JP2001180962A - Synthesized quartz glass and manufacturing method - Google Patents

Synthesized quartz glass and manufacturing method

Info

Publication number
JP2001180962A
JP2001180962A JP36630899A JP36630899A JP2001180962A JP 2001180962 A JP2001180962 A JP 2001180962A JP 36630899 A JP36630899 A JP 36630899A JP 36630899 A JP36630899 A JP 36630899A JP 2001180962 A JP2001180962 A JP 2001180962A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
less
wavelength
glass body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36630899A
Other languages
Japanese (ja)
Inventor
Yorisuke Ikuta
順亮 生田
Shinya Kikukawa
信也 菊川
Kensho Shimodaira
憲昭 下平
Akio Masui
暁夫 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP36630899A priority Critical patent/JP2001180962A/en
Publication of JP2001180962A publication Critical patent/JP2001180962A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synthesized quartz glass without decrease of transmission factor by an ultraviolet irradiation of wavelength 150-200 nm and the manufacturing method. SOLUTION: A synthesized quartz glass is characterized by an OH group concentration of 100 ppm or less, hydrogen molecule concentration less than 1×1017 molecule/cm3, and no reduction type of defect substantially, therein; and by that change of absorbance index in 150-200 nm after irradiation of an ultraviolet ray of wavelength 172 nm at an illuminance of 10 mW/cm2 for 15 kJ/cm2 is 0.2 cm-1 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長150〜20
0nmの紫外線を光源とする装置に用いられる光学部材
用合成石英ガラスとその製造方法に関し、詳しくはAr
Fエキシマレーザ(193nm)、F2レーザ(157
nm)、低圧水銀ランプ(185nm)、Xe2 *エキシ
マランプ( 172nm)などの紫外線から真空紫外線
までに用いるレンズ、プリズム、フォトマスク、窓材、
ペリクルなどの光学部品として用いられる合成石英ガラ
スとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
More specifically, the present invention relates to a synthetic quartz glass for an optical member used in a device using a 0 nm ultraviolet ray as a light source and a method for producing the same.
F excimer laser (193 nm), F 2 laser (157
nm), low-pressure mercury lamp (185 nm), Xe 2 * excimer lamp (172 nm), etc.
The present invention relates to a synthetic quartz glass used as an optical component such as a pellicle and a method for producing the same.

【0002】[0002]

【従来の技術】合成石英ガラスは、近赤外から真空紫外
域にわたる広範囲の波長域にわたって透明な材料である
こと、熱膨張係数が極めて小さく寸法安定性に優れてい
ること、また、金属不純物をほとんど含有せず高純度で
あることなどの特徴がある。そのため、従来のg線、i
線を光源として用いた光学装置の光学部材には合成石英
ガラスが主に用いられてきた。
2. Description of the Related Art Synthetic quartz glass is a transparent material over a wide wavelength range from near infrared to vacuum ultraviolet, has a very small coefficient of thermal expansion, has excellent dimensional stability, and has a high level of metal impurities. It has features such as high purity with little content. Therefore, the conventional g-line, i
Synthetic quartz glass has been mainly used as an optical member of an optical device using a line as a light source.

【0003】近年、LSIの高集積化に伴い、ウエハ上
に集積回路パターンを描画する光リソグラフィ技術にお
いて、より線幅の短い微細な描画技術が要求されてお
り、これに対応するために露光光源の短波長化が進めら
れている。すなわち、例えばリソグラフィ用ステッパの
光源は、従来のg線(436nm)、i線(365n
m)から進んで、ArFエキシマレーザやF2レーザが
用いられようとしている。
In recent years, with the increase in integration of LSIs, a finer drawing technique with a smaller line width is required in an optical lithography technique for drawing an integrated circuit pattern on a wafer. Are being shortened. That is, for example, the light source of the lithography stepper is a conventional g-line (436 nm), i-line (365n).
Starting from m), an ArF excimer laser or an F 2 laser is being used.

