JPH0769671A - Ultraviolet ray absorbing silica glass and production thereof - Google Patents

Ultraviolet ray absorbing silica glass and production thereof

Info

Publication number
JPH0769671A
JPH0769671A JP24615593A JP24615593A JPH0769671A JP H0769671 A JPH0769671 A JP H0769671A JP 24615593 A JP24615593 A JP 24615593A JP 24615593 A JP24615593 A JP 24615593A JP H0769671 A JPH0769671 A JP H0769671A
Authority
JP
Japan
Prior art keywords
silica glass
transition metal
metal element
less
ionic valence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24615593A
Other languages
Japanese (ja)
Other versions
JP2991901B2 (en
Inventor
Shigeru Yamagata
茂 山形
Hideki Tsuriga
英樹 釣賀
Tsukasa Sakaguchi
司 坂口
Mitsuha Kuriyama
満葉 栗山
Engurishiyu Uorufugangu
ウォルフガング・エングリシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP5246155A priority Critical patent/JP2991901B2/en
Publication of JPH0769671A publication Critical patent/JPH0769671A/en
Application granted granted Critical
Publication of JP2991901B2 publication Critical patent/JP2991901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain silica glass for a discharge tube having excellent UV absorbing property and devitrification resistance. CONSTITUTION:This silica glass has <=200 wt.ppm concn. of OH groups and <=5X10<17>molecules/cm<3> concn. of hydrogen molecules and contains at least one kind of transition metal having controlled valency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、紫外線吸収性に優れ、
かつ耐失透性にも優れたシリカガラス、特に放電管用お
よび高輝度放電灯バルブ材用のシリカガラスに関する。
FIELD OF THE INVENTION The present invention is excellent in ultraviolet absorption,
The present invention also relates to silica glass having excellent devitrification resistance, and particularly to silica glass for discharge tubes and high brightness discharge lamp bulb materials.

【0002】[0002]

【従来の技術】従来、照明工業分野では各種放電管用材
料としてシリカガラス、特に天然の水晶を電気溶融した
いわゆる“溶融石英ガラス”、が使用されてきた。とこ
ろがこの溶融石英ガラスは紫外線の透過率が高く、この
溶融石英ガラスで作った放電管は、紫外線をよく透過す
るため空気中の酸素から人体に有害なオゾンを発生させ
るという欠点があった。そのため、Ti、V、Cr、M
n、Fe、Co、Ni、CuまたはCeをド−プした紫
外線吸収性シリカガラスが開発され、それが例えば、特
公昭39−21056号公報、特公昭46−42114
号公報、特開昭52−89280号公報および特開昭5
4−79978号公報等に記載されている。
2. Description of the Related Art Conventionally, in the field of lighting industry, silica glass, in particular, so-called "fused silica glass" obtained by electromelting natural quartz has been used as a material for various discharge tubes. However, this fused silica glass has a high transmittance of ultraviolet rays, and a discharge tube made of this fused silica glass has a drawback in that oxygen in the air generates harmful ozone which is harmful to the human body because it transmits ultraviolet rays well. Therefore, Ti, V, Cr, M
An ultraviolet absorbing silica glass doped with n, Fe, Co, Ni, Cu or Ce has been developed, which is disclosed, for example, in Japanese Patent Publication No. 39-21056 and Japanese Patent Publication No. 46-42114.
JP-A-52-89280 and JP-A-5-89280.
No. 4-79978.

【0003】しかしながら、上記公報記載のシリカガラ
スは、波長約220nm以下の紫外線を吸収するが、そ
れより長い波長の紫外線の吸収性は悪く、例えばこのシ
リカガラスで作成した自動車用ヘッドライト等は、その
発光時に発生した前記長波長の紫外線で人間の肉眼を痛
めたり、自動車用ヘッドライトを構成するプラスチック
ス部材を著しく劣化させるという欠点が有った。その
上、上記シリカガラスはOH基や水素分子濃度が高く、
それで作成された高輝度放電灯はそのバルブ材中に封入
した発光ガスが前記OH基から生じた酸素と反応し黒色
失透を起こしたり、また水素分子がランプの作動電圧を
上昇させたり、あるいはシリカガラス中のアルカリ金属
元素による結晶化や封入ガスによる化学的エッチングが
促進され白色失透を発生させたりし、その寿命は短いも
のであった。
However, although the silica glass described in the above publication absorbs ultraviolet rays having a wavelength of about 220 nm or less, it has poor absorption of ultraviolet rays having a longer wavelength, and, for example, an automobile headlight made of this silica glass is There are drawbacks that the long-wavelength ultraviolet light generated at the time of light emission damages the naked eye of human beings and significantly deteriorates the plastics member constituting the automobile headlight. In addition, the silica glass has a high concentration of OH groups and hydrogen molecules,
In the high-intensity discharge lamp thus created, the luminescent gas enclosed in the bulb material reacts with oxygen generated from the OH group to cause black devitrification, or hydrogen molecules increase the operating voltage of the lamp, or The crystallization by the alkali metal element in the silica glass and the chemical etching by the enclosed gas were promoted to generate white devitrification, and the life was short.

