JP
Japan
Prior art keywords
earth element
glass
rare earth
quartz glass
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8974191A
Other languages
Japanese (ja)
Inventor
Noboru Edakawa
登 枝川
Hisahiro Yoshida
尚弘 吉田
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
KDDI Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Kokusai Denshin Denwa KK filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8974191A priority Critical patent/JPH04300218A/en
Publication of JPH04300218A publication Critical patent/JPH04300218A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/90Feeding the burner or the burner-heated deposition site with vapour generated from solid glass precursors, i.e. by sublimation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide a process for producing quartz glass doped with rare-earth element and useful as a material for optical fiber laser, light amplifier, sensor element, etc. CONSTITUTION:The objective quartz glass doped with rare-earth element is produced by forming silica soot by the flame-hydrolysis of a glass-forming raw material gas in an oxyhydrogen flame, depositing the soot to form a porous glass preform and sintering the preform at a high temperature to obtain transparent glass. In the above process, a sublimable organic rare-earth element compound is supplied in the form of vapor together with a halogen-free raw material gas for glass into the oxyhydrogen flame to effect the deposition of the silica soot containing rare-earth element oxide formed by the flame-hydrolysis and the formed porous glass preform is sintered at a high temperature to obtain transparent glass.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は希土類元素ド−プ石英ガ
ラスの製造方法、特には光ファイバレ−ザ−、光増幅器
、センサ−素子などに有用とされる希土類元素ド−プ石
英ガラスの製造方法に関するものである。
[Industrial Application Field] The present invention relates to a method for producing rare earth element-doped quartz glass, particularly for producing rare earth element-doped quartz glass useful for optical fiber lasers, optical amplifiers, sensor elements, etc. It is about the method.

【0002】0002

【従来の技術】希土類元素ド−プ石英ガラスは光機能を
有していることから、光ファイバレ−ザ−、光増幅器、
センサ−素子などとして使用されている。しかして、こ
の種の石英ガラスの製造は従来からMCVD法による方
法が知られている(特表昭63−501711 号公報
参照)が、これは希土類元素酸化物を高温に加熱して蒸
発させて反応系に供給するものであるため、これには供
給量の制御が困難であり、また大型の母材が得られにく
いという欠点がある。
[Prior Art] Rare earth element-doped silica glass has an optical function, so it can be used in optical fiber lasers, optical amplifiers, etc.
It is used as a sensor element, etc. However, the MCVD method has been known for manufacturing this type of quartz glass (see Japanese Patent Application Publication No. 63-501711), but this method involves heating rare earth element oxides to high temperatures and vaporizing them. Since it is supplied to the reaction system, it has the drawbacks that it is difficult to control the supply amount and that it is difficult to obtain a large base material.

【0003】他方、この希土類元素ド−プ石英ガラスの
製造については、ガラス形成原料としてのけい素化合物
を酸水素火炎中に送り、この火炎加水分解で生成したシ
リカ微粒子を堆積して多孔質ガラス母材を作り、この多
孔質ガラス母材を希土類元素化合物の溶液に浸漬して希
土類元素化合物を多孔質ガラス母材に含浸させ、ついで
これを高温で焼結し、透明ガラス化するという方法が提
案されており(特公昭58−3980 号公報参照)、
これには溶液の濃度によってド−プ量が制御できるし、
蒸気圧の低い化合物にも適用できるという利点があるけ
れども、しかしこれには多孔質ガラス母材を希土類元素
化合物の溶液に浸漬し、乾燥する際に毛細管現象によっ
て溶媒が多孔質ガラス母材の表面に移動するときに溶質
も同時に移動してこれが表面近くに蓄積されるために、
得られたガラスにド−パントの濃度分布ができてしまい
、極端な場合には表面と内部での熱膨張係数の差によっ
てこれが割れてしまうという問題点があり、これにはま
た焼結、ガラス化のときに希土類元素化合物の一部が揮
散してしまい、所望のド−プ量をもつものが得られなく
なるという欠点もある。
On the other hand, in the production of rare earth element-doped quartz glass, a silicon compound as a raw material for glass formation is sent into an oxyhydrogen flame, and silica fine particles produced by the flame hydrolysis are deposited to form a porous glass. There is a method of making a base material, immersing this porous glass base material in a solution of a rare earth element compound to impregnate the porous glass base material with the rare earth element compound, and then sintering this at high temperature to create transparent glass. It has been proposed (see Japanese Patent Publication No. 58-3980),
For this, the amount of dope can be controlled by the concentration of the solution,
Although it has the advantage that it can be applied to compounds with low vapor pressure, this method involves immersing a porous glass base material in a solution of a rare earth element compound, and when drying, the solvent is transferred to the surface of the porous glass base material by capillary action. When the solute moves to the surface, the solute also moves and accumulates near the surface.
There is a problem in that the resulting glass has a dopant concentration distribution, and in extreme cases it can break due to the difference in thermal expansion coefficient between the surface and the inside. There is also the disadvantage that a part of the rare earth element compound is volatilized during the oxidation process, making it impossible to obtain a compound with the desired doping amount.

