JP2980510B2 - High purity silica glass for ultraviolet lamp and method for producing the same - Google Patents

High purity silica glass for ultraviolet lamp and method for producing the same

Info

Publication number
JP2980510B2
JP2980510B2 JP6024969A JP2496994A JP2980510B2 JP 2980510 B2 JP2980510 B2 JP 2980510B2 JP 6024969 A JP6024969 A JP 6024969A JP 2496994 A JP2496994 A JP 2496994A JP 2980510 B2 JP2980510 B2 JP 2980510B2
Authority
JP
Japan
Prior art keywords
silica glass
purity silica
less
ultraviolet lamp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6024969A
Other languages
Japanese (ja)
Other versions
JPH07215731A (en
Inventor
茂 山形
満葉 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP6024969A priority Critical patent/JP2980510B2/en
Publication of JPH07215731A publication Critical patent/JPH07215731A/en
Application granted granted Critical
Publication of JP2980510B2 publication Critical patent/JP2980510B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、波長150nm〜40
0nm域の紫外線ランプ用シリカガラス、特にエキシマ
ランプ、重水素ランプ、キセノンランプ、水銀ランプ等
の紫外線ランプ用高純度シリカガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a silica glass for an ultraviolet lamp in a 0 nm region, particularly a high-purity silica glass for an ultraviolet lamp such as an excimer lamp, a deuterium lamp, a xenon lamp, and a mercury lamp.

【0002】[0002]

【従来の技術】紫外線は半導体工業、食品・医療衛生分
野、レ−ザ光学分野等で使用され、例えば半導体工業で
は光CVD、光洗浄、光リソグラフィ−等に、また食品
・医療衛生分野では殺菌、脱臭、水処理等に、さらにレ
−ザ光学分野ではレ−ザ発振体励起光源として利用され
ている。この紫外線を発生する素子としては紫外線ラン
プが一般的によく利用されている。紫外線ランプには封
入金属ガスを比較的低圧力低温度で発光させる低圧水銀
ランプ、重水素ランプ、エキシマランプや封入金属ガス
を比較的高圧力高温度で発光させる高圧水銀ランプ、メ
タルハライドランプ等がある。前記ランプの何れも発生
した紫外線をランプチュ−ブ外に放射するためチュ−ブ
材料は紫外線透過性がよく、発光温度に十分耐える材料
でなければならない。その上ランプチュ−ブに加工する
ための加工特性にも優れていることが要求される。こう
した要求に答える材料としてシリカガラスがあり、紫外
線ランプチュ−ブは殆どシリカガラスで作製されてき
た。
2. Description of the Related Art Ultraviolet rays are used in the semiconductor industry, food / medical hygiene field, laser optics field, and the like. For example, in the semiconductor industry, photo-CVD, optical cleaning, optical lithography, etc., and in the food / medical hygiene field, sterilization. It is used as a laser oscillator excitation light source in the field of laser optics for deodorization, water treatment and the like. As an element for generating the ultraviolet light, an ultraviolet lamp is generally used. Ultraviolet lamps include low-pressure mercury lamps that emit metal gas at a relatively low pressure and low temperature, deuterium lamps, excimer lamps, high-pressure mercury lamps that emit metal gas at a relatively high pressure and high temperature, and metal halide lamps. . Since all of the above-described lamps emit the generated ultraviolet light to the outside of the lamp tube, the tube material must have a good ultraviolet transmittance and a material that can sufficiently withstand the emission temperature. In addition, it is required to have excellent processing characteristics for processing into a lamp tube. Silica glass is a material that meets these requirements, and most ultraviolet lamp tubes have been made of silica glass.