【0004】また、低圧水銀ランプやXe2 *エキシマラ
ンプは、光CVDなどの装置、シリコンウェハの洗浄ま
たはオゾン発生装置などに用いられており、また今後光
リソグラフィ技術に適用すべく開発が進められている。
低圧水銀ランプやエキシマランプに用いられるランプの
ガス封入管、または前述の短波長光源を用いた光学装置
に用いられる光学素子にも合成石英ガラスを用いる必要
がある。
[0004] Low-pressure mercury lamps and Xe 2 * excimer lamps are used in devices such as photo-CVD, cleaning silicon wafers or ozone generators, and are being developed for application to photolithography technology in the future. ing.
It is necessary to use synthetic quartz glass for a gas-filled tube of a lamp used for a low-pressure mercury lamp or an excimer lamp, or an optical element used for an optical device using the above-mentioned short-wavelength light source.

【0005】これらの光学系に用いられる合成石英ガラ
スは、紫外域から真空紫外域までにわたる波長での光透
過性が要求されるとともに、使用波長での耐光性が高い
こと(光照射後に透過率が低下しないこと)が要求され
る。
[0005] The synthetic quartz glass used in these optical systems is required to have light transmittance at wavelengths ranging from the ultraviolet region to the vacuum ultraviolet region, and has high light resistance at the wavelength used (the transmittance after light irradiation). Is not reduced).

【0006】従来の合成石英ガラスでは、ArFエキシ
マレーザやF2レーザなどの高エネルギー光源からの紫
外線を照射すると、紫外線領域に新たな吸収帯を生じる
ため、ArFエキシマレーザやF2レーザなどを光源と
した光学系を構築する際の光学部材としては問題があっ
た。
In conventional synthetic quartz glass, when an ultraviolet ray is irradiated from a high energy light source such as an ArF excimer laser or an F 2 laser, a new absorption band is generated in an ultraviolet region, so that an ArF excimer laser or an F 2 laser is used as a light source. However, there is a problem as an optical member when constructing the optical system described above.

【0007】ArFエキシマレーザやF2レーザなどを
長時間照射すると、いわゆるE’センター(≡Si・)
と呼ばれる214nmを中心とする吸収帯(以下、21
4nm吸収帯という)と、NBOHC(非架橋酸素ラジ
カル:≡Si−O・)と呼ばれる260nmを中心とす
る吸収帯(以下、260nm吸収帯という)とが生成す
る。
When an ArF excimer laser or an F 2 laser is irradiated for a long time, the so-called E ′ center (≡Si.)
Absorption band centered at 214 nm (hereinafter referred to as 21
An absorption band centered on 260 nm (hereinafter referred to as 260 nm absorption band) called NBOHC (non-crosslinked oxygen radical: ≡Si—O.) Is generated.

【0008】これらの吸収帯の生成を抑制して耐紫外線
性を向上させる技術として、還元型欠陥や酸化型欠陥を
実質的に含まず、かつ合成石英ガラス中にOH基を10
0ppm以上含有させ、水素分子を5×1016分子/c
3以上含有させる方法が提案されている(特開平3−
101282)。合成石英ガラス中の水素分子は、紫外
線照射によって生成するE’センターやNBOHCなど
の欠陥を修復する作用があり、またOH基は、紫外線照
射した場合にE’センターやNBOHCなどの欠陥とな
る欠陥前駆体の濃度を低減する作用があるとされてい
る。
As a technique for suppressing the generation of these absorption bands and improving the resistance to ultraviolet light, there is substantially no reduction type defect or oxidation type defect, and an OH group in the synthetic quartz glass is 10%.
0 ppm or more, containing 5 × 10 16 hydrogen molecules / c
m 3 method of incorporating more has been proposed (JP-3-
101282). Hydrogen molecules in the synthetic quartz glass have the effect of repairing defects such as E ′ center and NBOHC generated by ultraviolet irradiation, and OH groups are defects that become defects such as E ′ center and NBOHC when irradiated with ultraviolet light. It is said to have an effect of reducing the concentration of the precursor.