【0004】そのため、これについてはド−プ原料の融
点以下の温度に保持された酸化物雰囲気内において多孔
質ガラス母材中のド−プ原料を酸化する工程を付加する
ことも提案されている(特開昭63−60121号公報
参照)が、希土類元素塩化物を酸化して酸化物に完全に
転換させることは難しく、酸化雰囲気で熱処理してもか
なりの希土類元素塩化物が残留するためにこれがガラス
工程で揮散し、揮散せずにガラス中に取り込まれたとし
ても塩化物の状態ではガラスネットワ−クの中に入るこ
とができず、微少結晶として分離してしまうので、ガラ
スが白濁した状態となり、光伝送損失の原因となるし、
レ−ザ−発振効率も低いものになるという不利がある。
Therefore, it has been proposed to add a step of oxidizing the dope material in the porous glass matrix in an oxide atmosphere maintained at a temperature below the melting point of the dope material. However, it is difficult to completely convert rare earth element chlorides into oxides by oxidizing them, and a considerable amount of rare earth element chlorides remains even after heat treatment in an oxidizing atmosphere. This volatilizes during the glass process, and even if it is incorporated into the glass without volatilizing, it cannot enter the glass network in its chloride state and separates as microcrystals, causing the glass to become cloudy. state, causing optical transmission loss.
A disadvantage is that the lasing efficiency is also low.

【0005】[0005]

【発明が解決しようとする課題】したがって、この希土
類元素ド−プ石英ガラスの製造方法については、気相状
態のガラス原料の火炎加水分解でガラス微粒子を作り、
これを積層して多孔質ガラス体を作って加熱溶融する光
ファイバ用ガラス母材の製造方法において、このガラス
原料を四塩化けい素、トリクロロシラン、モノシランと
し、これに有機アルミニウムとエルビウムのβ−ジケト
ン化合物を使用するという方法が提案されており(特開
平2−275724号公報参照)、これによれば従来の
MCVD法にくらべて大型で、かつエルビウムの添加濃
度分布が均一な母材を合成することができるけれども、
これにはここに使用されるガラス原料が四塩化けい素、
トリクロロシランのようにハロゲンを含有するものとさ
れており、このハロゲンを含むけい素化合物は有機希土
類元素の分解を促進するものであるために、これが火炎
に供給される以前に分解されていしまい、その供給が困
難になるという不利がある。
[Problems to be Solved by the Invention] Therefore, the method for manufacturing rare earth element-doped quartz glass involves producing fine glass particles by flame hydrolysis of a glass raw material in a vapor phase.
In a method for producing a glass base material for optical fibers, in which a porous glass body is made by laminating these materials and then heated and melted, silicon tetrachloride, trichlorosilane, and monosilane are used as glass raw materials, and organic aluminum and erbium β- A method using a diketone compound has been proposed (see JP-A-2-275724), which makes it possible to synthesize a base material that is larger than the conventional MCVD method and has a uniform concentration distribution of erbium. Although it is possible to
The glass raw material used here is silicon tetrachloride,
It is said to contain a halogen, such as trichlorosilane, and since this halogen-containing silicon compound promotes the decomposition of organic rare earth elements, it is decomposed before it is supplied to the flame. The disadvantage is that its supply becomes difficult.