【0003】しかしながら、シリカガラス中には微量の
遷移金属元素やアルカリ金属元素・アルカリ土類金属元
素等の不純物が含まれており、これら金属不純物が、例
えば遷移金属元素にあっては紫外線を吸収し、またアル
カリ金属元素・アルカリ土類金属元素にあってはシリカ
ガラスの再結晶化を促進しクリストバライトを生成し、
白色失透を起させるため、紫外線ランプチュ−ブ材とし
ては前記金属元素不純物の少ないものが使用されてい
る。ところが前記のシリカガラスを紫外線ランプのチュ
−ブ材として実際に用い長時間紫外線を発光させるとラ
ンプチュ−ブに紫外線ダメ−ジが生じ、所謂ソラリゼ−
ションによる紫外線の透過率の低下が起こった。特に低
圧力低温で発光させる紫外線ランプにおいてこのソラリ
ゼ−ションが顕著であった。
However, silica glass contains trace amounts of impurities such as transition metal elements, alkali metal elements and alkaline earth metal elements, and these metal impurities absorb, for example, ultraviolet rays in the case of transition metal elements. In addition, in the case of alkali metal elements and alkaline earth metal elements, promote the recrystallization of silica glass to produce cristobalite,
In order to cause white devitrification, an ultraviolet lamp tube material having a small amount of metal element impurities is used. However, when the above silica glass is actually used as a tube material of an ultraviolet lamp and emits ultraviolet light for a long time, ultraviolet damage occurs in the lamp tube, so-called solarization.
The transmission caused a decrease in the transmittance of ultraviolet light. In particular, this solarization was remarkable in an ultraviolet lamp which emits light at low pressure and low temperature.

【0004】[0004]

【発明が解決しようとする課題】こうした現状に鑑み、
本発明者等は、比較的低圧力低温度で発光させる紫外線
ランプ(以下低圧ランプという)の紫外線によるソラリ
ゼ−ションをなくし寿命の長い紫外線ランプの作成につ
いて鋭意研究を重ねた結果、ランプチュ−ブに使用する
シリカガラス中のアルカリ金属元素、アルカリ土類金属
元素および遷移金属元素を特定の範囲内に規定するとと
もに非移動性OH基濃度をも特定の範囲に設定し、かつ
シリカガラスの仮想温度を一定範囲にすると紫外線ダメ
−ジが少なく、ソラリゼ−ションによる透過率の低下が
少なくなることを見出した。こうした知見に基づき本発
明を完成したものである。
In view of the current situation,
The present inventors have conducted intensive research on the production of an ultraviolet lamp having a long life by eliminating solarization caused by ultraviolet rays of an ultraviolet lamp (hereinafter, referred to as a low pressure lamp) emitting light at a relatively low pressure and a low temperature. The alkali metal element, alkaline earth metal element and transition metal element in the silica glass to be used are specified within a specific range, the non-mobile OH group concentration is also set to a specific range, and the fictive temperature of the silica glass is set. It has been found that, when it is within a certain range, ultraviolet damage is small, and a decrease in transmittance due to solarization is small. The present invention has been completed based on these findings.

【0005】本発明は、紫外線ダメ−ジが少なく、ラン
プ寿命の長い紫外線ランプ用高純度シリカガラスを提供
することを目的とする。
According to the present invention, the ultraviolet light damage is small,
Providing high-purity silica glass for UV lamps with long lamp life
The purpose is to do.

【0006】また、本発明は、紫外線ランプ用チューブ
を提供することを目的とする。
Further , the present invention relates to a tube for an ultraviolet lamp.
The purpose is to provide.

【0007】さらに、本発明は、上記シリカガラスの製
造方法を提供することを目的とする。
Another object of the present invention is to provide a method for producing the above silica glass.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明は、波長150〜400nm域の紫外線ランプ用シリ
カガラスにおいて、遷移金属元素各々の含有量が50w
tppb以下、アルカリ金属元素およびアルカリ土類金
属元素各々の含有量が100wtppb以下、非移動性
OH基濃度が5wtppm〜1,000wtppmで、
かつ仮想温度が1,000〜1,300℃、酸素ガス放
出量が5×10 18 分子数/m 2 以下であることを特徴と
する紫外線ランプ用高純度シリカガラスおよびその製造
方法に係る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a UV lamp having a wavelength range of 150 to 400 nm.
In Kaglass, the content of each transition metal element is 50 w
tppb or less, alkali metal element and alkaline earth gold
The content of each element is 100 wtppb or less, non-mobile
OH group concentration is 5wtppm ~ 1,000wtppm,
With a virtual temperature of 1,000 to 1,300 ° C and oxygen gas release
The output is 5 × 10 18 molecules / m 2 or less.
High purity silica glass for ultraviolet lamp and its production
According to the method .

【0009】上記シリカガラスで作成された低圧ラン
プ、例えばエキシマランプ、特にKrClエキシマラン
プ(222nm)、XeClエキシマランプ(308n
m)、および150nm〜400nmの紫外線を放射す
るランプは優れた耐ソラリゼ−ションを示し、ランプ寿
命は長いものである。
A low-pressure lamp made of the above silica glass, for example, an excimer lamp, particularly a KrCl excimer lamp (222 nm), a XeCl excimer lamp (308n)
m), and lamps that emit UV light from 150 nm to 400 nm show excellent solarization resistance and have a long lamp life.

