JP2018138499A - Quartz glass article having ultraviolet absorptivity, and method for manufacturing the same - Google Patents

Quartz glass article having ultraviolet absorptivity, and method for manufacturing the same Download PDF

Info

Publication number
JP2018138499A
JP2018138499A JP2017033349A JP2017033349A JP2018138499A JP 2018138499 A JP2018138499 A JP 2018138499A JP 2017033349 A JP2017033349 A JP 2017033349A JP 2017033349 A JP2017033349 A JP 2017033349A JP 2018138499 A JP2018138499 A JP 2018138499A
Authority
JP
Japan
Prior art keywords
glass article
quartz glass
ultraviolet
less
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017033349A
Other languages
Japanese (ja)
Other versions
JP6908237B2 (en
Inventor
堀越 秀春
Hideharu Horikoshi
秀春 堀越
伸 葛生
Shin Kuzuu
伸 葛生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Tohos SGM KK
Original Assignee
University of Fukui NUC
Tohos SGM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui NUC, Tohos SGM KK filed Critical University of Fukui NUC
Priority to JP2017033349A priority Critical patent/JP6908237B2/en
Publication of JP2018138499A publication Critical patent/JP2018138499A/en
Application granted granted Critical
Publication of JP6908237B2 publication Critical patent/JP6908237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method for manufacturing a quartz glass article having ultraviolet absorptivity without requiring heat treatment in an atmosphere containing NHat high temperature, and to provide a new quartz glass article having ultraviolet absorptivity.SOLUTION: A method for manufacturing a quartz glass article having ultraviolet absorptivity includes irradiating at least a part of a fused quartz glass article with radiation rays so as to increase ultraviolet absorptivity of a region irradiated with radiation rays. The quartz glass article having ultraviolet absorptivity is such that: the fused quartz glass article has a content of aluminum of 30 ppm or less, a content of metal impurities excluding aluminium of 20 ppm or less, and the total content of aluminium and metal impurities excluding aluminium of 50 ppm or less; and there is provided in at least a part of the article, a structural defect region having ultraviolet absorptivity in which a transmissivity of ultraviolet light having a wavelength of 220nm in a thickness of 10 mm is less than 10%.SELECTED DRAWING: None

Description

本発明は、紫外線吸収性を有する石英ガラス物品及びその製造方法に関する。   The present invention relates to a quartz glass article having ultraviolet absorptivity and a method for producing the same.

合成石英ガラスは、赤外から真空紫外までの広い波長範囲において透明であるばかりでなく、熱的及び化学的安定性に優れている。そのため、各種照明ランプ等の光源用窓材等として広く使用されている。しかし、その高い光透過性のため光源から発生した紫外線が直接人体に悪影響を及ぼすばかりでなく、紫外線により空気中の酸素から人体に有害なオゾンが発生する。さらには、レーザー素子が紫外線によりダメージを受け、レーザー発振効率が低下したり、光源の窓材を支持する樹脂が紫外線によりダメージを受け劣化する等の問題があった。   Synthetic quartz glass is not only transparent in a wide wavelength range from infrared to vacuum ultraviolet, but also has excellent thermal and chemical stability. Therefore, it is widely used as a window material for light sources such as various illumination lamps. However, due to its high light transmittance, not only the ultraviolet rays generated from the light source directly affect the human body, but also harmful ozone is generated from oxygen in the air by the ultraviolet rays. Furthermore, there are problems such that the laser element is damaged by ultraviolet rays, the laser oscillation efficiency is lowered, and the resin supporting the window material of the light source is damaged by ultraviolet rays and deteriorated.

この問題解決する手段として、本発明者は、OH基含有量が20ppm以下、H2分子の含有量が1×1017個/cm3以下、Cl含有量が10ppm以下及び金属不純物含有量の総和が1ppm以下であり、厚さ10mmあたりの透過率が、180nm以下の波長領域で5%以下かつ、220nm以上の波長領域で80%以上である紫外線吸収合成石英ガラスを提供した(特許文献1)。 As means for solving this problem, the present inventor has found that the OH group content is 20 ppm or less, the H 2 molecule content is 1 × 10 17 molecules / cm 3 or less, the Cl content is 10 ppm or less, and the sum of the metal impurity contents. Provided an ultraviolet-absorbing synthetic quartz glass having a transmittance of 10 ppm or less in a wavelength region of 180 nm or less and 80% or more in a wavelength region of 220 nm or more (Patent Document 1). .

この紫外線吸収合成石英ガラスは、ガラス形成原料を、酸水素火炎中で火炎加水分解し、生成したシリカ微粒子をターゲット上に堆積させ多孔質シリカ体(スート体)を形成し、得られたスート体を、第1の熱処理としてNH3ガス含有雰囲気で熱処理した後、第2の熱処理をして得られる。 This ultraviolet-absorbing synthetic quartz glass is obtained by hydrolyzing a glass-forming raw material in an oxyhydrogen flame, and depositing the generated silica fine particles on a target to form a porous silica body (soot body). Is heat-treated in a NH 3 gas-containing atmosphere as a first heat treatment and then obtained by a second heat treatment.