【0009】しかし本発明者らが、紫外線照射による合
成石英ガラスの光透過性の変化について詳細な研究を行
った結果、合成石英ガラスに生じる吸収帯には、214
nm吸収帯と260nm吸収帯以外に、163nmを中
心とする吸収帯(以下、163nm吸収帯という)が生
成することを知見した。波長200nm以上の紫外線を
光源とする装置の光学部材として用いる場合には、使用
波長と163nm吸収帯とが離れているため、163n
m吸収帯の生成による透過率低下の影響はほとんどない
が、波長200nm以下の紫外線を光源とする装置の光
学部材として用いた場合には、163nm吸収帯の生成
により使用波長付近の透過率が低下する。
However, the present inventors have conducted a detailed study on the change in light transmittance of synthetic quartz glass due to ultraviolet irradiation, and as a result, the absorption band generated in synthetic quartz glass has 214
It was found that an absorption band centered at 163 nm (hereinafter referred to as a 163 nm absorption band) was generated in addition to the nm absorption band and the 260 nm absorption band. When used as an optical member of a device using ultraviolet light having a wavelength of 200 nm or more as a light source, the wavelength used is 163 nm apart from the 163 nm absorption band.
Although there is almost no effect of transmittance decrease due to the generation of the m absorption band, when used as an optical member of a device using ultraviolet light having a wavelength of 200 nm or less as a light source, the transmittance around the used wavelength decreases due to the generation of the 163 nm absorption band. I do.

【0010】[0010]

【発明が解決しようとする課題】本発明は、波長150
〜200nmの紫外線を光源とする装置に用いられ、波
長150〜200nmの紫外線を光源とする紫外線を照
射しても使用波長付近の透過率が低下しない合成石英ガ
ラスとその製造方法の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has a wavelength of 150.
It is intended to provide a synthetic quartz glass which is used in an apparatus using ultraviolet light of from 200 to 200 nm as a light source and does not decrease in transmittance near a used wavelength even when irradiated with ultraviolet light of an ultraviolet light having a wavelength of from 150 to 200 nm, and a method for producing the same. I do.

【0011】[0011]

【課題を解決するための手段】本発明者らは、波長15
0〜200nmにおける初期透過率(以下、紫外線透過
性という)および紫外線照射による透過率低下(以下、
耐紫外線性という)と合成石英ガラスの組成との関係に
ついても詳細な検討を行った結果、紫外線透過性には合
成石英ガラス中のOH基および還元型欠陥の濃度が、耐
紫外線性には合成石英ガラス中のOH基および水素分子
の濃度が、それぞれ影響することを知見し、特に耐紫外
線性については紫外線照射量と合成石英ガラス中の水素
分子濃度との間に最適な関係が存在することを見出し
た。
Means for Solving the Problems The inventors of the present invention have a wavelength of 15 nm.
Initial transmittance at 0 to 200 nm (hereinafter, referred to as ultraviolet transmittance) and transmittance decrease due to ultraviolet irradiation (hereinafter, referred to as ultraviolet transmittance).
A detailed study was also conducted on the relationship between the UV resistance and the composition of the synthetic quartz glass. As a result, the UV transmittance was determined by the concentration of OH groups and reduced defects in the synthetic quartz glass. We found that the concentrations of OH groups and hydrogen molecules in quartz glass affected each other, and that there was an optimal relationship between the amount of UV irradiation and the concentration of hydrogen molecules in synthetic quartz glass, especially for UV resistance. Was found.

【0012】すなわち本発明は、波長150〜200n
mの紫外線を照射して使用される合成石英ガラスであっ
て、合成石英ガラス中のOH基濃度が100ppm以
下、水素分子濃度が1×1017分子/cm3未満であっ
て、実質的に還元型欠陥を含まず、かつ波長172nm
の紫外線を照度10mW/cm2で10kJ/cm2照射
した後の波長150〜200nmにおける吸光係数の変
化量が0.2cm-1以下であることを特徴とする合成石
英ガラスを提供する。
That is, according to the present invention, a wavelength of 150 to 200 n
m is irradiated with ultraviolet rays, the synthetic quartz glass has an OH group concentration of 100 ppm or less, a hydrogen molecule concentration of less than 1 × 10 17 molecules / cm 3 , and is substantially reduced. Contains no mold defects and has a wavelength of 172 nm
The synthetic quartz glass is characterized in that the amount of change in the extinction coefficient at a wavelength of 150 to 200 nm after irradiating 10 kJ / cm 2 with an illuminance of 10 mW / cm 2 is 0.2 cm −1 or less.