【0010】上記本発明のシリカガラス中に含まれる遷
移金属元素不純物としてはTi、Cr、Fe、Ni、C
uが挙げられ、その含有量は各々50wtppb以下、
また、Li、K、Na等のアルカリ金属元素およびC
a、Mgのアルカリ土類金属元素の含有量は各々100
wtppb以下であることが重要である。遷移金属元素
およびアルカリ金属元素・アルカリ土類金属元素の含有
量が前記範囲内にあれば前記元素による紫外線吸収が低
減され、また再結晶化によるクリストバライトの発生に
基づく白色失透が抑えられる。この範囲の不純物含有量
である結晶質シリカ粉溶融シリカガラスは原料シリカ粉
体を塩素ガスまたは塩化水素ガス含有雰囲気加熱により
純化処理を行うことにより得られる。しかしながら、過
度の純化処理は非移動性OH基の濃度を低下させ、該非
移動性OH基による耐ソラリゼ−ション作用の効果を低
下するばかりでなく、製造コストも高いものになり、経
済的でない。そのため遷移金属元素各々の含有量は1w
tppb以上、またアルカリ金属元素およびアルカリ土
類金属元素各々の含有量は5wtppb以上にとどめる
べきである。
The transition metal element impurities contained in the silica glass of the present invention include Ti, Cr, Fe, Ni, C
u, whose content is 50 wtppb or less,
Alkali metal elements such as Li, K, and Na;
a, the content of alkaline earth metal elements of Mg is 100
It is important that it is not more than wtppb. When the contents of the transition metal element and the alkali metal element / alkaline earth metal element are within the above ranges, ultraviolet absorption by the elements is reduced, and white devitrification due to the generation of cristobalite due to recrystallization is suppressed. The crystalline silica powder fused silica glass having an impurity content in this range can be obtained by subjecting the raw silica powder to a purification treatment by heating the atmosphere containing chlorine gas or hydrogen chloride gas. However, excessive purification treatment lowers the concentration of non-migrating OH groups, not only reduces the effect of solarization resistance due to the non-migrating OH groups, but also increases the production cost and is not economical. Therefore, the content of each transition metal element is 1 w
The content of each of the alkali metal element and the alkaline earth metal element should be 5 wtppb or more.

【0011】本発明のシリカガラス中の非移動性OH基
含有量は5wtppm〜1000wtppmがよい。こ
の範囲の非移動性OH基を含有するシリカガラスは前記
非移動性OH基がガラスネットワ−クのタ−ミネ−タ−
となりシリカガラス中の歪みをリラックスさせ紫外線に
よるダメ−ジを受けにくくする。非移動性OH基の濃度
が5wtppb未満では前記作用がなく、逆に1,00
0wtppbを越えると水素分子や酸素分子の発生が多
くなりこれら分子に起因する黒色失透が現れたり、耐紫
外線性を下げる。
The content of non-mobile OH groups in the silica glass of the present invention is preferably from 5 wtppm to 1000 wtppm. Silica glass containing non-mobile OH groups in this range has a non-mobile OH group whose terminator is a glass network.
This relaxes the distortion in the silica glass and makes it less susceptible to damage by ultraviolet light. When the concentration of non-mobile OH groups is less than 5 wtppb, the above effect is not obtained.
If it exceeds 0 wtppb, the generation of hydrogen molecules and oxygen molecules increases, and black devitrification due to these molecules appears and the ultraviolet light resistance decreases.

【0012】さらに、本発明のシリカガラスの仮想温度
範囲を1,000〜1,300℃にする必要がある。前
記仮想温度範囲を有するシリカガラスは封入した金属ガ
スによるエッチング作用が少なく白色失透が非常に起こ
りにくい。
Further, the fictive temperature range of the silica glass of the present invention needs to be 1,000 to 1,300 ° C. Silica glass having the above-mentioned virtual temperature range has little etching action due to the enclosed metal gas, and white devitrification is very unlikely to occur.