【0004】[0004]

【発明が解決しようとする課題】こうした現状を踏まえ
て、本発明者等は、放電管用シリカガラスにおいて約4
00nm以下の紫外線をも吸収しオゾンの発生、人体へ
の悪影響、およびプラスチックスの劣化を防止し、しか
も高輝度放電灯のバルブ材としても発光効率の低下が少
ないシリカガラスの開発について鋭意研究を重ねた結
果、シリカガラス中のOH基濃度および水素分子濃度を
特定の範囲に限定するとともに、遷移金属元素を含有さ
せ、その遷移金属元素のイオン価数を制御することによ
り前記目的が達成できることを見出し、本発明を完成し
たものである。
In view of these circumstances, the present inventors have found that the silica glass for discharge tubes has about 4
We have earnestly researched the development of silica glass that absorbs UV rays of less than 00 nm and prevents ozone generation, adverse effects on the human body, and deterioration of plastics, and has little deterioration in luminous efficiency as a bulb material for high-intensity discharge lamps. As a result of stacking, while limiting the OH group concentration and the hydrogen molecule concentration in the silica glass to a specific range, the transition metal element is contained, and by controlling the ionic valence of the transition metal element, it is possible to achieve the above object. Heading, completes the present invention.

【0005】本発明は、紫外線吸収性に優れ人体への悪
影響、プラスチックス部材の劣化のないシリカガラスを
提供することを目的とする。
It is an object of the present invention to provide a silica glass which has excellent ultraviolet absorption and does not adversely affect the human body and deteriorate the plastics member.

【0006】本発明は、高圧水銀ランプ、メタルハライ
ドランプ等の高輝度放電灯用バルブ材として使用しても
失透を生じることがないシリカガラスを提供することを
目的とする。
It is an object of the present invention to provide a silica glass which does not cause devitrification even when used as a bulb material for a high intensity discharge lamp such as a high pressure mercury lamp or a metal halide lamp.

【0007】また、本発明は、耐熱性が高く高輝度放電
灯用バルブ材として熱変形のないシリカガラスを提供す
ることを目的とする。さらに、本発明は、上記シリカガ
ラスを製造する新規な製造方法を提供することを目的と
する。
Another object of the present invention is to provide a silica glass which has high heat resistance and is not thermally deformed as a bulb material for a high-intensity discharge lamp. A further object of the present invention is to provide a new production method for producing the above silica glass.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明は、放電管用の紫外線吸収性シリカガラスであって、
そのOH基濃度が200wt.ppm以下、水素分子濃
度が5×1017molecules/cm3以下で、か
つ制御されたイオン価数を有する遷移金属元素の少なく
とも1種類が含有されているシリカガラスおよびその製
造方法に係る。
The present invention, which achieves the above object, provides an ultraviolet absorbing silica glass for a discharge tube,
The OH group concentration is 200 wt. TECHNICAL FIELD The present invention relates to a silica glass containing ppm or less, a hydrogen molecule concentration of 5 × 10 17 molecules / cm 3 or less, and containing at least one transition metal element having a controlled ionic valence, and a method for producing the same.

【0009】さらに、本発明は、高輝度放電灯バルブ材
用の紫外線吸収性シリカガラスである場合、そのOH基
濃度が20wt.ppm以下、水素分子濃度が5×10
16molecules/cm3以下で、かつ制御された
イオン価数を有する遷移金属元素の少なくとも1種類が
含有されているシリカガラスおよびその製造方法に係
る。
Further, according to the present invention, in the case of the ultraviolet absorbing silica glass for a high-intensity discharge lamp bulb material, its OH group concentration is 20 wt. ppm or less, hydrogen molecule concentration 5 × 10
The present invention relates to silica glass containing at least one transition metal element having a controlled ionic valence of 16 molecules / cm 3 or less, and a method for producing the same.