【0006】[0006]

【課題を解決するための手段】本発明はこのような不利
を解決した希土類元素ド−プ石英ガラスの製造方法に関
するものであり、これはガラス形成原料ガスの酸水素火
炎中の火炎加水分解によって生成したシリカ微粒子を堆
積して得た多孔質ガラス母材を高温で焼結し、透明ガラ
ス化する石英ガラスの製造方法において、ハロゲンを含
有しないガラス形成原料ガスと共に昇華性の有機希土類
元素化合物を気相で酸水素火炎中に供給し、この火炎加
水分解で生成した希土類元素化合物を含むシリカ微粒子
を堆積して多孔質ガラス母材を作り、これを高温で焼結
し、透明ガラス化することを特徴とするものである。
[Means for Solving the Problems] The present invention relates to a method for producing rare-earth element-doped quartz glass that solves the above-mentioned disadvantages. In a method for manufacturing silica glass, in which a porous glass base material obtained by depositing the generated silica particles is sintered at high temperature and turned into transparent glass, a sublimable organic rare earth element compound is used together with a halogen-free glass forming raw material gas. Supplying silica in the gas phase into an oxyhydrogen flame and depositing fine silica particles containing rare earth element compounds produced by this flame hydrolysis to create a porous glass base material, which is then sintered at high temperature to form transparent glass. It is characterized by:

【0007】すなわち、本発明者らは希土類元素ド−プ
石英ガラスの効果的な製造方法について種々検討した結
果、希土類元素化合物の石英ガラスへの添加をハロゲン
を含有しないけい素化合物などのガラス形成原料の酸水
素火炎中での火炎加水分解時にこの酸水素火炎中に希土
類元素化合物を気相で供給し、けい素化合物と同時に火
炎加水分解させ、ここに発生した希土類元素酸化物をけ
い素化合物の火炎加水分解で発生したシリカ微粒子と共
に担体上に堆積させて多孔質ガラス母材を形成させれば
よいということを見出した。
That is, as a result of various studies on effective manufacturing methods for rare-earth element-doped quartz glass, the present inventors found that adding a rare-earth element compound to quartz glass is a method of forming a glass such as a silicon compound that does not contain halogen. During the flame hydrolysis of the raw material in an oxyhydrogen flame, a rare earth element compound is supplied in the gas phase into the oxyhydrogen flame, and the rare earth element compound is flame-hydrolyzed at the same time as the silicon compound, and the rare earth element oxide generated here is converted into a silicon compound. It has been found that the porous glass base material can be formed by depositing it on a carrier together with silica fine particles generated by flame hydrolysis.

【0008】また、ここに使用する希土類元素化合物と
してErCl3、NdCl3などの塩化物を使用すると
これらが高沸点物であるために、このものは高温に加熱
し蒸発させて反応系に供給する必要があり、そのために
供給量の制御が極めて難しいという欠点があるが、これ
を塩化物よりも低い温度で気化することができる昇華性
の有機希土類元素化合物を使用すればこの供給量の制御
性を向上することができること、およびガラス形成用原
料ガスとして公知の四塩化けい素などのハロゲンを含有
する原料ガスを用いる場合には前記したように有機希土
類元素化合物が火炎に供給される前に分解されてしまう
ためにその供給が困難となるが、これはハロゲンを含有
しないガラス原料ガスを用いれば解決することができる
ことを確認して本発明を完成させた。以下にこれをさら
に詳述する。
[0008] Furthermore, when chlorides such as ErCl3 and NdCl3 are used as the rare earth element compounds used here, since these have high boiling points, it is necessary to heat them to a high temperature and evaporate them before supplying them to the reaction system. However, the controllability of the supply amount can be improved by using a sublimable organic rare earth element compound that can be vaporized at a lower temperature than chloride. In addition, when using a known raw material gas containing halogen such as silicon tetrachloride as a raw material gas for glass formation, the organic rare earth element compound is decomposed before being supplied to the flame as described above. However, the present invention was completed after confirming that this problem could be solved by using a glass raw material gas that does not contain halogen. This will be explained in further detail below.

【0009】[0009]

【作用】本発明は希土類元素ド−プ石英ガラスの改良さ
れた製造方法に関するものである。本発明はガラス形成
原料の火炎加水分解によって生成したシリカ微粒子を堆
積して多孔質ガラス母材を製造する工程において、ハロ
ゲンを含有しないガラス形成原料ガスと共に昇華性の有
機希土類元素化合物を気相で供給し、この有機希土類元
素化合物の火炎加水分解で発生した希土類元素酸化物を
ハロゲンを含有しないけい素化合物の火炎加水分解で発
生したシリカ微粒子と共に堆積して希土類元素酸化物を
含有した多孔質ガラス母材を作り、これを高温で焼結し
、透明ガラス化するものである。
The present invention relates to an improved method for producing rare earth element-doped quartz glass. In the process of producing a porous glass base material by depositing fine silica particles produced by flame hydrolysis of a glass forming raw material, the present invention uses a sublimable organic rare earth element compound in a gas phase together with a halogen-free glass forming raw material gas. The rare earth element oxide generated by flame hydrolysis of this organic rare earth element compound is deposited together with the silica fine particles generated by the flame hydrolysis of a halogen-free silicon compound to form a porous glass containing rare earth element oxide. A base material is created and then sintered at high temperatures to create transparent glass.