【0013】上記要件に加え更に本発明のシリカガラス
中の酸素ガスの放出量をガラス表面1m2当たり5×1
18分子数以下に抑えることにより酸素ガスの紫外線吸
収、特に約150〜300nmの波長の光の吸収による
酸素ガス自身の励起および該吸収エネルギ−に基づく化
学反応によるオゾンの生成がなくシリカガラスのネット
ワ−クの破壊がない。そのため一層紫外線ダメ−ジを防
ぐことができる。
In addition to the above requirements, the amount of oxygen gas released from the silica glass of the present invention is set to 5 × 1 per m 2 of glass surface.
0 18 UV absorption of oxygen gas by suppressing below the number of molecules, in particular about the excitation of the oxygen gas itself due to the absorption of light of a wavelength of 150~300nm and the absorbed energy - silica glass without production of ozone by chemical reactions based on There is no destruction of the network. Therefore, ultraviolet damage can be further prevented.

【0014】上記でいう非移動性OH基濃度とは、厚さ
2mmのシリカガラスサンプルを1Torr以下の真空
下にて1000℃、10時間以上に加熱処理を行った後
に存在するOH基濃度をいう。OH基測定方法は、D.
M.Dodd、D.B.Fraser、OPtical
Determinations of OH inF
used Silica J.Applieed Ph
ysics,Vol37,(1966)pp.3911
に従う。
The above-mentioned non-mobile OH group concentration refers to the OH group concentration present after a silica glass sample having a thickness of 2 mm is subjected to heat treatment at 1000 ° C. for 10 hours or more under a vacuum of 1 Torr or less. . The OH group measurement method is described in D.
M. Dodd, D.E. B. Fraser, Optical
Determinations of OH inF
used Silica J. Applied Ph
ysics, Vol 37, (1966) pp. 3911
Obey.

【0015】また、シリカガラスの仮想温度とは、室温
でのシリカガラスの密度、屈折率等の物性値が設定され
たと仮想される温度であり、そのシリカガラスの経る熱
履歴により異なる(R.Bruckener Jour
nal of Non−Crystalline So
lids, Vol.5,(1970) pp.123
〜175)。
The fictive temperature of silica glass is a temperature at which it is assumed that physical properties such as density and refractive index of silica glass at room temperature are set, and differs depending on the heat history of the silica glass (R. Brukener Jour
nal of Non-Crystalline So
lids, Vol. 5, (1970) pp. 123
175).

【0016】本発明の高純度シリカガラスは以下の数種
類の方法により製造される。すなわち、先ずSiC
4、HSiCl3、CH3SiCl3、(CH32SiC
2、CH3Si(OCH33、Si(OCH34等のケ
イ素化合物を原料とし、それから酸水素またはプロパン
等の火炎加水分解法で合成したシリカガラス、または天
然結晶質シリカ粉を純化処理して得たシリカ原料を火炎
ベルヌイ法または電気加熱溶融法により溶融ガラス化し
シリカガラスを作成し、それを加熱成形してチュ−ブ状
とし、次いで大気または窒素雰囲気下、好ましくは1T
orr以下の真空下で1,000〜1,300℃で10
〜100時間加熱処理することからなる。前記各種製造
法のシリカガラスはその中の遷移金属元素各々の含有量
が50wtppb以下、アルカリ金属元素およびアルカ
リ土類元素各々の含有量が100wtppb以下になる
ように作成される。また加熱処理条件はシリカガラス中
の非移動性OH基濃度が5wtppm〜1,000wt
ppm、酸素ガス放出量が5×1018分子数/m2以下
で、かつ仮想温度が1,000℃〜1,300℃となる
条件が選択される。 前記合成シリカガラスの作り方に
おいて酸水素火炎加水分解法が好ましい。これ以外の例
えばプラズマ法等では、シリカガラス中の非移動性OH
基濃度が極端に少なくなり過ぎ、紫外線によるソラリゼ
−ションを抑えることができない。
The high-purity silica glass of the present invention is produced by the following several methods. That is, first, SiC
l 4 , HSiCl 3 , CH 3 SiCl 3 , (CH 3 ) 2 SiC
l 2 , CH 3 Si (OCH 3 ) 3 , Si (OCH 3 ) 4 and other silicon compounds as raw materials, and then silica glass or natural crystalline silica powder synthesized by a flame hydrolysis method such as oxyhydrogen or propane. The silica raw material obtained by the purification treatment is melt vitrified by a flame Bernoulli method or an electric heating melting method to prepare a silica glass, which is formed into a tube by heat molding, and then, in an air or nitrogen atmosphere, preferably 1T.
10 to 1,000 to 1,300 ° C under a vacuum of orr
The heat treatment is carried out for up to 100 hours. The silica glass of the above-mentioned various production methods is prepared such that the content of each of the transition metal elements therein is 50 wtppb or less, and the content of each of the alkali metal element and the alkaline earth element is 100 wtppb or less. The heat treatment conditions are such that the concentration of immobile OH groups in the silica glass is 5 wtppm to 1,000 wt.
ppm, the amount of released oxygen gas is 5 × 10 18 molecules / m 2 or less, and the fictive temperature is selected from the conditions of 1,000 ° C. to 1,300 ° C. An oxyhydrogen flame hydrolysis method is preferred in the method of producing the synthetic silica glass. In other cases such as the plasma method, non-mobile OH in silica glass is used.
The radical concentration becomes extremely low, and solarization due to ultraviolet rays cannot be suppressed.