特開2005−170706号公報Japanese Patent Laying-Open No. 2005-170706

特許文献1に記載の方法では、OH基含有量の調整のために第1の熱処理として1000℃以上の高温にてNH3ガス含有雰囲気で熱処理を行う必要がある。 In the method described in Patent Document 1, it is necessary to perform a heat treatment in an NH 3 gas-containing atmosphere at a high temperature of 1000 ° C. or higher as the first heat treatment in order to adjust the OH group content.

本発明は、このような高温でのNH3ガス含有雰囲気で熱処理を要することなく紫外線吸収性を有する石英ガラス物品を製造できる新たな方法を提供することを目的とする。 An object of the present invention is to provide a new method capable of producing a quartz glass article having ultraviolet absorptivity without requiring heat treatment in an atmosphere containing NH 3 gas at such a high temperature.

本発明は以下の通りである。
[1]
熔融石英ガラス物品の少なくとも一部に放射線を照射することで、放射線を照射した部位の紫外線吸収性を高めることを含む、紫外線吸収性を有する石英ガラス物品の製造方法。
[2]
前記熔融石英ガラス物品は、天然石英粉を用いて調製される、[1]に記載の製造方法。
[3]
前記放射線はX線またはγ線である[1]又は[2]に記載の製造方法。
[4]
前記熔融石英ガラス物品の一部のみに放射線を照射して、前記物品の一部の紫外線吸収性を高める、[1]〜[3]のいずれかに記載の製造方法。
[5]
前記熔融石英ガラス物品の全部に放射線を照射して、前記物品の全体の紫外線吸収性を高める、[1]〜[3]のいずれかに記載の製造方法。
[6]
前記紫外線吸収性石英ガラス物品は、可視光線透過性である、[1]〜[5]のいずれかに記載の製造方法。
[7]
前記熔融石英ガラス物品は、アルミニウム含有量が30ppm以下であり、アルミニウム以外の金属不純物の含有量が20ppm以下であり、かつアルミニウム及びアルミニウム以外の金属不純物の合計含有量が50ppm以下である[1]〜[6]のいずれかに記載の製造方法。
[8]
紫外線吸収性を高めた石英ガラス物品は、厚さ10mmにおける波長220nmの紫外光の透過率が10%未満である、[1]〜[7]のいずれかに記載の製造方法。
[9]
アルミニウム含有量が30ppm以下であり、アルミニウム以外の金属不純物の含有量が20ppm以下であり、アルミニウム及びアルミニウム以外の金属不純物の合計含有量が50ppm以下であり、かつOH基含有量が100ppm未満である熔融石英ガラス物品であって、前記物品の少なくとも一部に、厚さ10mmにおける波長220nmの紫外光の透過率が10%未満である紫外線吸収性を有する構造欠陥部位を有する、紫外線吸収性を有する石英ガラス物品。
[10]
前記熔融石英ガラス物品の一部のみに紫外線吸収性を有する構造欠陥部位を有する、[9]に記載の石英ガラス物品。
[11]
前記熔融石英ガラス物品の全部に紫外線吸収性を有する構造欠陥部位を有する、[9]に記載の石英ガラス物品。
[12]
前記紫外線吸収性石英ガラス物品は、可視光線透過性である、[9]に記載の石英ガラス物品。
The present invention is as follows.
[1]
A method for producing a quartz glass article having ultraviolet absorptivity, which comprises irradiating at least a part of a fused quartz glass article with radiation, thereby increasing the ultraviolet absorptivity of the irradiated part.
[2]
The manufacturing method according to [1], wherein the fused silica glass article is prepared using natural quartz powder.
[3]
The manufacturing method according to [1] or [2], wherein the radiation is X-rays or γ-rays.
[4]
The manufacturing method according to any one of [1] to [3], wherein only a part of the fused silica glass article is irradiated with radiation to enhance ultraviolet absorption of a part of the article.
[5]
The manufacturing method according to any one of [1] to [3], wherein the entire fused silica glass article is irradiated with radiation to increase the ultraviolet absorbability of the whole article.
[6]
The production method according to any one of [1] to [5], wherein the ultraviolet-absorbing quartz glass article is visible light transmissive.
[7]
The fused silica glass article has an aluminum content of 30 ppm or less, a content of metal impurities other than aluminum of 20 ppm or less, and a total content of metal impurities other than aluminum and aluminum of 50 ppm or less [1]. -The manufacturing method in any one of [6].
[8]
The production method according to any one of [1] to [7], wherein the quartz glass article having improved ultraviolet absorption has a transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm of less than 10%.
[9]
The aluminum content is 30 ppm or less, the content of metal impurities other than aluminum is 20 ppm or less, the total content of metal impurities other than aluminum and aluminum is 50 ppm or less, and the OH group content is less than 100 ppm. A fused silica glass article, wherein at least a part of the article has a structural defect portion having an ultraviolet absorptivity in which a transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm is less than 10%, and has an ultraviolet absorptivity. Quartz glass article.
[10]
The quartz glass article according to [9], wherein only a part of the fused quartz glass article has a structural defect site having ultraviolet absorptivity.
[11]
The quartz glass article according to [9], wherein all of the fused silica glass article has a structural defect site having ultraviolet absorptivity.
[12]
The quartz glass article according to [9], wherein the ultraviolet absorbing quartz glass article is visible light transmissive.