【0010】上記遷移金属元素とは、Ti、V、Cr、
Mn、Fe、 Co、Ni、Cu、Zr、Nb、Mo、
Tc、Ru、Ce、Pr、Nd、Pm、SmおよびEu
の原子番号22〜29、40〜44および58〜63の
元素をいう。特に好ましい遷移金属元素はチタン、クロ
ム、セリウムである。前記遷移金属元素の含有量は10
〜10,000wt.ppmの範囲であり、その範囲が
10wt.ppm未満ではイオン価数制御処理を適切に
選択しても約400nm以下の紫外線の吸収効果がみら
れず、また10,000wt.ppm以上ではシリカガ
ラスの可視域での透明性が悪くなり、バルブ材としたと
きの光出力が落ちる。
The above-mentioned transition metal elements include Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo,
Tc, Ru, Ce, Pr, Nd, Pm, Sm and Eu
Of the atomic numbers 22 to 29, 40 to 44, and 58 to 63. Particularly preferable transition metal elements are titanium, chromium and cerium. The content of the transition metal element is 10
~ 10,000 wt. ppm range, and the range is 10 wt. If it is less than ppm, the effect of absorbing ultraviolet rays having a wavelength of about 400 nm or less is not observed even if the ion valence control treatment is properly selected. When the content is more than ppm, the transparency of the silica glass in the visible region is deteriorated and the light output when used as a bulb material is lowered.

【0011】本発明のシリカガラスは、遷移金属元素を
含有したシリカガラスをイオン価数制御処理に付して、
遷移金属元素のイオン価数を変え約400nm以下の紫
外線が吸収されるように制御されたシリカガラスであ
る。前記イオン価数制御処理とは、遷移金属元素含有シ
リカガラスを酸化雰囲気または還元雰囲気中で800〜
1300℃で加熱処理するか、または紫外線、X線、γ
線を照射し酸化または還元する処理をいう。
The silica glass of the present invention is obtained by subjecting silica glass containing a transition metal element to an ionic valence control treatment,
It is a silica glass that is controlled so that the ionic valence of the transition metal element is changed to absorb ultraviolet rays of about 400 nm or less. The ionic valence control treatment is performed by changing the transition metal element-containing silica glass in an oxidizing atmosphere or a reducing atmosphere from 800 to
Heat treatment at 1300 ℃, or UV, X-ray, γ
It refers to a treatment of irradiating a ray to oxidize or reduce.

【0012】また、イオン価数の制御とは、シリカガラ
スの紫外線域の光透過スペクトルが約400nm以上に
なるようにイオン価数を変えることをいう。例えば、セ
リウム含有シリカガラスを800〜1300℃で酸化雰
囲気中で酸化処理すると約400以下の紫外線を吸収す
るようになるが、逆に前記温度で還元性雰囲気中で還元
処理をすると約240nmの光透過率が高くなり、22
0〜300nmが一部透過するようになる。このように
約400nm以下の紫外線の吸収性を向上するにはイオ
ン価数制御処理を適宜選択することが重要である。
The control of the ionic valence is to change the ionic valence so that the light transmission spectrum of silica glass in the ultraviolet region is about 400 nm or more. For example, when cerium-containing silica glass is oxidized at 800 to 1300 ° C. in an oxidizing atmosphere, it absorbs about 400 or less ultraviolet rays. Higher transmittance, 22
A part of 0 to 300 nm is transmitted. As described above, it is important to appropriately select the ion valence control treatment in order to improve the absorption of ultraviolet rays having a wavelength of about 400 nm or less.

【0013】さらに、紫外線の吸収が多くなると放電灯
バルブ材の温度が上昇し、ランプの発光効率は高くな
る。その上、シリカガラス中に遷移金属元素が含有され
ているところからシリカガラスの耐熱性が向上し、発光
時その表面温度が約1000℃にも上昇する高輝度放電
灯のバルブ材の用途に供しても熱変形を起すことがな
い。
Furthermore, when the absorption of ultraviolet rays increases, the temperature of the discharge lamp bulb material rises, and the luminous efficiency of the lamp increases. In addition, since the transition metal element is contained in the silica glass, the heat resistance of the silica glass is improved, and the surface temperature of the silica glass rises to about 1000 ° C during light emission. However, it does not cause thermal deformation.