【0017】本発明のシリカガラス中の各物性値は以下
の方法により測定される。 1)非移動性OH基濃度測定: 赤外線吸収分光光度法による(前出D. M.Dodd、D.B.Fraser)。
The physical properties in the silica glass of the present invention are measured by the following methods. 1) Non-mobile OH group concentration measurement: Infrared absorption spectrophotometry (DM Dodd, DB Fraser, supra).

【0018】 2)仮想温度測定:ラマン散乱分光光度法による(A.E. Geissberger、F.L.Galeener、 Physical Review B、Vol.28、 No.6(1983)pp.3266〜3271)。2) Virtual temperature measurement: Raman scattering spectrophotometry (AE Geissberger, FL Galeener, Physical Review B, Vol. 28, No. 6 (1983) pp. 3266-3271).

【0019】 3)酸素ガス放出量測定:ガスマス分析法による(Y.Morimoto、 et al.、Jounal of Non− Crystalline Solids、 Vol.139(1992) pp35〜 46)。3) Oxygen gas emission measurement: by gas mass analysis (Y. Morimoto, et al., Journal of Non-Crystalline Solids, Vol. 139 (1992) pp. 35-46).

【0020】 4)Na、K、Ca、Cr、Fe、Ni、Cuの分析法:原子吸光分析法によ る。4) Analysis method of Na, K, Ca, Cr, Fe, Ni, Cu: Atomic absorption spectrometry.

【0021】 5)Li、Mg、Tiの分析法:IPC質量分析法による。5) Li, Mg, Ti analysis: by IPC mass spectrometry.

【0022】 6)初期透過率:紫外線分光光度法による。6) Initial transmittance: by ultraviolet spectrophotometry.

【0023】 7)KrClエキシマランプ照射実験:KrClエキシマランプ、波長 222nm、光出力2W、光エネルギ −密度0.1W/cm2、照射時間 1000時間後、透過率測定。7) KrCl excimer lamp irradiation experiment: KrCl excimer lamp, wavelength: 222 nm, light output: 2 W, light energy—density: 0.1 W / cm 2 , irradiation time: after 1000 hours, transmittance measurement.

【0024】[0024]

【実施例】実施例1〜3 SiCl4を原料とし、酸水素火炎加水分解法により表
1に示す不純物濃度の高純度シリカガラスシリンダ−を
合成した。得られた合成シリカガラスシリンダ−を円筒
型電気炉の上部より挿入し、軟化点以上に加熱し直径3
0mm、肉厚2mm、長さ200mmのチュ−ブに加熱
成形した。該チュ−ブを2けい化モリブデンのヒ−タの
ある電気炉内に設置し、大気中にて1100℃で100
時間加熱処理を行い、該熱処理チュ−ブを更にステンレ
ススチ−ルジャケットで、タングステンメッシュヒ−タ
−のある真空炉内に設置し、約1×10-2Torrの真
空度で10時間、1000℃の加熱処理を行った。得ら
れたチュ−ブを用いて低圧ランプを作成し、その性能確
認実験をおこなった。その結果は表1のとおりである。
EXAMPLES Examples 1 to 3 Using SiCl 4 as a raw material, high-purity silica glass cylinders having the impurity concentrations shown in Table 1 were synthesized by an oxyhydrogen flame hydrolysis method. The obtained synthetic silica glass cylinder was inserted from the upper part of the cylindrical electric furnace and heated to a temperature higher than the softening point to obtain a diameter of 3 mm.
It was formed into a tube having a thickness of 0 mm, a thickness of 2 mm, and a length of 200 mm by heating. The tube was placed in an electric furnace with a molybdenum disilicide heater and heated at 1100 ° C. in air.
The heat treatment tube was further placed in a vacuum furnace having a tungsten mesh heater with a stainless steel jacket, and the tube was heated at a degree of vacuum of about 1 × 10 -2 Torr for 10 hours at 1000 hours. The heat treatment of ° C was performed. A low-pressure lamp was prepared using the obtained tube, and its performance was confirmed. Table 1 shows the results.