本発明によれば、部分的又は全体に紫外線吸収性を有する石英ガラス物品を比較的容易に提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the quartz glass article which has ultraviolet absorptivity partially or entirely can be provided comparatively easily.

実施例における試料1〜6の透過率曲線を示す。The transmittance | permeability curve of the samples 1-6 in an Example is shown.

<紫外線吸収性石英ガラス物品の製造方法>
本発明の紫外線吸収性石英ガラス物品の製造方法は、熔融石英ガラス物品の少なくとも一部に放射線を照射することで、放射線を照射した部位の紫外線吸収性を高めることを含む。
<Method for producing UV-absorbing quartz glass article>
The manufacturing method of the ultraviolet absorptive quartz glass article of this invention includes improving the ultraviolet absorptivity of the site | part which irradiated the radiation by irradiating a radiation to at least one part of a fused silica glass article.

熔融石英ガラス物品は、天然石英粉を熔融して調製されるものであることができる。天然石英粉は、含有する不純物の種類や量に応じて、市販品から適宜選択できる。天然石英粉を用いて調製される熔融石英ガラス物品は、天然由来の不純物を含有し、特に、アルミニウム及びアルミニウム以外の金属不純物を含有する。アルミニウム以外の金属不純物は、例えば、カルシウム、マグネシウム、ナトリウム、カリウム、リチウム、鉄及び銅から成る群から選ばれる少なくとも1種の金属である。天然石英粉の熔融は、プラズマ火炎(電気熔融)にて行う。プラズマ火炎(電気熔融)による溶融は常法により実施できる。   The fused silica glass article can be prepared by melting natural quartz powder. Natural quartz powder can be appropriately selected from commercially available products depending on the type and amount of impurities contained therein. The fused silica glass article prepared using natural quartz powder contains impurities derived from nature, and particularly contains aluminum and metal impurities other than aluminum. The metal impurity other than aluminum is at least one metal selected from the group consisting of calcium, magnesium, sodium, potassium, lithium, iron, and copper, for example. Natural quartz powder is melted by plasma flame (electric melting). Melting by plasma flame (electric melting) can be performed by a conventional method.

天然石英粉を用いて調製される熔融石英ガラス物品は、アルミニウム含有量が30ppm以下であり、アルミニウム以外の金属不純物の含有量が20ppm以下、好ましくは10ppm以下、より好ましくは5ppm以下である。アルミニウム及びアルミニウム以外の金属不純物の合計含有量は、好ましくは50ppm以下、より好ましくは30ppm以下、さらに好ましくは20ppm以下である。本発明においては、これらの不純物を含有する熔融石英ガラス物品に放射線照射することで、紫外線吸収性を付与することができる。   The fused silica glass article prepared using natural quartz powder has an aluminum content of 30 ppm or less and a content of metal impurities other than aluminum of 20 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less. The total content of aluminum and metal impurities other than aluminum is preferably 50 ppm or less, more preferably 30 ppm or less, and even more preferably 20 ppm or less. In the present invention, ultraviolet absorptivity can be imparted by irradiating a fused silica glass article containing these impurities with radiation.

熔融石英ガラス物品のアルミニウム含有量及びアルミニウム以外の金属不純物の含有量は、原料として用いる天然石英粉の不純物量を考慮して、原料として用いる天然石英粉を適宜選択することで調整できる。   The aluminum content of the fused silica glass article and the content of metal impurities other than aluminum can be adjusted by appropriately selecting the natural quartz powder used as the raw material in consideration of the impurity content of the natural quartz powder used as the raw material.