【0014】ところで、シリカガラス中に含有されるO
H基は、高輝度放電灯の発光時に分解され酸素を発生し
それが封入金属ガスおよび電極の金属タングステンと反
応し黒色失透を起こさせる。また、水素分子の発生は再
点弧スパイク電圧の発生および作動電圧の上昇を起こさ
せるといわれている(松野博光他(1981)メタルハ
ライドランプにおける光束維持率低下の機構、照明学会
誌、第65巻,第4号、176〜181頁)。さらに、
シリカガラス中のアルカリ金属元素やアルカリ土類金属
元素による結晶化促進や封入ガスによる化学的エッチン
グにより白色失透が起ると推定される。黒色失透および
白色失透、ならびに作動電圧の上昇が起るとランプの発
光効率が著しく低下するが、前記黒色失透および作動電
圧の上昇はシリカガラス中のOH基濃度および水素分子
濃度を低減させることによりある程度解決できる。しか
しながら、白色失透も含め、これらの問題を十分解決す
るためには具体的にシリカガラス中のOH基濃度を20
0wt.ppm以下、水素分子濃度を5×1017mol
ecules/cm3以下、かつ遷移金属元素を含有さ
せ耐熱性を向上させる必要がある。
By the way, O contained in silica glass
The H group is decomposed during the light emission of the high-intensity discharge lamp to generate oxygen, which reacts with the enclosed metal gas and the metal tungsten of the electrode to cause black devitrification. Further, it is said that generation of hydrogen molecules causes generation of re-ignition spike voltage and increase in operating voltage (Matsuno Hiromitsu et al. (1981) Mechanism of lowering luminous flux maintenance rate in metal halide lamp, Journal of Illuminating Engineering, Vol. 65). , No. 4, pp. 176-181). further,
It is presumed that white devitrification occurs due to crystallization promotion by alkali metal elements and alkaline earth metal elements in silica glass and chemical etching with a sealing gas. When the black devitrification and the white devitrification and the increase of the operating voltage occur, the luminous efficiency of the lamp is remarkably reduced, but the black devitrification and the increase of the operating voltage reduce the OH group concentration and the hydrogen molecule concentration in the silica glass. By doing so, it can be solved to some extent. However, in order to sufficiently solve these problems including white devitrification, specifically, the OH group concentration in silica glass should be 20%.
0 wt. ppm or less, hydrogen molecule concentration of 5 × 10 17 mol
It is necessary to improve the heat resistance by incorporating a transition metal element in the number of ecules / cm 3 or less.

【0015】さらに、放電管が高輝度放電灯である場合
はOH基濃度を20wt.ppm以下、水素分子濃度を
5×1016molecules/cm3以下、かつ遷移
金属元素を含有させなければならない。
Further, when the discharge tube is a high-intensity discharge lamp, the OH group concentration is 20 wt. The concentration of hydrogen molecule should be 5 ppm or less, the hydrogen molecule concentration should be 5 × 10 16 molecules / cm 3 or less, and the transition metal element should be contained.

【0016】上記OH基濃度の測定は、D.M.Dod
d,D.B.Fraser(1960),Optica
l Determinations of OH in
Fused Silica,J.Applied P
hysics,Vol.37, p.3911(196
6)の方法により、また水素分子濃度の測定は、V.
S. Khotimchenko,et al.(19
87) Determining the Conte
nt of Hydrogen Dissolved
in Quartz Glass Using the
Methodof Raman Scatterin
g and Mass Spectrometry,
J.Appl.Spectrosc.,Vol.46,
No.6,pp632〜635の方法により行なわれ
る。
The above-mentioned OH group concentration is measured by D. M. Dod
d, D. B. Fraser (1960), Optica
l Determinations of OH in
Fused Silica, J.M. Applied P
hysics, Vol. 37, p. 3911 (196
According to the method of 6) and the measurement of the hydrogen molecule concentration, V.
S. Khotimchenko, et al. (19
87) Determining the Conte
nt of Hydrogen Dissolved
in Quartz Glass Using the the
Methodof Raman Scatterin
g and Mass Spectrometry,
J. Appl. Spectrosc. , Vol. 46,
No. 6, pp632-635.

【0017】このように約400mm以下の紫外線を吸
収し、かつ耐失透性に優れた特性を有する本発明のシリ
カガラスは以下の手段で製造される。すなわち、水晶粉
と遷移金属化合物、例えば塩化物、ヨウ化物、炭酸塩、
硝酸塩等の化合物を混合し、その混合原料を真空電気溶
融法でガラス化するか、または前記遷移金属元素化合物
と四塩化ケイ素との混合物を酸水素炎加水分解法のス−
ト法でガラス化し、次いでこのシリカガラスをイオン価
数制御処理に付し、シリカガラス中の遷移金属元素のイ
オン価数を必要な値に制御することからなる。
The silica glass of the present invention which absorbs ultraviolet rays of about 400 mm or less and has excellent devitrification resistance is manufactured by the following means. That is, crystal powder and a transition metal compound such as chloride, iodide, carbonate,
A compound such as a nitrate is mixed and the mixed raw material is vitrified by a vacuum electric melting method, or a mixture of the transition metal element compound and silicon tetrachloride is subjected to the oxyhydrogen flame hydrolysis method.
Vitrification by the gating method and then subjecting this silica glass to an ionic valence control treatment to control the ionic valence of the transition metal element in the silica glass to the required value.