【0025】実施例4、5 実施例1〜3と同様にして作成したチュ−ブを実施例
では大気中1200℃で10時間加熱処理を行った後、
更に約1×10-3Torrの真空度で5時間、1000
℃の加熱処理を行った。一方、実施例では前記チュ−
ブを約1Torrの真空中で1000℃、10時間の加
熱処理を行った。それらの結果を表1に示す。
[0025] Ju was prepared in the same manner as in Examples 4 and 5 Examples 1-3 - Bed Example 4
After heating at 1200 ° C for 10 hours in the atmosphere,
Further, at a vacuum of about 1 × 10 −3 Torr for 5 hours, 1000
The heat treatment of ° C was performed. On the other hand, in the fifth embodiment, the tube
The tube was subjected to a heat treatment at 1000 ° C. for 10 hours in a vacuum of about 1 Torr. Table 1 shows the results.

【0026】比較例1〜4 上記各実施例と比較のため表1記載の不純物含量のシリ
カガラスチュ−ブを同表記載の条件の加熱処理を行っ
た。その結果を表1に示す。
Comparative Examples 1 to 4 For comparison with the above Examples, a silica glass tube having an impurity content shown in Table 1 was subjected to a heat treatment under the conditions shown in the same Table. Table 1 shows the results.

【0027】[0027]

【表1】 注)(1)初期透過率は、厚さ2mm、波長222nm
での初期透過率をいう。(2) エキシマランプの透過率は、KrClエキシマラ
ンプ(222nm)、光エネルギ−密度0.1W/cm
2、100時間照射後の222nmでの透過率をいう。
[Table 1] Note) (1) Initial transmittance is 2mm thickness, 222nm wavelength
Means the initial transmittance. (2) The transmittance of the excimer lamp is KrCl excimer lamp (222 nm), light energy density 0.1 W / cm
2. Refers to the transmittance at 222 nm after irradiation for 100 hours.

【0028】上記表に示されるように本発明のシリカガ
ラスで作成したランプは1000時間の点灯後も僅かな
透過率の低下があるに過ぎない。これに対し、本発明の
範囲外のシリカガラスで作成したランプの透過率の低下
は著しいものがある。
As shown in the above table, the lamp made of the silica glass of the present invention has a slight decrease in transmittance even after lighting for 1000 hours. In contrast, the transmittance of lamps made of silica glass outside the scope of the present invention is significantly reduced.

【0029】[0029]