前記不純物を含有する熔融石英ガラス物品に放射線を照射することで、放射線を照射した部分の紫外線吸収性を高める。照射する放射線は、例えば、X線またはγ線とすることができる。一般に、放射線照射すると石英ガラス中に構造欠陥が生じる。具体的にはE′センターと呼ばれる欠陥である。欠陥の生じ方はガラスにより異なる。本発明では、不純物を含有する熔融石英ガラス物品に放射線照射すると、欠陥生成量が特に多く、紫外線吸収特性(透過率低下)に非常に優れた材料となることを見出した。欠陥生成量は放射線種にはよらず、放射線のエネルギー(波長)に依存する。従って、X線あるいはγ線等の線源の種類は限定されない。高エネルギー(低波長)の電磁波照射でも同様な効果が得られる。石英ガラス物品の組成(特に不純物組成)と照射される放射線エネルギー(波長)に依存して、紫外線吸収特性は適宜調整することができる。   By irradiating the fused silica glass article containing the impurities with radiation, the ultraviolet absorptivity of the irradiated part is enhanced. The radiation to be irradiated can be, for example, X-rays or γ-rays. Generally, structural defects occur in quartz glass when irradiated. Specifically, it is a defect called an E ′ center. The way in which defects occur depends on the glass. In the present invention, it has been found that when a fused silica glass article containing impurities is irradiated with radiation, the amount of defect generation is particularly large, and the material becomes very excellent in ultraviolet absorption characteristics (decrease in transmittance). The amount of defect generation does not depend on the type of radiation, but depends on the energy (wavelength) of the radiation. Therefore, the type of X-ray or γ-ray source is not limited. The same effect can be obtained by irradiation with high energy (low wavelength) electromagnetic waves. Depending on the composition of the quartz glass article (particularly the impurity composition) and the radiation energy (wavelength) irradiated, the ultraviolet absorption characteristics can be adjusted as appropriate.

放射線照射は、前記熔融石英ガラス物品の一部のみに行っても、全部に行っても良い。本発明の特徴は、放射線を照射した部分の紫外線吸収性を高めることができることである。また、紫外線吸収性の強弱は、熔融石英ガラス物品に含まれる不純物含有量と放射線の種類及び照射量に依存して適宜調整できる。熔融石英ガラス物品の全部に放射線を照射すれば、物品の全体の紫外線吸収性を高めることができる。   Irradiation may be performed on only a part or all of the fused silica glass article. The feature of the present invention is that the ultraviolet absorptivity of the portion irradiated with radiation can be enhanced. Further, the intensity of ultraviolet absorption can be appropriately adjusted depending on the impurity content contained in the fused silica glass article, the type of radiation, and the irradiation amount. By irradiating the entire fused silica glass article with radiation, it is possible to increase the ultraviolet absorbability of the whole article.

本発明の製造方法により得られる紫外線吸収性石英ガラス物品は、250nm以下の紫外線に対して強い吸収を有し、好ましくは220nm以下の紫外線に対して強い吸収を有する。より好ましくは厚さ10mmにおける波長220nmの紫外光の透過率が10%未満であり、さらに好ましくは厚さ10mmにおける波長220nmの紫外光の透過率が1%以下であり、最も好ましくは厚さ10mmにおける波長220nmの紫外光の透過率が0.5%未満である。一方、本発明の製造方法により得られる紫外線吸収性石英ガラス物品は、400nm以上の波長の可視光線に対して透過性を有する。好ましくは400nm以上の波長の可視光線に対する厚さ10mmにおける透過率は80%以上であり、好ましくは85%以上である。   The ultraviolet-absorbing quartz glass article obtained by the production method of the present invention has strong absorption with respect to ultraviolet rays of 250 nm or less, and preferably has strong absorption with respect to ultraviolet rays of 220 nm or less. More preferably, the transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm is less than 10%, more preferably the transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm is 1% or less, and most preferably, the thickness is 10 mm. The transmittance of ultraviolet light with a wavelength of 220 nm in is less than 0.5%. On the other hand, the ultraviolet-absorbing quartz glass article obtained by the production method of the present invention has transparency to visible light having a wavelength of 400 nm or more. The transmittance at a thickness of 10 mm for visible light having a wavelength of 400 nm or more is preferably 80% or more, and preferably 85% or more.

<紫外線吸収性石英ガラス物品>
本発明は、上記本発明の製造方法で得られる、紫外線吸収性石英ガラス物品を包含する。本発明の紫外線吸収性石英ガラス物品は、アルミニウム含有量が30ppm以下であり、アルミニウム以外の金属不純物の含有量が20ppm以下であり、アルミニウム及びアルミニウム以外の金属不純物の合計含有量が50ppm以下であり、かつOH基含有量が100ppm未満である熔融石英ガラス物品であって、前記物品の少なくとも一部に、厚さ10mmにおける波長220nmの紫外光の透過率が10%未満である紫外線吸収性を有する構造欠陥部位を有する。石英ガラス物品の紫外線吸収性は、好ましくは厚さ10mmにおける波長220nmの紫外光の透過率が1%以下であり、さらに好ましくは厚さ10mmにおける波長220nmの紫外光の透過率が0.5%未満である。
<Ultraviolet absorbing quartz glass article>
The present invention includes an ultraviolet-absorbing quartz glass article obtained by the production method of the present invention. The ultraviolet-absorbing quartz glass article of the present invention has an aluminum content of 30 ppm or less, a content of metal impurities other than aluminum is 20 ppm or less, and a total content of metal impurities other than aluminum and aluminum is 50 ppm or less. And a fused silica glass article having an OH group content of less than 100 ppm, wherein at least a part of the article has ultraviolet absorptivity with an ultraviolet light transmittance of less than 10% at a wavelength of 220 nm at a thickness of 10 mm. Has structural defect sites. The ultraviolet absorptivity of the quartz glass article is preferably such that the transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm is 1% or less, and more preferably, the transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm is 0.5%. Is less than.