【0010】本発明におけるガラス形成原料の火炎加水
分解による多孔質ガラス母材の製造は光ファイバ用母材
の製造方法としてよく知られているVAD 法、OVD
 法によって行えばよい。しかし、このガラス形成原料
として四塩化けい素などのけい素化合物、光ファイバ用
のド−パントとしてよく知られている四塩化ゲルマニウ
ム、また光増幅特性を向上させることで知られているア
ルミナなどを共ド−プするための三塩化アルミニウムな
どを同時に供給した場合には、有機希土類元素酸化物の
分解を促進することになるので、これはハロゲンを含有
しない有機けい素化合物、ゲルマニウム化合物、アルミ
ニウム化合物とすることが必要とされる。
[0010] The production of the porous glass preform by flame hydrolysis of the glass forming raw material in the present invention is carried out by the VAD method and the OVD method, which are well known as methods for producing preforms for optical fibers.
It can be done according to the law. However, silicon compounds such as silicon tetrachloride, germanium tetrachloride, which is well known as a dopant for optical fibers, and alumina, which is known to improve optical amplification characteristics, are used as raw materials for forming this glass. If aluminum trichloride, etc. for co-doping is supplied at the same time, it will accelerate the decomposition of organic rare earth element oxides, so this is not recommended for organic silicon compounds, germanium compounds, and aluminum compounds that do not contain halogens. It is necessary to do so.

【0011】これらのハロゲンを含有しないガラス形成
原料は酸水素火炎中に供給され、この火炎中で加水分解
されてシリカ、ゲルマニア、アルミナとなり、このゲル
マニウム、アルミナを含有するシリカ微粒子が石英ガラ
スなどからなる担体上に堆積されて多孔質ガラス母材と
されるのであるが、本発明ではハロゲンを含有しないこ
のガラス形成原料の火炎加水分解時にこの酸水素火炎中
に昇華性の有機希土類元素化合物が気相で供給され、こ
の希土類元素化合物の火炎加水分解で発生した希土類元
素酸化物がガラス形成原料の火炎加水分解で発生した上
記したシリカ微粒子と共に担体上に堆積されるので、希
土類元素酸化物を含む多孔質ガラス母材が形成される。
These halogen-free glass forming raw materials are fed into an oxyhydrogen flame and are hydrolyzed in this flame to become silica, germania, and alumina, and the silica fine particles containing germanium and alumina are made from quartz glass, etc. However, in the present invention, sublimable organic rare earth element compounds are vaporized in the oxyhydrogen flame during flame hydrolysis of this halogen-free glass forming raw material. Since the rare earth element oxide generated by the flame hydrolysis of the rare earth element compound is deposited on the carrier together with the above-mentioned silica fine particles generated by the flame hydrolysis of the glass forming raw material, the rare earth element containing the rare earth element oxide is supplied as a phase. A porous glass matrix is formed.

【0012】これに使用される有機希土類元素化合物と
してはネオジム、ユ−ロピウム、セリウムなどの希土類
元素の一般式R−CO−CH=CO−R’ で示され、
R、 R’ がアルキル基、アリル基、フッ素置換アル
キル基、複素環基などである、例えばアセチルアセトナ
イト、トリフルオロアセ00チルアセトナイト、ヘキサ
フルオロアセチルアセトナイト、ジベンゾイルトリフル
オロアセトナイト、ジンベンゾイルメタナト、ジピバロ
イルメタナト、テノイルトルフルオロアセチルアセトナ
イト、フロイルトリフルオロアセチルアセトナイトなど
の各錯体が例示される。これらは蒸発器にこれを収容し
、オイルバスで加熱して気化させ、これをキヤリアガス
で反応器中に供給するようにすればよい。
The organic rare earth element compounds used for this purpose include rare earth elements such as neodymium, europium, and cerium represented by the general formula R-CO-CH=CO-R'.
R and R' are an alkyl group, an allyl group, a fluorine-substituted alkyl group, a heterocyclic group, etc., such as acetylacetonite, trifluoroacetylacetonite, hexafluoroacetylacetonite, dibenzoyltrifluoroacetonite, zine Examples include complexes such as benzoylmethanato, dipivaloylmethanato, thenoyltrifluoroacetylacetonite, and furoyltrifluoroacetylacetonite. These may be stored in an evaporator, heated in an oil bath to vaporize it, and then supplied into the reactor with a carrier gas.