【0018】上記製造におけるシリカガラス原料である
水晶粉への遷移金属元素の混合は、遷移金属化合物が水
溶性であれば水溶液で、また、不溶性固体粒子であれば
粒度を調整して粉体混合する。特に真空電気溶融法でガ
ラス化するに当って、遷移金属化合物を水溶液で混合し
たときは、約200℃で乾燥し、さらに約1000℃に
て仮焼する前処理を行うのがよい。
In the above production, the transition metal element is mixed with quartz powder which is a silica glass raw material in the form of an aqueous solution if the transition metal compound is water-soluble, and if it is an insoluble solid particle, the particle size is adjusted to form a powder mixture. To do. In particular, when vitrifying by a vacuum electric melting method, when the transition metal compound is mixed with an aqueous solution, it is preferable to perform a pretreatment of drying at about 200 ° C. and calcining at about 1000 ° C.

【0019】一方、酸水素炎加水分解法のス−ト法でガ
ラス化する場合は、塩素または塩化水素ガス雰囲気で脱
水処理することによりOH基および水素分子濃度を任意
に変えることができる。
On the other hand, in the case of vitrification by the soot method of oxyhydrogen flame hydrolysis method, the OH group and hydrogen molecule concentration can be arbitrarily changed by dehydration treatment in a chlorine or hydrogen chloride gas atmosphere.

【0020】以下、実施例で本発明を更に具体的に説明
する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【実施例】【Example】

(1)シリカガラスの作成 実施例1〜5について、天然水晶粉を粒径10〜100
μmに調整し、塩素ガス雰囲気中で加熱する高純度化処
理を行い、SiO2純度を99.999wt.%とし
た。次に、この水晶粉に純度99.99wt.%のチタ
ン、セリウム、クロムの各酸化物粉体を混合した。前記
混合粉体を必要に応じて200℃に保持、さらに100
0℃に保持し、含水量を調整した後、真空電気溶融法で
透明ガラス化を行った。得られた遷移金属元素含有シリ
カガラスを大気中、1100℃100時間の加熱酸化処
理、またはCo−60を用いたγ線照射処理にてイオン
価数制御処理を行った。前記イオン価数制御処理された
シリカガラスについて物性を評価し、その結果を表1に
示す。
(1) Preparation of silica glass For Examples 1 to 5, natural quartz powder having a particle size of 10 to 100 was used.
was adjusted to [mu] m, performs a high-purity treatment of heating in a chlorine gas atmosphere, 99.999wt the SiO 2 purity. %. Next, the crystal powder was added with a purity of 99.99 wt. % Titanium, cerium, and chromium oxide powders were mixed. If necessary, the mixed powder is kept at 200 ° C., and further 100
After maintaining at 0 ° C and adjusting the water content, transparent vitrification was performed by a vacuum electric melting method. The obtained transition metal element-containing silica glass was subjected to an ionic valence control treatment by a heating oxidation treatment at 1100 ° C. for 100 hours in the air, or a γ-ray irradiation treatment using Co-60. Physical properties of the silica glass subjected to the ionic valence control treatment were evaluated, and the results are shown in Table 1.

【0021】実施例6について、上記実施例と同様に調
整された混合粉体を、酸水素炎ベルヌイ法により透明ガ
ラス化を行った。得られた遷移金属元素含有シリカガラ
スをCo−60によるγ線照射を行い、イオン価数制御
処理を行った。前記イオン価数制御処理されたシリカガ
ラスについて物性を評価し、その結果を表1に示す
Regarding Example 6, the mixed powder prepared in the same manner as in the above Example was subjected to transparent vitrification by the oxyhydrogen flame Bernoulli method. The obtained transition metal element-containing silica glass was subjected to γ-ray irradiation with Co-60 to perform an ionic valence control treatment. Physical properties of the silica glass subjected to the ionic valence control treatment were evaluated, and the results are shown in Table 1.

【0022】実施例7、8について、シリカ原料である
高純度四塩化ケイ素にセリウム、チタンの塩化物を混合
した。次にこの混合原料を酸水素炎加水分解法のス−ト
法によりス−ト体を作成した。このス−ト体を塩素ガス
雰囲気中で加熱処理し、水分を低減させた。次に、この
脱水ス−ト体を真空中にて加熱処理し、透明ガラスとし
た。さらに、得られた遷移金属元素含有シリカガラスを
大気中、1100℃100時間にて加熱酸化処理を行
い、イオン価数制御処理を行った。前記イオン価数制御
処理されたシリカガラスについて物性を評価し、その結
果を表1に示す。
In Examples 7 and 8, high purity silicon tetrachloride as a silica raw material was mixed with chlorides of cerium and titanium. Next, a soot body was prepared from this mixed raw material by the soot method of the oxyhydrogen flame hydrolysis method. This soot body was heat-treated in a chlorine gas atmosphere to reduce water content. Next, this dehydrated soot body was heat-treated in vacuum to obtain transparent glass. Further, the obtained transition metal element-containing silica glass was subjected to a heat oxidation treatment at 1100 ° C. for 100 hours in the atmosphere to perform an ionic valence control treatment. Physical properties of the silica glass subjected to the ionic valence control treatment were evaluated, and the results are shown in Table 1.