石英ガラス物品のアルミニウム含有量、アルミニウム以外の金属不純物の含有量、アルミニウム及びアルミニウム以外の金属不純物の合計含有量、さらには、アルミニウム以外の金属不純物の種類などは、上記製造方法における説明と同様である。熔融石英ガラス物品のOH基含有量は、原料として用いる天然石英粉のOH基含有量が低く、かつ天然石英粉の熔融をプラズマ火炎(電気熔融)にて行うことから、100ppm未満となる。熔融石英ガラス物品のOH基含有量は、好ましくは10ppm以下である。本発明の石英ガラス物品が、厚さ10mmにおける波長220nmの紫外光の透過率が10%未満である紫外線吸収性を有する構造欠陥部位を有する理由は、OH基含有量が100ppm未満であるためと推察される。但し、この推察に拘泥する意図はない。さらに、本発明の熔融石英ガラス物品は、OH基含有量が100ppm未満であるため耐熱性にも優れる。   The aluminum content of the quartz glass article, the content of metal impurities other than aluminum, the total content of metal impurities other than aluminum and aluminum, and the type of metal impurities other than aluminum are the same as described in the above production method. is there. The OH group content of the fused silica glass article is less than 100 ppm because the natural quartz powder used as a raw material has a low OH group content and the natural quartz powder is melted by plasma flame (electric melting). The OH group content of the fused silica glass article is preferably 10 ppm or less. The reason why the quartz glass article of the present invention has a structural defect site having ultraviolet absorptivity in which the transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm is less than 10% is because the OH group content is less than 100 ppm. Inferred. However, there is no intention to stick to this guess. Furthermore, since the fused silica glass article of the present invention has an OH group content of less than 100 ppm, it is excellent in heat resistance.

この紫外線吸収性石英ガラス物品は、物品全体が紫外線吸収性である場合と、物品の一部に紫外線吸収性部位を有する場合とがある。即ち、本発明の紫外線吸収性石英ガラス物品は、熔融石英ガラス物品の一部のみに紫外線吸収性を有する構造欠陥部位を有する場合と、熔融石英ガラス物品の全部に紫外線吸収性を有する構造欠陥部位を有する場合とがある。   This ultraviolet-absorbing quartz glass article has a case where the whole article is ultraviolet-absorbing and a case where a part of the article has an ultraviolet-absorbing part. That is, the ultraviolet-absorbing quartz glass article of the present invention has a structural defect part having ultraviolet absorptivity only in a part of the fused silica glass article, and a structural defect part having ultraviolet absorptivity in the whole fused silica glass article. May have.

さらに本発明の紫外線吸収性石英ガラス物品は、400nm以上の波長の可視光線に対して透過性を有する。好ましくは400nm以上の波長の可視光線に対する厚さ10mmにおける透過率は80%以上であり、好ましくは85%以上である。   Furthermore, the ultraviolet-absorbing quartz glass article of the present invention is transparent to visible light having a wavelength of 400 nm or more. The transmittance at a thickness of 10 mm for visible light having a wavelength of 400 nm or more is preferably 80% or more, and preferably 85% or more.

本発明の紫外線吸収性石英ガラス物品は、各種照明ランプ等の光源用窓材等として広く使用することができる。   The ultraviolet-absorbing quartz glass article of the present invention can be widely used as a window material for a light source such as various illumination lamps.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.

試料は、原料(天然石英粉、四塩化珪素、合成シリカ粉)及び熔融方法(プラズマ火炎熔融、スート合成法、酸水素バーナー火炎熔融)の異なるインゴットを製造し、厚さ10mmtの試験用試料を加工。各試料の原料及び製造方法を表1に示し、不純物含有量を表2に示す。試料1が本発明の材料である。   Samples are made of ingots with different raw materials (natural quartz powder, silicon tetrachloride, synthetic silica powder) and melting methods (plasma flame fusion, soot synthesis method, oxyhydrogen burner flame fusion), and a test sample with a thickness of 10mmt is prepared. processing. The raw materials and production methods for each sample are shown in Table 1, and the impurity content is shown in Table 2. Sample 1 is the material of the present invention.

・試料一覧表
・ Sample list

・不純物含有量一覧表
-Impurity content list

・試料1(本発明)
原料の天然石英粉をプラズマ火炎中に供給し熔融させた後、ターゲット上に堆積させて透明な石英ガラスインゴットを得た。このインゴットから厚さ10mmのテストピースを切り出し、試料1の評価用試料とした。試料1のOH基含有量は、10ppm未満であった。
Sample 1 (invention)
The raw natural quartz powder was supplied into a plasma flame and melted, and then deposited on a target to obtain a transparent quartz glass ingot. A test piece having a thickness of 10 mm was cut out from the ingot and used as an evaluation sample of Sample 1. Sample 1 had an OH group content of less than 10 ppm.