【0013】また本発明は、波長150〜200nmの
紫外線を照射して使用される合成石英ガラスであって、
合成石英ガラス中のOH基濃度が100ppm以下、水
素分子濃度が1×1017分子/cm3以上であって、実
質的に還元型欠陥を含まず、かつ波長172nmの紫外
線を照度10mW/cm2で3kJ/cm2照射した後の
波長150〜200nmにおける吸光係数の変化量が
0.05cm-1以下であることを特徴とする合成石英ガ
ラスを提供する。
The present invention also provides a synthetic quartz glass used by irradiating ultraviolet rays having a wavelength of 150 to 200 nm,
The synthetic quartz glass has an OH group concentration of 100 ppm or less, a hydrogen molecule concentration of 1 × 10 17 molecules / cm 3 or more, substantially does not contain reduced defects, and emits ultraviolet light having a wavelength of 172 nm at an illuminance of 10 mW / cm 2. The synthetic quartz glass is characterized in that the amount of change in the extinction coefficient at a wavelength of 150 to 200 nm after irradiating with 3 kJ / cm 2 is 0.05 cm −1 or less.

【0014】紫外線照射による透過率低下の原因は、紫
外線照射による2つの吸収帯の生成である。すなわち、
紫外線照射により、還元型欠陥≡Si−Si≡による1
63nm吸収帯、E’センターによる214nm吸収帯
が生成し、これら吸収帯の生成により波長150〜20
0nmにおける透過率が低下する。これら吸収帯の生成
量は、合成石英ガラス中の水素分子および還元型欠陥の
濃度と紫外線照射量に大きく依存し、実際の用途におけ
る紫外線照射量を考慮し、最適な組成の合成石英ガラス
を使用する必要がある。
[0014] The cause of the decrease in transmittance due to ultraviolet irradiation is the generation of two absorption bands due to ultraviolet irradiation. That is,
Irradiation with ultraviolet rays causes reduction-type defects {Si—Si}
A 63 nm absorption band and a 214 nm absorption band by the E ′ center are generated, and the generation of these absorption bands causes a wavelength of 150 to 20 nm.
The transmittance at 0 nm decreases. The amount of these absorption bands generated depends largely on the concentration of hydrogen molecules and reduced defects in the synthetic quartz glass and the amount of UV irradiation. There is a need to.

【0015】すなわち、合成石英ガラス中に水素分子が
1×1017分子/cm3以上含有されていると、ある照
射量までは214nm吸収帯の生成が抑制され、163
nm吸収帯もほとんど生成しないために、150〜20
0nmにおける透過率はほとんど低下しない。しかし、
ある量を超えて照射すると、163nm吸収帯が急激に
生成し、150〜200nmにおける透過率は大きく低
下する。一方、合成石英ガラス中の水素分子濃度が1×
1017分子/cm3未満であれば、比較的少ない照射量
でも220nm吸収帯が生成し、150〜200nmに
おける透過率も低下する。しかし、これら吸収帯の生成
量はある照射量を超えると飽和し、かつ163nm吸収
帯も生成しないため、150〜200nmにおける透過
率低下もある程度以下に抑制できる。
That is, when the synthetic quartz glass contains 1 × 10 17 molecules / cm 3 or more of hydrogen molecules, generation of a 214 nm absorption band is suppressed up to a certain irradiation amount, and
Since almost no nm absorption band is generated,
The transmittance at 0 nm hardly decreases. But,
When irradiation is performed beyond a certain amount, a 163 nm absorption band is rapidly generated, and the transmittance at 150 to 200 nm is greatly reduced. On the other hand, the hydrogen molecule concentration in the synthetic quartz glass is 1 ×
If it is less than 10 17 molecules / cm 3 , a 220 nm absorption band is generated even with a relatively small irradiation dose, and the transmittance at 150 to 200 nm is also reduced. However, the generation amount of these absorption bands is saturated when the irradiation amount exceeds a certain irradiation amount, and the 163 nm absorption band is not generated, so that a decrease in transmittance at 150 to 200 nm can be suppressed to some extent or less.