【0023】比較のため本発明のイオン価数制御処理を
適切に行なわないシリカガラス、および信越石英(株)
製のM−382について測定し、その結果を比較例1〜
4として表1に示す。
For comparison, the silica glass of the present invention which is not properly subjected to the ion valence control treatment, and Shin-Etsu Quartz Co., Ltd.
Manufactured M-382 was measured, and the results were compared with Comparative Examples 1 to 1.
4 is shown in Table 1.

【0024】(2)物性値の測定 ・ OH基濃度の測定;赤外線吸収分光光度法により測
定(前出D.M.Dodd,et al.(1987)
参照)。 ・ 水素分子濃度の測定;ラマン散乱法(前出V.S.
Khotim−chenko,et al.(198
7)参照)。 ・ 遷移金属元素濃度の測定;原子吸光光度法により測
定。 ・ 光透過波長域の測定;厚さ2mm、両面鏡面研磨仕
上げしたサンプルを光透過率計にて190〜900nm
の範囲の光を測定。 ・ アンプルテスト;直径10mm×厚さ2mm×長さ
100mmのチュ−ブを作成し、チュ−ブの一端を丸く
封じ、試験管の形にした。次に乾燥したグロ−ブボック
ス内にてDyI3粒子を投入した。このチュ−ブを真空
引きし、残りの一端も丸封じアンプルを作成した。これ
を1100℃で100時間加熱処理した後、炉より取り
出し目視にてアンプル内壁の白色失透の程度を観察し
た。
(2) Measurement of physical properties-Measurement of OH group concentration; Measurement by infrared absorption spectrophotometry (DM Dodd, et al. (1987))
reference). -Measurement of hydrogen molecule concentration; Raman scattering method (V.S.
Khotim-chenko, et al. (198
7)).・ Measurement of transition metal element concentration; measured by atomic absorption photometry.・ Measurement of light transmission wavelength range; thickness of 2 mm, double-sided mirror polished sample with light transmittance meter 190-900 nm
Measuring light in the range. Ampoule test: A tube having a diameter of 10 mm, a thickness of 2 mm, and a length of 100 mm was prepared, and one end of the tube was sealed in a circle to form a test tube. Next, DyI 3 particles were charged in the dried globe box. The tube was evacuated, and the other end was also sealed into a round ampoule. After heating this at 100 ° C. for 100 hours, it was taken out of the furnace and the degree of white devitrification on the inner wall of the ampoule was visually observed.

【0025】[0025]

【表1】 [Table 1]

【0026】上記表1に示すように本発明のシリカガラ
スは約400nm以下の紫外線を良く吸収し、しかも白
色失透の発生がほとんどない。
As shown in Table 1 above, the silica glass of the present invention well absorbs ultraviolet rays having a wavelength of about 400 nm or less, and hardly causes white devitrification.

【0027】[0027]

【発明の効果】本発明のシリカガラスは、紫外線吸収性
に優れ、かつ耐失透性にも優れているところから、自動
車のヘッドライト、プロジェクタ−および一般照明用放
電管材料としても、また特にメタルハライドランプ等の
高輝度放電灯用バルブ材としても優れたシリカガラスで
ある。
EFFECT OF THE INVENTION The silica glass of the present invention is excellent in ultraviolet absorption and also in devitrification resistance, so that it is particularly useful as a discharge tube material for automobile headlights, projectors and general lighting. Silica glass is also excellent as a bulb material for high-intensity discharge lamps such as metal halide lamps.

フロントページの続き (72)発明者 栗山 満葉 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内 (72)発明者 ウォルフガング・エングリシュ ドイツ連邦共和国 ケルクハイム ヘルデ ルライン ストラッセ 54Front Page Continuation (72) Inventor Mitsuha Kuriyama Kanayama, Koriyama City, Fukushima Prefecture Kawakubo 88 Shin-Etsu Quartz Co., Ltd., Quartz Technology Laboratory (72) Inventor Wolfgang English Gerkline Helderlein Strasse 54