・試料2
溶融する熱源として、プラズマ火炎の代わりに酸水素バーナー火炎を使用した以外は、試料1と同等の条件で製造した試料を試料2とした。
・ Sample 2
A sample produced under the same conditions as Sample 1 was used as Sample 2 except that an oxyhydrogen burner flame was used instead of the plasma flame as the melting heat source.

・試料3
原料として合成シリカ粉を使用した以外は、試料1と同等の条件で製造した試料を試料3とした。
・ Sample 3
Sample 3 was prepared under the same conditions as Sample 1 except that synthetic silica powder was used as a raw material.

・試料4
原料に四塩化珪素(SiCl4)を使用し、スート法により合成石英ガラスインゴットを製造した。石英ガラス製バーナーの中心管から原料を供給し、バーナーの外管からH2ガス及びO2ガスを供給してスート体を合成した。このスート体を50vol%H2ガス(残部Heガス)雰囲気、1200℃で5時間熱処理を行った。その後、100%Heガス雰囲気で1500℃、5時間熱処理を行い透明な石英ガラスインゴットを得た。このインゴットから厚さ10mmのテストピースを切り出し、試料4の評価用試料とした。
・ Sample 4
A synthetic quartz glass ingot was produced by soot method using silicon tetrachloride (SiCl 4 ) as a raw material. The soot body was synthesized by supplying the raw material from the central tube of the quartz glass burner and supplying H 2 gas and O 2 gas from the outer tube of the burner. The soot body was heat-treated at 1200 ° C. for 5 hours in a 50 vol% H 2 gas (remaining He gas) atmosphere. Thereafter, a heat treatment was performed in a 100% He gas atmosphere at 1500 ° C. for 5 hours to obtain a transparent quartz glass ingot. A test piece having a thickness of 10 mm was cut out from the ingot and used as an evaluation sample of Sample 4.

・試料5
スート体の熱処理を10vol%Cl2ガス(残部Heガス)で行った以外は、試料3と同等の条件で製造した試料を試料5とした。
・ Sample 5
Sample 5 was prepared under the same conditions as Sample 3 except that the soot body was heat-treated with 10 vol% Cl 2 gas (remaining He gas).

・試料6
原料にSiCl4を使用し、直接法により合成石英ガラスインゴットを製造した。
石英ガラス製バーナーの中心管から原料を供給し、バーナーの外管からH2ガス及びO2ガスを供給し、脱水縮合反応によりシリカ微粒子を合成し、ターゲット上に堆積させると同時に透明ガラス化させ石英ガラスインゴットを得た。このインゴットから厚さ10mmのテストピースを切り出し、試料6の評価用試料とした。
・ Sample 6
A synthetic silica glass ingot was produced by a direct method using SiCl 4 as a raw material.
Raw materials are supplied from the central tube of a quartz glass burner, H 2 gas and O 2 gas are supplied from the outer tube of the burner, silica fine particles are synthesized by a dehydration condensation reaction, and deposited on the target at the same time as transparent glass. A quartz glass ingot was obtained. A test piece having a thickness of 10 mm was cut out from the ingot and used as a sample for evaluation of Sample 6.

・蛍光X線装置を使用して、表3に示す条件でX線を照射した。
・X線照射前後での紫外線域(220nm)及び可視域(400nm)の透過率を評価した。試料1〜6の透過率曲線を図1に示す。試料1〜6の全てが、波長400nmにおいて約90%の透過率であったのに対して、試料1のみ波長220nm以下において、透過率が1%未満であった。波長220nm及び400nmにおける各試料の透過率を表4に示す。
-X-ray | X_line was irradiated on the conditions shown in Table 3 using the fluorescent X-ray apparatus.
-The transmittance in the ultraviolet region (220 nm) and visible region (400 nm) before and after X-ray irradiation was evaluated. The transmittance curves of Samples 1 to 6 are shown in FIG. All of Samples 1 to 6 had a transmittance of about 90% at a wavelength of 400 nm, whereas only Sample 1 had a transmittance of less than 1% at a wavelength of 220 nm or less. Table 4 shows the transmittance of each sample at wavelengths of 220 nm and 400 nm.

・X線照射条件
・ X-ray irradiation conditions

・透過率測定装置
島津製 UV-3105 紫外可視近赤外分光光度計
・耐熱性は、大気中1,150℃で24時間処理した際の試料の変形の有無を、目視で観察して評価。
透過率及び耐熱性の結果を表4に示す。
・ Transmittance measuring device manufactured by Shimadzu UV-3105 UV Visible Near-Infrared Spectrophotometer ・ Heat resistance is evaluated by visually observing the deformation of the sample when treated in air at 1,150 ℃ for 24 hours.
Table 4 shows the results of transmittance and heat resistance.