【0016】具体的には例えば、波長172nmの紫外
線を照度10mW/cm2で使用する光学装置の光学部
材としては、総照射量が7kJ/cm2未満の範囲で使
用される場合、水素分子濃度が1×1017分子/cm3
以上であって、実質的に還元型欠陥を含まず、かつ波長
172nmの紫外線を照度10mW/cm2で3kJ/
cm2照射した後の波長150〜200nmにおける吸
光係数の変化量が0.05cm-1以下である合成石英ガ
ラスが好ましい。
Specifically, for example, as an optical member of an optical device using ultraviolet light having a wavelength of 172 nm at an illuminance of 10 mW / cm 2 , when the total irradiation amount is less than 7 kJ / cm 2 , the hydrogen molecule concentration Is 1 × 10 17 molecules / cm 3
As described above, ultraviolet light having a wavelength of 172 nm, which does not substantially contain reduced defects, is irradiated with 3 kJ / cm 2 at an illuminance of 10 mW / cm 2.
Synthetic quartz glass in which the change in the absorption coefficient at a wavelength of 150 to 200 nm after irradiation with cm 2 is 0.05 cm −1 or less is preferable.

【0017】また、総照射量が7kJ/cm2以上の範
囲で使用される場合は、水素分子濃度が1×1017分子
/cm3未満であって、実質的に還元型欠陥を含まず、
かつ波長172nmの紫外線を照度10mW/cm2
10kJ/cm2照射した後の波長150〜200nm
における吸光係数の変化量が0.2cm-1以下である合
成石英ガラスが好ましい。
When the total irradiation amount is in the range of 7 kJ / cm 2 or more, the hydrogen molecule concentration is less than 1 × 10 17 molecules / cm 3 , and substantially contains no reduced defects.
And a wavelength of 150 to 200 nm after irradiating an ultraviolet ray having a wavelength of 172 nm with an illuminance of 10 kJ / cm 2 at an illuminance of 10 mW / cm 2.
It is preferable to use a synthetic quartz glass having a change in the extinction coefficient at 0.2 cm -1 or less.

【0018】また合成石英ガラス中の還元型欠陥(≡S
i−Si≡結合)は、紫外線を照射した場合に、≡Si
−Si≡+hν→≡Si・+≡Si・なる反応によって
214nm吸収帯(≡Si・)の生成を招き、波長15
0〜200nmにおける紫外線の透過率を低下させる。
さらにこの還元型欠陥は、波長163nm吸収帯を有す
るため初期の紫外線透過性が低下する。したがって、本
発明においては、合成石英ガラス中の還元型欠陥を実質
的に含まないこと、すなわち5×1016個/cm3以下
であることが重要である。還元型欠陥の濃度は、163
nmにおける吸収強度より求めることができる(Phy
s.Rev.B38,12772(1988))。
Further, reduced defects (欠 陥 S
(i-Si≡ bond) forms ≡Si
−Si≡ + hν → ≡Si ・ + ≡Si ・ causes a 214 nm absorption band (≡Si ・) to be generated, and the wavelength 15
It reduces the transmittance of ultraviolet light at 0 to 200 nm.
Furthermore, since this reduced defect has an absorption band at a wavelength of 163 nm, the initial ultraviolet transmittance is reduced. Therefore, in the present invention, it is important that the synthetic quartz glass does not substantially contain reduced defects, that is, it is 5 × 10 16 / cm 3 or less. The concentration of reduced defects was 163
(Phy)
s. Rev .. B38, 12772 (1988)).