【発明の効果】本発明の紫外線ランプ用シリカガラス
は、高純度で、紫外線に対する耐ソラリゼ−ション性に
も優れる上に、それで作成した紫外線ランプチューブ、
特に低圧紫外線ランプチューブは、含有金属ガスによる
エッチング作用を防止できる上に、白色失透などによる
透過率の低下がなく、ランプ寿命を長く維持できます。
そして、前記紫外線ランプ用シリカガラスはチューブ状
シリカガラスを1Torr以下の真空中で1,000〜
1,300℃、10〜100時間加熱処理するという簡
便な方法で容易に製造できます。
The silica glass for an ultraviolet lamp according to the present invention.
Has high purity and solarization resistance to ultraviolet rays
UV lamp tube made with it,
In particular, the low-pressure UV lamp tube depends on the contained metal gas.
In addition to being able to prevent etching, white devitrification
There is no decrease in transmittance, and lamp life can be maintained longer.
And the silica glass for the ultraviolet lamp is in a tubular shape.
Silica glass in a vacuum of 1 Torr or less from 1,000 to
Heat treatment at 1,300 ° C for 10 to 100 hours
It can be easily manufactured in a convenient way.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01J 61/30 H01J 61/30 C (58)調査した分野(Int.Cl.6,DB名) C03C 3/06 C03B 20/00 Continuation of the front page (51) Int.Cl. 6 identification code FI H01J 61/30 H01J 61/30 C (58) Field surveyed (Int.Cl. 6 , DB name) C03C 3/06 C03B 20/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】波長150〜400nm域の紫外線ランプ
用シリカガラスにおいて、遷移金属元素各々の含有量が
50wtppb以下、アルカリ金属元素およびアルカリ
土類金属元素各々の含有量が100wtppb以下、非
移動性OH基濃度が5wtppm〜1,000wtpp
mで、かつ仮想温度が1,000〜1,300℃、酸素
ガス放出量が5×10 18 分子数/m 2 以下であることを
特徴とする紫外線ランプ用高純度シリカガラス。
1. An ultraviolet lamp having a wavelength of 150 to 400 nm.
In the silica glass for use, the content of each of the transition metal elements is 50 wtppb or less, the content of each of the alkali metal element and the alkaline earth metal element is 100 wtppb or less, and the non-mobile OH group concentration is 5 wtppm to 1,000 wtpp.
m, virtual temperature of 1,000 to 1,300 ° C, oxygen
A high-purity silica glass for an ultraviolet lamp, wherein a gas emission amount is 5 × 10 18 molecules / m 2 or less .
【請求項2】けい素化合物から火炎加水分解法により
リンダー状透明高純度シリカガラスを合成したのち、加
熱成型することでチューブ状透明高純度シリカガラスと
し、次いで1Torr以下の真空中で1000℃〜1,
300℃、10〜100時間加熱処理し、非移動性OH
基濃度を5〜1,000wtppm、仮想温度を1,0
00〜1,300℃、酸素ガス放出量を5×1018分子
数/m2以下に設定することを特徴とする紫外線ランプ
用高純度シリカガラスの製造方法。
2. A method of producing a silicon compound from a silicon compound by a flame hydrolysis method.
After synthesizing transparent high-purity silica glass,
By thermoforming, it becomes tube-shaped transparent high-purity silica glass.
Then, in a vacuum of 1 Torr or less,
Heat treatment at 300 ° C. for 10 to 100 hours to obtain non-mobile OH
Base concentration is 5 to 1,000 wtppm, fictive temperature is 1.0
A method for producing high-purity silica glass for an ultraviolet lamp, wherein the temperature is set to 00 to 1,300 ° C. and the amount of released oxygen gas is set to 5 × 10 18 molecules / m 2 or less.
【請求項3】高純化処理をした結晶質シリカ粉を火炎ベ
ルヌイ法または電気加熱溶融法によりシリンダー状透明
高純度シリカガラスを合成したのち、加熱成型すること
でチューブ状透明高純度シリカガラスとし、次いで1T
orr以下の真空中で1,000〜1,300℃、10
〜100時間加熱処理し、非移動性OH基濃度を5〜
1,000wtppm、仮想温度を1,000〜1,3
00℃、酸素ガス放出量を5×1018分子数/m2以下
に設定することを特徴とする紫外線ランプ用高純度シリ
カガラスの製造方法。
3. The highly purified crystalline silica powder is cylindrically transparent by a flame Bernoulli method or an electric heat melting method.
After synthesizing high-purity silica glass, heat molding
Into a tube-shaped transparent high-purity silica glass, then 1T
1,000 to 1,300 ° C in a vacuum of not more than orr, 10
Heat treatment for ~ 100 hours to reduce non-mobile OH group concentration
1,000 wtppm, fictive temperature of 1,000 to 1,3
A method for producing a high-purity silica glass for an ultraviolet lamp, wherein the temperature is set at 00 ° C. and the amount of released oxygen gas is 5 × 10 18 molecules / m 2 or less.
JP6024969A 1994-01-28 1994-01-28 High purity silica glass for ultraviolet lamp and method for producing the same Expired - Lifetime JP2980510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6024969A JP2980510B2 (en) 1994-01-28 1994-01-28 High purity silica glass for ultraviolet lamp and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6024969A JP2980510B2 (en) 1994-01-28 1994-01-28 High purity silica glass for ultraviolet lamp and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07215731A JPH07215731A (en) 1995-08-15
JP2980510B2 true JP2980510B2 (en) 1999-11-22

Family

ID=12152808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6024969A Expired - Lifetime JP2980510B2 (en) 1994-01-28 1994-01-28 High purity silica glass for ultraviolet lamp and method for producing the same

Country Status (1)