・透過率及び耐熱性一覧表
・ Transmittance and heat resistance table

本発明の石英ガラス物品である試料1は、X線照射後の波長220nmにおける透過率が1%以下となり、優れた紫外線吸収性を有する物であることが分かる。   Sample 1 which is a quartz glass article of the present invention has a transmittance of 1% or less at a wavelength of 220 nm after X-ray irradiation, and it can be seen that it has excellent ultraviolet absorptivity.

さらに本発明の石英ガラス物品である試料1は、優れた耐熱性も有する。耐熱性に優れる理由は、OH基含有量が相対的に低いからである。OH基含有量が相対的に低いのは、OH基含有量が比較的低い原料である天然石英粉をプラズマ火炎(電気溶融)により熔融して調製したためである。一方、試料2の調製のように酸水バーナー火炎を用いる方法は水蒸気雰囲気なのでOH基含有量が高くなる傾向があり、試料4及び5の調製のようにスート合成法でも酸水バーナー火炎を使用するためにOH基含有量が高くなる傾向がある。   Furthermore, the sample 1 which is the quartz glass article of the present invention also has excellent heat resistance. The reason for excellent heat resistance is that the OH group content is relatively low. The reason why the OH group content is relatively low is that natural quartz powder, which is a raw material having a relatively low OH group content, was prepared by melting with a plasma flame (electric melting). On the other hand, the method using an acid water burner flame as in the preparation of sample 2 tends to increase the OH group content because it is a water vapor atmosphere, and the acid water burner flame is also used in the soot synthesis method as in the preparation of samples 4 and 5. Therefore, the OH group content tends to be high.

本発明は紫外線吸収性石英ガラスの製造分野に有用である。   The present invention is useful in the field of manufacturing ultraviolet-absorbing quartz glass.

Claims (12)

熔融石英ガラス物品の少なくとも一部に放射線を照射することで、放射線を照射した部位の紫外線吸収性を高めることを含む、紫外線吸収性を有する石英ガラス物品の製造方法。 A method for producing a quartz glass article having ultraviolet absorptivity, which comprises irradiating at least a part of a fused quartz glass article with radiation, thereby increasing the ultraviolet absorptivity of the irradiated part. 前記熔融石英ガラス物品は、天然石英粉を用いて調製される、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the fused silica glass article is prepared using natural quartz powder. 前記放射線はX線またはγ線である請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1, wherein the radiation is X-rays or γ-rays. 前記熔融石英ガラス物品の一部のみに放射線を照射して、前記物品の一部の紫外線吸収性を高める、請求項1〜3のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein only a part of the fused silica glass article is irradiated with radiation to enhance ultraviolet absorption of a part of the article. 前記熔融石英ガラス物品の全部に放射線を照射して、前記物品の全体の紫外線吸収性を高める、請求項1〜3のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the entire fused silica glass article is irradiated with radiation to increase the ultraviolet absorbability of the whole article. 前記紫外線吸収性石英ガラス物品は、可視光線透過性である、請求項1〜5のいずれかに記載の製造方法。 The manufacturing method according to claim 1, wherein the ultraviolet-absorbing quartz glass article is visible light transmissive. 前記熔融石英ガラス物品は、アルミニウム含有量が30ppm以下であり、アルミニウム以外の金属不純物の含有量が20ppm以下であり、かつアルミニウム及びアルミニウム以外の金属不純物の合計含有量が50ppm以下である請求項1〜6のいずれかに記載の製造方法。 The fused silica glass article has an aluminum content of 30 ppm or less, a content of metal impurities other than aluminum of 20 ppm or less, and a total content of metal impurities other than aluminum and aluminum of 50 ppm or less. The manufacturing method in any one of -6. 紫外線吸収性を高めた石英ガラス物品は、厚さ10mmにおける波長220nmの紫外光の透過率が10%未満である、請求項1〜7のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, wherein the quartz glass article having improved ultraviolet absorption has a transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm of less than 10%. アルミニウム含有量が30ppm以下であり、アルミニウム以外の金属不純物の含有量が20ppm以下であり、アルミニウム及びアルミニウム以外の金属不純物の合計含有量が50ppm以下であり、かつOH基含有量が100ppm未満である熔融石英ガラス物品であって、前記物品の少なくとも一部に、厚さ10mmにおける波長220nmの紫外光の透過率が10%未満である紫外線吸収性を有する構造欠陥部位を有する、紫外線吸収性を有する石英ガラス物品。 The aluminum content is 30 ppm or less, the content of metal impurities other than aluminum is 20 ppm or less, the total content of metal impurities other than aluminum and aluminum is 50 ppm or less, and the OH group content is less than 100 ppm. A fused silica glass article, wherein at least a part of the article has a structural defect portion having an ultraviolet absorptivity in which a transmittance of ultraviolet light having a wavelength of 220 nm at a thickness of 10 mm is less than 10%, and has an ultraviolet absorptivity. Quartz glass article. 前記熔融石英ガラス物品の一部のみに紫外線吸収性を有する構造欠陥部位を有する、請求項9に記載の石英ガラス物品。 The quartz glass article according to claim 9, wherein only a part of the fused quartz glass article has a structural defect site having ultraviolet absorptivity. 前記熔融石英ガラス物品の全部に紫外線吸収性を有する構造欠陥部位を有する、請求項9に記載の石英ガラス物品。 The quartz glass article according to claim 9, wherein the fused quartz glass article has a structural defect site having ultraviolet absorptivity. 前記紫外線吸収性石英ガラス物品は、可視光線透過性である、請求項9に記載の石英ガラス物品。 The quartz glass article according to claim 9, wherein the ultraviolet absorbing quartz glass article is visible light transmissive.
JP2017033349A 2017-02-24 2017-02-24 Quartz glass article with ultraviolet absorption and its manufacturing method Active JP6908237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017033349A JP6908237B2 (en) 2017-02-24 2017-02-24 Quartz glass article with ultraviolet absorption and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017033349A JP6908237B2 (en) 2017-02-24 2017-02-24 Quartz glass article with ultraviolet absorption and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018138499A true JP2018138499A (en) 2018-09-06
JP6908237B2 JP6908237B2 (en) 2021-07-21