【0013】この昇華性の有機希土類元素化合物、特に
希土類元素のアセチルアセトナイト系錯体は高温におい
て塩化物と反応してバ−ナ−内にゲル状物を堆積する傾
向があるので、このものは酸水素火炎に供給するときに
ガラス形成原料を供給するときにガラス形成原料を塩化
物でないテトラメトキシシラン、テトラエトキシシラン
、メチルトリメトキシシラン、テトラメトキシゲルマニ
ウムのようなアルコキシ化合物とし、アルミニウム化合
物もトリエチルアルミニウムなどのような有機化合物と
しなければならない。
[0013] This sublimable organic rare earth element compound, especially the rare earth element acetylacetonite complex, tends to react with chloride at high temperatures and deposit a gel-like substance in the burner. When supplying glass-forming raw materials to an oxyhydrogen flame, the glass-forming raw materials are non-chloride alkoxy compounds such as tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and tetramethoxygermanium, and aluminum compounds are also triethyl. Must be an organic compound such as aluminum.

【0014】このようにして得られた希土類元素酸化物
を含有する多孔質ガラス母材はついで高温で焼成し、透
明ガラスして希土類ド−プ石英ガラスとされるのである
が、この加熱は電気炉中で 1,400〜1,000 
℃に行えばよく、これはヘリウムなどのような不活性ガ
ス雰囲気とすることがよいが、この雰囲気は脱水を目的
として微量のハロゲンガス存在下としてもよいし、さら
には酸化物への転換を完全なものとするために微量の酸
素ガス存在下としてもよい。
The porous glass base material containing the rare earth element oxide thus obtained is then fired at high temperature to form a transparent glass into rare earth doped quartz glass, and this heating is performed using electricity. In the furnace 1,400-1,000
°C, preferably in an inert gas atmosphere such as helium, but this atmosphere may also be in the presence of a trace amount of halogen gas for the purpose of dehydration, or even for conversion to oxides. In order to make it complete, it may be done in the presence of a trace amount of oxygen gas.

【0015】[0015]

【実施例】つぎに本発明の実施例をあげる。 実施例1 石英製同心多重管バ−ナ−に水素ガス5.5 リットル
/分、酸素ガス 8.0リットル/分を供給して酸水素
火炎を形成し、このバ−ナ−の中心にテトラメトキシシ
ランをキヤリアガス(酸素ガス0.17リットル/分)
に同伴させて供給すると共に、このテトラメトキシシラ
ンを供給するノズルの外側のノズルと連絡した蒸発器に
トリスジピバロイルメタナトエルビウムを入れ、蒸発器
をオイルバスで200 ℃に加熱しつつキヤリアガス(
アルゴンガス0.05リットル/分)を吹き込んでこの
有機希土類元素化合物をバ−ナ−に供給し、これらのガ
スの火炎加水分解で発生した微粒子を出発材の軸方向に
8時間堆積、成長させたところ、外径43mm、 長さ
300mm、 重さ 150g で平均かさ密度が0.
34g/cm3 である多孔質ガラス母材が得られた。
[Example] Next, an example of the present invention will be given. Example 1 Hydrogen gas at 5.5 liters/min and oxygen gas at 8.0 liters/min were supplied to a quartz concentric multi-tube burner to form an oxyhydrogen flame, and a tetragonal flame was formed at the center of the burner. Methoxysilane as carrier gas (oxygen gas 0.17 liters/min)
At the same time, trisdipivaloylmethanatoerbium is placed in an evaporator connected to a nozzle outside the nozzle that supplies this tetramethoxysilane, and while the evaporator is heated to 200 °C in an oil bath, a carrier gas (
This organic rare earth element compound was supplied to the burner by blowing argon gas (0.05 liter/min), and the fine particles generated by flame hydrolysis of these gases were deposited and grown in the axial direction of the starting material for 8 hours. As a result, it has an outer diameter of 43 mm, a length of 300 mm, a weight of 150 g, and an average bulk density of 0.
A porous glass preform having a density of 34 g/cm3 was obtained.

【0016】ついで、この多孔質ガラス母材を電気炉に
入れヘリウムガス雰囲気下に1,600℃で加熱処理し
て透明ガラス化したところ、石英ガラスが得られたが、
このもののICP 法で分析した結果、酸化エルビウム
を500ppm含有するものであった。
[0016] Next, this porous glass base material was placed in an electric furnace and heated at 1,600°C in a helium gas atmosphere to turn it into transparent glass, and quartz glass was obtained.
Analysis of this material using the ICP method revealed that it contained 500 ppm of erbium oxide.