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 放電管用の紫外線吸収性シリカガラスで
あって、そのOH基濃度が200wt.ppm以下、水
素分子濃度が5×1017molecules/cm3
下で、かつ制御されたイオン価数を有する遷移金属元素
の少なくとも1種類が含有されていることを特徴とする
シリカガラス。
1. An ultraviolet absorbing silica glass for a discharge tube, the OH group concentration of which is 200 wt. Silica glass characterized in that it contains at least one transition metal element having a hydrogen ion concentration of 5 ppm or less, a hydrogen molecule concentration of 5 × 10 17 molecules / cm 3 or less, and a controlled ionic valence.
【請求項2】 高輝度放電灯バルブ材用の紫外線吸収性
シリカガラスであって、そのOH基濃度が20wt.p
pm以下、水素分子濃度が5×1016molecule
s/cm3以下で、かつ制御されたイオン価数を有する
遷移金属元素の少なくとも1種類が含有されていること
を特徴とするシリカガラス。
2. An ultraviolet absorbing silica glass for a high-intensity discharge lamp bulb material, the OH group concentration of which is 20 wt. p
pm or less, hydrogen molecule concentration is 5 × 10 16 molecule
A silica glass containing at least one transition metal element having a controlled ionic valence of s / cm 3 or less.
【請求項3】 遷移金属元素の含有量が10〜10,0
00wt.ppmであることを特徴とする請求項1また
は2記載のシリカガラス。
3. The content of transition metal element is 10 to 10,0.
00 wt. It is ppm, The silica glass of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 水晶粉と遷移金属元素化合物との混合物
を真空電気溶融法でガラス化したことを特徴とする請求
項1または2記載のシリカガラス。
4. The silica glass according to claim 1 or 2, wherein a mixture of crystal powder and a transition metal element compound is vitrified by a vacuum electric melting method.
【請求項5】 四塩化ケイ素と遷移金属元素化合物との
混合物を酸水素炎加水分解法のス−ト法でガラス化した
ことを特徴とする請求項1または2記載のシリカガラ
ス。
5. The silica glass according to claim 1, wherein a mixture of silicon tetrachloride and a transition metal element compound is vitrified by a soot method of an oxyhydrogen flame hydrolysis method.
【請求項6】 遷移金属元素がチタン、クロムまたはセ
リウムから選ばれた元素の少なくとも1種類であること
を特徴とする請求項1ないし5項のいずれかに記載のシ
リカガラス。
6. The silica glass according to claim 1, wherein the transition metal element is at least one element selected from titanium, chromium and cerium.
【請求項7】 シリカガラスの原料と少なくとも1種類
の遷移金属元素との混合物を溶融ガラス化し透明シリカ
ガラスを得た後、該シリカガラスに含有される遷移金属
元素のイオン価数制御処理を行うことを特徴とするシリ
カガラスの製造方法。
7. A mixture of a raw material of silica glass and at least one kind of transition metal element is melted and vitrified to obtain transparent silica glass, and then an ion valence control treatment of the transition metal element contained in the silica glass is performed. A method for producing silica glass, comprising:
【請求項8】 遷移金属元素のイオン価数制御処理が酸
化雰囲気または還元雰囲気中での加熱処理であることを
特徴とする請求項7記載のシリカガラスの製造方法。
8. The method for producing silica glass according to claim 7, wherein the ionic valence control treatment of the transition metal element is a heat treatment in an oxidizing atmosphere or a reducing atmosphere.
【請求項9】 遷移金属元素のイオン価数制御処理が放
射線照射処理であることを特徴とする請求項7記載のシ
リカガラスの製造方法。 【0001】
9. The method for producing silica glass according to claim 7, wherein the ionic valence control treatment of the transition metal element is a radiation irradiation treatment. [0001]
JP5246155A 1993-09-07 1993-09-07 Ultraviolet absorbing silica glass and method for producing the same Expired - Lifetime JP2991901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5246155A JP2991901B2 (en) 1993-09-07 1993-09-07 Ultraviolet absorbing silica glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5246155A JP2991901B2 (en) 1993-09-07 1993-09-07 Ultraviolet absorbing silica glass and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0769671A true JPH0769671A (en) 1995-03-14
JP2991901B2 JP2991901B2 (en) 1999-12-20