Family

ID=63451318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017033349A Active JP6908237B2 (en) 2017-02-24 2017-02-24 Quartz glass article with ultraviolet absorption and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6908237B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769671A (en) * 1993-09-07 1995-03-14 Shinetsu Quartz Prod Co Ltd Ultraviolet ray absorbing silica glass and production thereof
JPH10330124A (en) * 1997-05-30 1998-12-15 Toshiba Corp Quartz glass and its production and heat-treatment apparatus using the same and heat treatment
JP2005067914A (en) * 2003-08-26 2005-03-17 Tosoh Corp Quartz glass and manufacturing method therefor
JP2009084088A (en) * 2007-09-28 2009-04-23 Covalent Materials Corp Quartz glass tube and its manufacturing method
JP2010018481A (en) * 2008-07-10 2010-01-28 Shinetsu Quartz Prod Co Ltd Ultraviolet ray- and infrared ray-absorbing synthetic silica glass and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769671A (en) * 1993-09-07 1995-03-14 Shinetsu Quartz Prod Co Ltd Ultraviolet ray absorbing silica glass and production thereof
JPH10330124A (en) * 1997-05-30 1998-12-15 Toshiba Corp Quartz glass and its production and heat-treatment apparatus using the same and heat treatment
JP2005067914A (en) * 2003-08-26 2005-03-17 Tosoh Corp Quartz glass and manufacturing method therefor
JP2009084088A (en) * 2007-09-28 2009-04-23 Covalent Materials Corp Quartz glass tube and its manufacturing method
JP2010018481A (en) * 2008-07-10 2010-01-28 Shinetsu Quartz Prod Co Ltd Ultraviolet ray- and infrared ray-absorbing synthetic silica glass and method for producing the same

Also Published As

Publication number Publication date
JP6908237B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
Zoubir et al. Laser-induced defects in fused silica by femtosecond IR irradiation
JP5706623B2 (en) Synthetic silica glass and method for producing the same
JP2980510B2 (en) High purity silica glass for ultraviolet lamp and method for producing the same
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JP5366303B2 (en) Synthetic silica glass for discharge lamps, discharge lamp lamps produced therewith, discharge lamp apparatus provided with the discharge lamp lamps, and method for producing the synthetic silica glass for discharge lamps
JP2007532459A (en) Quartz glass element for UV radiation source, its manufacturing method and method for determining suitability of quartz glass element
JP4470054B2 (en) Synthetic quartz glass and manufacturing method thereof
JPH0791084B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
JP2005170706A (en) Ultraviolet-absorbing synthetic quartz glass and method for producing the same
JP5406439B2 (en) Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JP6908237B2 (en) Quartz glass article with ultraviolet absorption and its manufacturing method
JPH06305767A (en) Silica glass for devitrification resistant discharge lamp
JP2991901B2 (en) Ultraviolet absorbing silica glass and method for producing the same
JPH0891867A (en) Ultraviolet ray transmitting synthetic quartz glass and its production
JP4392204B2 (en) Quartz glass and method for producing the same
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JPS6059177B2 (en) Manufacturing method of anhydrous quartz glass
JP2001316123A (en) Synthetic quarts glass
JP2955463B2 (en) Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same
JP7060386B2 (en) Ultraviolet resistant quartz glass and its manufacturing method
JP2001316123A5 (en)
JP2008189482A (en) Quartz glass and quartz glass formed article
JP7122997B2 (en) Titanium-containing quartz glass excellent in ultraviolet absorption and method for producing the same
JPH0264028A (en) Synthetic silica glass for resisting ultraviolet light and production thereof
JP2009046328A (en) Silica glass for photocatalyst and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210622

R150 Certificate of patent or registration of utility model

Ref document number: 6908237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150