【0017】つぎに、この石英ガラスをコアとし、フッ
素ド−プ石英ガラスをクラッドとした光ファイバ用プリ
フォ−ムを作り、この光ファイバの光増幅特性を測定し
たところ、このものは1.4 μm のポンプ光10m
Wで励起し、1.55μm の信号光の増幅ゲイン22
 dB を得た。
Next, an optical fiber preform with this quartz glass as the core and fluorine-doped quartz glass as the cladding was made, and the optical amplification characteristic of this optical fiber was measured, and it was found to be 1.4. μm pump light 10m
Pumped with W, amplification gain of 1.55 μm signal light is 22
I got dB.

【0018】実施例2 実施例1と同様にVAD 法で多孔質ガラス母材を製造
したが、このテトラメトキシシランの代りにテトラエト
キシシランをキヤリアガス(アルゴン0.19リツトル
/分)に同伴して供給すると共に、これにテトラエトキ
シゲルマニウムをキヤリアガス(アルゴン0.07リッ
トル/分)で供給し、さらにトリエチルアルミニウム0
.01リットル/分も供給し、さらに蒸発器にトリステ
ノイルトリフルオロアセチンルアセトエルビウムを入れ
、蒸発器をオイルバスで 200℃に加熱しつつキヤリ
アガス(アルゴン0.05リットル/分)を吹き込んで
有機希土類元素化合物をバ−ナ−に供給し、得られたシ
リカ微粒子を出発材に8時間堆積、成長させたところ、
外径38mm、長さ 300mm、重さ 110g で
平均かさ密度が0.32g/cm3 である多孔質ガラ
ス母材が得られた。
Example 2 A porous glass base material was produced by the VAD method in the same manner as in Example 1, but instead of tetramethoxysilane, tetraethoxysilane was entrained in a carrier gas (argon 0.19 liters/min). At the same time, tetraethoxygermanium was supplied as a carrier gas (argon 0.07 liters/min), and triethylaluminum 0.
.. Furthermore, tristenoyl trifluoroacetinyl acetoerbium was added to the evaporator, and while the evaporator was heated to 200°C in an oil bath, carrier gas (argon 0.05 liter/min) was blown into the organic rare earth. When the elemental compound was supplied to the burner and the obtained silica fine particles were deposited and grown on the starting material for 8 hours,
A porous glass preform having an outer diameter of 38 mm, a length of 300 mm, a weight of 110 g, and an average bulk density of 0.32 g/cm3 was obtained.

【0019】ついで、この多孔質ガラス母材を電気炉に
入れ、ヘリウムガス雰囲気下に1,600 ℃で加熱処
理して透明ガラス化したところ、石英ガラスが得られた
が、このものはICP 法で分析した結果、酸化エルビ
ウムを800ppm 含有するものであった。また、こ
の多孔質ガラス母材を電気炉に入れ、ヘリウムガス雰囲
気下に1,600℃で加熱処理して透明ガラス化したと
ころ、石英ガラスが得られたが、このものはICP 法
で分析した結果、酸化エルビウムを800ppm含有す
るものであった。
[0019] Next, this porous glass base material was placed in an electric furnace and heated at 1,600°C in a helium gas atmosphere to turn it into transparent glass, yielding quartz glass, which was processed using the ICP method. As a result of analysis, it was found to contain 800 ppm of erbium oxide. When this porous glass base material was placed in an electric furnace and heated at 1,600°C in a helium gas atmosphere to make it transparent, quartz glass was obtained, which was analyzed using the ICP method. As a result, it contained 800 ppm of erbium oxide.

【0020】つぎにこの石英ガラスをコアとし、フッ素
ド−プ石英ガラスをクラッドとした光ファイバ用プイリ
フォ−ムを作り、この光ファイバの光増幅特定を測定し
たところ、このものは1.4 μm のポンプ光10m
Wで励起し、1.55μm の信号光の増幅ゲイン35
 dB を得た。
Next, an optical fiber preform with this quartz glass as a core and a fluorine-doped quartz glass as a cladding was made, and the optical amplification characteristic of this optical fiber was measured, and it was found that this was 1.4 μm. pump light 10m
Excited with W, amplification gain of 1.55 μm signal light is 35
I got dB.