【0019】また合成石英ガラス中のOH基濃度は10
0ppm以下とすることが重要であり、波長180nm
以下の真空紫外域の紫外線を光源とする装置の光学部材
に使用される場合には、OH基濃度は50ppm以下が
好ましく、さらに波長170nm以下の紫外線を光源と
する装置の光学部材としては、10ppm未満が好まし
い。OH基濃度が低いほど真空紫外域の紫外線に対して
高い透過率が得られる。またOH基濃度は耐紫外線性に
も影響を与え、OH基濃度が少ないほど耐紫外線性に優
れる。
The OH group concentration in the synthetic quartz glass is 10
It is important that the content is 0 ppm or less, and the wavelength is 180 nm.
When used as an optical member of a device using ultraviolet light in the vacuum ultraviolet region as a light source, the OH group concentration is preferably 50 ppm or less, and 10 ppm is used as an optical member of a device using ultraviolet light having a wavelength of 170 nm or less as a light source. Less than is preferred. The lower the OH group concentration, the higher the transmittance for ultraviolet rays in the vacuum ultraviolet region. The OH group concentration also affects the UV resistance, and the lower the OH group concentration, the better the UV resistance.

【0020】また本発明において、合成石英ガラス中の
金属不純物(アルカリ金属、アルカリ土類金属、遷移金
属等)や塩素は、紫外域から真空紫外域までにおける透
過率を低下させるだけでなく耐紫外線性を低下させる原
因ともなるため、その濃度は少ない方が好ましい。金属
不純物の濃度は100ppb以下、特に10ppb以下
が好ましい。塩素濃度は、100ppm以下、特に10
ppm以下、さらには2ppm以下が好ましい。
In the present invention, metal impurities (alkali metal, alkaline earth metal, transition metal, etc.) and chlorine in the synthetic quartz glass not only reduce the transmittance from the ultraviolet region to the vacuum ultraviolet region, but also resist ultraviolet rays. It is preferable that the concentration is low, because it may cause the property to be reduced. The concentration of the metal impurity is preferably 100 ppb or less, particularly preferably 10 ppb or less. The chlorine concentration is 100 ppm or less, particularly 10 ppm
ppm or less, more preferably 2 ppm or less.

【0021】本発明の合成石英ガラスは、直接法、スー
ト法(VAD法、OVD法)やプラズマ法により製造で
きる。特に、合成石英ガラス中のOH基濃度を比較的容
易に制御でき、合成時の温度が低いため塩素や金属など
の不純物の混入を避けるうえで有利なことから、スート
法が好ましい。
The synthetic quartz glass of the present invention can be produced by a direct method, a soot method (VAD method, OVD method) or a plasma method. In particular, the soot method is preferable because the OH group concentration in the synthetic quartz glass can be relatively easily controlled, and the temperature at the time of synthesis is low, which is advantageous in avoiding contamination of impurities such as chlorine and metal.

【0022】本発明は、また、 1)ガラス形成原料を酸化性雰囲気にて火炎加水分解し
て得られる石英ガラス微粒子を基材上に堆積、成長させ
て多孔質石英ガラス体を形成する工程と、(2)多孔質
石英ガラス体を900〜1300℃の温度に加熱し脱水
する工程と、(3)脱水された多孔質石英ガラス体を1
400℃以上に加熱して透明ガラス体を得る工程と、を
この順に行う合成石英ガラスの製造方法を提供する。
The present invention also provides: 1) a step of depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material in an oxidizing atmosphere on a substrate to form a porous quartz glass body; (2) a step of heating the porous quartz glass body to a temperature of 900 to 1300 ° C. for dehydration, and (3) a step of removing the dehydrated porous quartz glass body by one step.
And a step of obtaining a transparent glass body by heating to 400 ° C. or higher.