Family

ID=17144319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5246155A Expired - Lifetime JP2991901B2 (en) 1993-09-07 1993-09-07 Ultraviolet absorbing silica glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP2991901B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194235A (en) * 1996-01-12 1997-07-29 Ishizuka Glass Co Ltd Coating film having ultraviolet cut-off function and its formation
JPH09235131A (en) * 1996-03-01 1997-09-09 Showa Electric Wire & Cable Co Ltd Production of transparent glass material for co-doped optical attenuator
JPH11330591A (en) * 1998-04-03 1999-11-30 Trumpf Lasertechnik Gmbh High-frequency excitation gas laser and laser tube for gas laser
JP2007223845A (en) * 2006-02-23 2007-09-06 Toshiba Ceramics Co Ltd METHOD OF PRODUCING SiO2-TiO2 BASED GLASS
JP2009035483A (en) * 2008-11-06 2009-02-19 Ushio Inc Light-transmitting member
WO2012008358A1 (en) * 2010-07-14 2012-01-19 旭硝子株式会社 Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof
JP2018138499A (en) * 2017-02-24 2018-09-06 東ソ−・エスジ−エム株式会社 Quartz glass article having ultraviolet absorptivity, and method for manufacturing the same
WO2020202709A1 (en) * 2019-04-05 2020-10-08 信越石英株式会社 Titanium-containing quartz glass having excellent uv absorption, and method for producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194235A (en) * 1996-01-12 1997-07-29 Ishizuka Glass Co Ltd Coating film having ultraviolet cut-off function and its formation
JPH09235131A (en) * 1996-03-01 1997-09-09 Showa Electric Wire & Cable Co Ltd Production of transparent glass material for co-doped optical attenuator
JPH11330591A (en) * 1998-04-03 1999-11-30 Trumpf Lasertechnik Gmbh High-frequency excitation gas laser and laser tube for gas laser
JP2007223845A (en) * 2006-02-23 2007-09-06 Toshiba Ceramics Co Ltd METHOD OF PRODUCING SiO2-TiO2 BASED GLASS
JP2009035483A (en) * 2008-11-06 2009-02-19 Ushio Inc Light-transmitting member
WO2012008358A1 (en) * 2010-07-14 2012-01-19 旭硝子株式会社 Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof
JP2018138499A (en) * 2017-02-24 2018-09-06 東ソ−・エスジ−エム株式会社 Quartz glass article having ultraviolet absorptivity, and method for manufacturing the same
WO2020202709A1 (en) * 2019-04-05 2020-10-08 信越石英株式会社 Titanium-containing quartz glass having excellent uv absorption, and method for producing same
JP2020169111A (en) * 2019-04-05 2020-10-15 信越石英株式会社 Titanium-containing quartz glass excellent in ultraviolet absorption, and method of manufacturing the same
KR20210149712A (en) 2019-04-05 2021-12-09 신에쯔 세끼에이 가부시키가이샤 Titanium-containing quartz glass with excellent ultraviolet absorption and manufacturing method therefor
DE112020001744T5 (en) 2019-04-05 2021-12-23 Heraeus Quarzglas Gmbh & Co. Kg Titanium-containing quartz glass with excellent UV absorption and process for its manufacture
TWI807160B (en) * 2019-04-05 2023-07-01 日商信越石英股份有限公司 A titanium-containing quartz glass excellent in ultraviolet rays absorbency and a method for producing the same

Also Published As

Publication number Publication date
JP2991901B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JP2589043B2 (en) High temperature lamp with UV absorbing quartz envelope
US5464462A (en) Method of making a quartz glass tube having a reduced ultraviolet radiation transmissivity
JP2980882B2 (en) High pressure mercury lamp
JP2000516192A (en) Borosilicate glass free of lead and arsenic and lamp containing said compound
JP5671520B2 (en) Optical filter material made of gallium-doped quartz glass, filter component, and method of irradiation using UV radiation source
JP2521025B2 (en) UV absorbing glassy materials and lamps
US5569979A (en) UV absorbing fused quartz and its use for lamp envelopes
JPH0769671A (en) Ultraviolet ray absorbing silica glass and production thereof
JP3993650B2 (en) Quartz glass
NL9002107A (en) BODY OUT WITH CERIUM DOPED QUARTZ GLASS.
JP3727079B2 (en) lamp
CN113293435B (en) Halide perovskite nanocrystalline material based on cerium-doped glass matrix and preparation method thereof
JP5406439B2 (en) Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JP2005170706A (en) Ultraviolet-absorbing synthetic quartz glass and method for producing the same
JP2931735B2 (en) Silica glass for devitrification resistant discharge lamp
JP4756430B2 (en) Glass for electric lamp and manufacturing method thereof
JP2955463B2 (en) Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same
JP3358883B2 (en) Ultraviolet absorbing visible light transmitting silica glass for high pressure discharge lamp and method for producing the same
JP4392204B2 (en) Quartz glass and method for producing the same
JP2003016999A (en) Fluorescent lamp and compact self-ballasted fluorescent lamp
JP2005310455A (en) Ultraviolet lamp
JP3899538B2 (en) Envelope for small fluorescent lamp and small fluorescent lamp
JP2008024564A (en) Method for producing glass for lamp, glass for lamp, glass tube for lamp and lamp
JP2007505459A (en) Electric lamp with aluminum oxide and cerium oxide
CN1011305B (en) High temp glass for converting ultraviolet light to visible light

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111015

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121015

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 14