【0021】[0021]

【発明の効果】本発明は希土類元素ド−プ石英ガラスの
製造方法に関するものであり、これは前記したように火
炎加水分解によって生成するシリカ微粒子を堆積して得
られる多孔質ガラス母材を高温で焼結し、透明ガラス化
する石英ガラスの製造方法において、ハロゲンを含有し
ないガラス成形原料と共に昇華性の有機希土類元素化合
物を気相で供給し、この火炎加水分解で得た希土類元素
酸化物を含有する多孔質ガラス母材を作り、これを高温
で焼成し、透明ガラス化するものであるが、これによれ
ば希土類元素化合物が昇華性の有機希土類元素化合物と
して供給されるので低温でガス化することができるし、
これがガラス形成原料によって分解されることもなく、
このものは火炎加水分解で希土類元素酸化物となるので
、希土類元素酸化物でド−プされた石英ガラスを容易に
得ることができ、このようにして得られた希土類元素ド
−プ石英ガラスは光ファイバレ−ザ−、光増幅器、セン
サ−素子として有用とされるという有利性が与えられる
Effects of the Invention The present invention relates to a method for producing rare earth element-doped quartz glass, which involves heating a porous glass base material obtained by depositing fine silica particles produced by flame hydrolysis as described above. In the manufacturing method of quartz glass, which is sintered to make transparent glass, a sublimable organic rare earth element compound is supplied in the gas phase together with a halogen-free glass forming raw material, and the rare earth element oxide obtained by flame hydrolysis is This method involves creating a porous glass base material containing the elements and firing it at a high temperature to turn it into transparent glass. According to this method, the rare earth element compound is supplied as a sublimable organic rare earth element compound, so it can be gasified at a low temperature. can and
This will not be decomposed by the glass forming raw materials,
Since this material becomes rare earth element oxide by flame hydrolysis, quartz glass doped with rare earth element oxide can be easily obtained, and the rare earth element doped quartz glass obtained in this way is Advantages include utility as optical fiber lasers, optical amplifiers, and sensor devices.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガラス形成原料ガスの酸水素火炎中での火
炎加水分解によって生成したシリカ微粒子を堆積して得
た多孔質ガラス母材を高温で焼結し、透明ガラス化する
石英ガラスの製造方法において、ハロゲンを含有しない
ガラス形成原料ガスと共に昇華性の有機希土類元素化合
物を気相で酸水素火炎中に供給し、この火炎加水分解で
生成した希土類元素酸化物を含むシリカ微粒子を堆積し
て多孔質ガラス母材を作り、これを高温で焼結し、透明
ガラス化することを特徴とする希土類元素ド−プ石英ガ
ラスの製造方法。
[Claim 1] Production of quartz glass by sintering a porous glass base material obtained by depositing silica fine particles produced by flame hydrolysis of a glass forming raw material gas in an oxyhydrogen flame and turning it into transparent glass by sintering it at a high temperature. In this method, a sublimable organic rare earth element compound is supplied in the gas phase into an oxyhydrogen flame together with a glass-forming raw material gas that does not contain halogen, and silica fine particles containing rare earth element oxides produced by this flame hydrolysis are deposited. A method for producing rare earth element-doped quartz glass, which comprises making a porous glass base material, sintering it at high temperature, and turning it into transparent glass.
【請求項2】昇華性の有機希土類元素化合物が希土類元
素のアセチルアセトナト系錯体である請求項1に記載し
た希土類元素ド−プ石英ガラスの製造方法。
2. The method for producing rare earth element-doped quartz glass according to claim 1, wherein the sublimable organic rare earth element compound is an acetylacetonate complex of a rare earth element.
【請求項3】ハロゲンを含有しないガラス形成原料がけ
い素、ゲルマニウム、アルミニウムの有機化合物である
請求項1に記載した希土類元素ド−プ石英ガラスの製造
方法。
3. The method for producing rare earth element-doped quartz glass according to claim 1, wherein the halogen-free glass forming raw material is an organic compound of silicon, germanium, and aluminum.
JP8974191A 1991-03-28 1991-03-28 Production of quartz glass doped with rare-earth element Pending JPH04300218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8974191A JPH04300218A (en) 1991-03-28 1991-03-28 Production of quartz glass doped with rare-earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8974191A JPH04300218A (en) 1991-03-28 1991-03-28 Production of quartz glass doped with rare-earth element

Publications (1)

Publication Number Publication Date
JPH04300218A true JPH04300218A (en) 1992-10-23