【0023】ガラス形成原料としては、ガス化可能な原
料であれば特に限定されないが、SiCl4、SiHC
3、SiH2Cl2、CH3SiCl3などの塩化物、S
iF4、SiHF3、SiH22などのフッ化物、SiB
4、SiHBr3などの臭化物、SiI4などのヨウ化
物といったハロゲン化ケイ素化合物、またはRnSi
(OR)4-n(ここでRは炭素数1〜4のアルキル基、
nは0〜3の整数)で示されるアルコキシシランが挙げ
られる。特に、塩素を含有しないアルコキシシランが好
ましい。また前記基材としては、石英ガラス製の種棒
(例えば特公昭63−24973記載の種棒)を使用で
きる。また棒状に限らず板状の基材を使用してもよい。
The raw material for forming the glass is not particularly limited as long as it is a raw material that can be gasified, but SiCl 4 , SiHC
chlorides such as l 3 , SiH 2 Cl 2 , CH 3 SiCl 3 , S
Fluoride such as iF 4 , SiHF 3 , SiH 2 F 2 , SiB
r 4, bromides such as SiHBr 3, halogenated silicon compounds such as an iodide such as SiI 4, or R n Si
(OR) 4-n (where R is an alkyl group having 1 to 4 carbon atoms,
and n is an integer of 0 to 3). In particular, an alkoxysilane containing no chlorine is preferable. As the base material, a seed rod made of quartz glass (for example, a seed rod described in JP-B-63-24973) can be used. Further, the substrate is not limited to the rod shape, and a plate-shaped substrate may be used.

【0024】工程(2)における雰囲気としては、ヘリ
ウム、窒素などの不活性ガス100%の雰囲気、または
ヘリウムなどの不活性ガスを主成分とする雰囲気である
ことが好ましい。圧力については10Torr(1To
rr=133.3224Pa)以下の減圧下が好まし
く、特に1Torr以下が好ましい。
The atmosphere in the step (2) is preferably an atmosphere containing 100% of an inert gas such as helium or nitrogen, or an atmosphere mainly containing an inert gas such as helium. For pressure, 10 Torr (1 To
(rr = 133.3224 Pa) or less, and preferably 1 Torr or less.

【0025】また工程(3)における雰囲気としては、
ヘリウムなどの不活性ガス100%の雰囲気、またはヘ
リウムなどの不活性ガスを主成分とする雰囲気であるこ
とが好ましい。圧力については、減圧または常圧であれ
ばよい。特に常圧の場合はヘリウムガスを使用できる。
また減圧の場含は100Torr以下が好ましい。
The atmosphere in the step (3) is as follows.
An atmosphere containing 100% of an inert gas such as helium or an atmosphere mainly containing an inert gas such as helium is preferable. The pressure may be reduced pressure or normal pressure. In particular, in the case of normal pressure, helium gas can be used.
Further, the pressure reduction is preferably 100 Torr or less.

【0026】また本発明において、工程(2)の代り
に、以下の工程(2’)を行うこともできる。 (2’)多孔質石英ガラス体を1200℃以下のフッ素
化合物含有ガス雰囲気下に曝して脱水する工程。
In the present invention, the following step (2 ') can be performed instead of step (2). (2 ′) a step of exposing the porous quartz glass body to a fluorine compound-containing gas atmosphere at 1200 ° C. or lower to dehydrate it.

【0027】フッ素化合物含有ガス雰囲気としては、フ
ッ素化合物(例えばSiF4、SF6、CHF3、CF4
2)を0.1〜100体積%含有する雰囲気が好まし
い。この際に、多孔質石英ガラス体にはフッ素がドープ
される。この際の、希釈ガスは、窒素、アルゴン、ヘリ
ウムなどの不活性ガスや酸素が好ましい。この雰囲気
下、多孔質石英ガラス体が焼結しない1200℃以下の
温度にて脱水する。圧力0.1〜10気圧(1気圧=
1.01325×105Pa)で数十分〜数時間処理す
ることが好ましい。なお本発明において、「気圧」およ
び「Torr」等の圧力単位はともにゲージ圧ではな
く、絶対圧を意味する。
The fluorine compound-containing gas atmosphere may be a fluorine compound (for example, SiF 4 , SF 6 , CHF 3 , CF 4 ,
F 2) are preferred atmosphere containing 0.1 to 100 vol%. At this time, the porous quartz glass body is doped with fluorine. In this case, the dilution gas is preferably an inert gas such as nitrogen, argon, or helium, or oxygen. Under this atmosphere, dehydration is performed at a temperature of 1200 ° C. or less at which the porous quartz glass body does not sinter. Pressure 0.1 to 10 atm (1 atm =
(1.01325 × 10 5 Pa) for several tens minutes to several hours. In the present invention, pressure units such as “atmospheric pressure” and “Torr” are not gauge pressures but absolute pressures.