Country Link
JP (1) JP2980510B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729090A (en) * 1995-02-21 1998-03-17 General Electric Company Sodium halide discharge lamp
JP3292016B2 (en) * 1995-12-20 2002-06-17 ウシオ電機株式会社 Discharge lamp and vacuum ultraviolet light source device
JPH1021880A (en) * 1996-07-08 1998-01-23 Toshiba Lighting & Technol Corp Discharge lamp, irradiation device, sterilizing device, and water treatment equipment
JP3794664B2 (en) * 1998-07-29 2006-07-05 信越化学工業株式会社 Synthetic quartz glass member, manufacturing method thereof, and optical component for excimer laser
EP1101741B1 (en) * 1999-11-15 2005-07-13 Heraeus Quarzglas GmbH & Co. KG Quartz glass product for an optical element and process of its manufacture
JP3415533B2 (en) 2000-01-12 2003-06-09 エヌイーシーマイクロ波管株式会社 High pressure discharge lamp
JP3591470B2 (en) * 2001-03-19 2004-11-17 ウシオ電機株式会社 Discharge lamp
JP3582500B2 (en) * 2001-05-23 2004-10-27 ウシオ電機株式会社 Ultra high pressure mercury lamp
JP4865965B2 (en) * 2001-08-10 2012-02-01 株式会社日本フォトサイエンス Liquid treatment apparatus and method using ultraviolet rays
JP2004035272A (en) * 2002-06-28 2004-02-05 Asahi Glass Co Ltd Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube
JP4169325B2 (en) * 2002-07-31 2008-10-22 信越石英株式会社 Quartz glass jig and manufacturing method thereof
JP4336086B2 (en) * 2002-09-10 2009-09-30 信越石英株式会社 Synthetic quartz glass fiber, strand, yarn and cloth
JP4400136B2 (en) * 2003-08-05 2010-01-20 ウシオ電機株式会社 Short arc type mercury vapor discharge lamp
DE10342828A1 (en) * 2003-09-17 2005-04-14 Degussa Ag High purity pyrogenic silica
JP4134927B2 (en) * 2004-03-25 2008-08-20 ウシオ電機株式会社 Excimer lamp
WO2005101456A1 (en) * 2004-04-12 2005-10-27 Shin-Etsu Quartz Products Co., Ltd. Synthetic quartz glass tube for excimer uv lamp and method for production thereof
JP2006294440A (en) * 2005-04-12 2006-10-26 Shinetsu Quartz Prod Co Ltd Deformed synthetic quartz tube for excimer uv lamp, and its manufacturing method
JP2006335577A (en) * 2005-05-31 2006-12-14 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass tube for high transmission excimer uv lamp and its producing method
US9318311B2 (en) * 2011-10-11 2016-04-19 Kla-Tencor Corporation Plasma cell for laser-sustained plasma light source
JP7155098B2 (en) * 2019-12-11 2022-10-18 クアーズテック株式会社 SILICA GLASS FOR OPTICAL DEVICE AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JPH07215731A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
JP2980510B2 (en) High purity silica glass for ultraviolet lamp and method for producing the same
EP1094040B1 (en) Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
EP1125897B1 (en) Synthetic quartz glass and method for preparing the same
US6143676A (en) Synthetic silica glass used with uv-rays and method producing the same
JP5706623B2 (en) Synthetic silica glass and method for producing the same
JP5366303B2 (en) Synthetic silica glass for discharge lamps, discharge lamp lamps produced therewith, discharge lamp apparatus provided with the discharge lamp lamps, and method for producing the synthetic silica glass for discharge lamps
JP4531904B2 (en) Optical material for ultraviolet ray and method for producing the same
JP2007532459A (en) Quartz glass element for UV radiation source, its manufacturing method and method for determining suitability of quartz glass element
JPH0791084B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
JP2005067913A (en) Synthetic quartz glass and manufacturing method therefor
JP2005170706A (en) Ultraviolet-absorbing synthetic quartz glass and method for producing the same
JP4111940B2 (en) Method for producing synthetic silica glass large plate for high output vacuum ultraviolet light
JP2008189547A (en) Synthetic quartz glass and its production method
JPH06305767A (en) Silica glass for devitrification resistant discharge lamp
JP2991901B2 (en) Ultraviolet absorbing silica glass and method for producing the same
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2955463B2 (en) Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same
JP2001180962A (en) Synthesized quartz glass and manufacturing method
JPH07267674A (en) High-purity silica glass for short-wavelength ultraviolet lamp
JPH06227827A (en) Transparent silica glass and its production
JP3630533B2 (en) Synthetic silica glass large plate for high output vacuum ultraviolet ray and method for producing the same
JP2005310455A (en) Ultraviolet lamp
JP4392204B2 (en) Quartz glass and method for producing the same
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term