Family

ID=13979190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8974191A Pending JPH04300218A (en) 1991-03-28 1991-03-28 Production of quartz glass doped with rare-earth element

Country Status (1)

Country Link
JP (1) JPH04300218A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234537A (en) * 1992-12-28 1994-08-23 Corning Inc Method for forming optical fiber preform
JP2005187254A (en) * 2003-12-25 2005-07-14 Sumitomo Electric Ind Ltd Manufacturing method of glass body
DE102009022559A1 (en) * 2008-12-19 2010-06-24 J-Fiber Gmbh Producing glass articles comprises depositing a reaction mixture comprising a silicon compound and an oxygen compound onto a substrate using a high-frequency plasma
WO2012008358A1 (en) * 2010-07-14 2012-01-19 旭硝子株式会社 Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof
CN102718395A (en) * 2012-07-03 2012-10-10 连云港市东鑫石英制品有限公司 Process method for producing quartz tube by using solid state method
DE102013002357A1 (en) 2012-02-09 2013-08-14 Asahi Glass Co., Ltd. Process for producing doped quartz glass
CN103387328A (en) * 2012-05-10 2013-11-13 连云港市东鑫石英制品有限公司 Production method of low-hydroxyl rosy rare-earth-doped quartz tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234537A (en) * 1992-12-28 1994-08-23 Corning Inc Method for forming optical fiber preform
JP2005187254A (en) * 2003-12-25 2005-07-14 Sumitomo Electric Ind Ltd Manufacturing method of glass body
DE102009022559A1 (en) * 2008-12-19 2010-06-24 J-Fiber Gmbh Producing glass articles comprises depositing a reaction mixture comprising a silicon compound and an oxygen compound onto a substrate using a high-frequency plasma
WO2012008358A1 (en) * 2010-07-14 2012-01-19 旭硝子株式会社 Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof
DE102013002357A1 (en) 2012-02-09 2013-08-14 Asahi Glass Co., Ltd. Process for producing doped quartz glass
CN103387328A (en) * 2012-05-10 2013-11-13 连云港市东鑫石英制品有限公司 Production method of low-hydroxyl rosy rare-earth-doped quartz tube
CN103387328B (en) * 2012-05-10 2016-02-10 连云港市东鑫石英制品有限公司 The production method of the rose-colored rear-earth-doped silica tube of a kind of low hydroxyl
CN102718395A (en) * 2012-07-03 2012-10-10 连云港市东鑫石英制品有限公司 Process method for producing quartz tube by using solid state method
CN102718395B (en) * 2012-07-03 2014-10-22 连云港市东鑫石英制品有限公司 Process method for producing quartz tube by using solid state method

Similar Documents

Publication Publication Date Title
EP0466932B1 (en) Quartz glass doped with rare earth element and production thereof
US5526459A (en) Erbium-doped silica optical fiber preform
JP2599511B2 (en) Method for producing rare earth element doped quartz glass
EP0225884A1 (en) Multiconstituent optical fiber and method for producing same.
JP2016524579A (en) Method for producing ytterbium-doped optical fiber
JPH04300218A (en) Production of quartz glass doped with rare-earth element
CN100503493C (en) Method for manufacturing a glass doped with a rare earth element and fiber for optical amplification using the same
EP2108624B1 (en) Rare-earth-doped optical fiber, optical fiber amplifier, and method of manufacturing a preform for such a fiber
JP3163167B2 (en) Method for producing rare earth element doped quartz glass
CA2481204C (en) A method of fabricating rare earth doped optical fibre
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JP4875301B2 (en) Rare earth doped optical fiber preform manufacturing method
JP3191408B2 (en) Manufacturing method of preform for optical fiber
JP2604466B2 (en) Method for producing rare earth element doped quartz glass
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JP3027075B2 (en) Method for producing rare earth element-doped quartz glass fiber preform
JPH03265537A (en) Rare-earth element-doped glass and its production
JPH038744A (en) Rare earth element-doped quartz glass fiber preform and preparation thereof
JP3157000B2 (en) Optical waveguide
JP4230074B2 (en) Method for producing aluminum-added quartz porous matrix
JPH03218947A (en) Rare-earth element and halogen element-doped quartz glass-based optical fiber preform and its production
JP2710446B2 (en) Production method of rare earth doped glass
JPH085684B2 (en) Quartz glass manufacturing method
JPH0585759A (en) Manufacture of rare-earth-element-doped quartz glass
JP2628944B2 (en) Manufacturing method of rare earth element doped optical fiber