【0028】また工程(2’)においては、多孔質石英
ガラス体に均一に短時間でフッ素をドープできることか
ら、1200℃以下の温度にし減圧下で保持した状態で
含フッ素ガスを常圧になるまで導入し、フッ素含有雰囲
気とすることが好ましい。この場合の減圧時の圧力は1
00Torr以下が好ましく、特に10Torr以下が
好ましい。
In the step (2 '), since the porous quartz glass body can be uniformly doped with fluorine in a short time, the fluorine-containing gas is brought to a normal pressure while maintaining the temperature at 1200 ° C. or less and under reduced pressure. And it is preferable to introduce a fluorine-containing atmosphere. In this case, the pressure at the time of decompression is 1
00 Torr or less is preferable, and especially 10 Torr or less is preferable.

【0029】また、本発明においては、工程(3)の後
に、以下の工程(4)を行うことができる。 (4)透明ガラス体を水素を含んだ雰囲気下で加熱して
水素をドープする工程。この場合加熱の温度が600℃
以下であることが好ましい。600℃以上の温度で処理
すると、還元型欠陥が生成するおそれがある。
In the present invention, the following step (4) can be performed after the step (3). (4) A step of heating the transparent glass body in an atmosphere containing hydrogen to dope hydrogen. In this case, the heating temperature is 600 ° C
The following is preferred. If the treatment is performed at a temperature of 600 ° C. or more, there is a possibility that reduced defects are generated.

【0030】前記の方法により得られる合成石英ガラス
は、ステッパレンズその他の光学部材として用いるため
に、光学部材として必要な光学特性を与えるための均質
化、成形などの各種熱処理(以下、光学的熱処理とい
う)を適宜行う必要がある。光学的熱処理は工程(4)
の前に、または後に行うことができる。ただし光学的熱
処理には800〜1800℃の高温を要するため、工程
(4)の前に実施する方が好ましい。
Since the synthetic quartz glass obtained by the above method is used as a stepper lens or other optical members, it is subjected to various heat treatments such as homogenization and molding to give optical properties necessary for the optical members (hereinafter referred to as optical heat treatment). ) Must be performed appropriately. Optical heat treatment is step (4)
Can be done before or after. However, since the optical heat treatment requires a high temperature of 800 to 1800 ° C., it is preferable to perform it before the step (4).

【0031】[0031]

【実施例】以下の例において、例8、15、16は比較
例、その他は実施例に相当する。 (例l〜8、16)四塩化ケイ素を表1に示す酸素ガス
/水素ガス比率にて1200〜1500℃の酸水素火炎
中で加水分解させて形成された石英ガラス微粒子を基材
上に堆積、成長させて500mmφ×600mmの多孔
質石英ガラス体を作製した(工程(l))。得られた多
孔質石英ガラス体を雰囲気制御可能な電気炉内に置き、
表1に示す条件にて不活性ガス100%の減圧雰囲気下
またはフッ素化合物含有雰囲気下で処理を行った(工程
(2)または工程(2’))。
EXAMPLES In the following examples, Examples 8, 15 and 16 correspond to comparative examples, and others correspond to examples. (Examples 1 to 8 and 16) Quartz glass fine particles formed by hydrolyzing silicon tetrachloride in an oxyhydrogen flame at 1200 to 1500 ° C. at an oxygen gas / hydrogen gas ratio shown in Table 1 are deposited on a substrate. Then, a porous quartz glass body having a size of 500 mmφ × 600 mm was produced (step (l)). The obtained porous quartz glass body is placed in an atmosphere controllable electric furnace,
The treatment was carried out under the conditions shown in Table 1 under a reduced-pressure atmosphere of 100% inert gas or an atmosphere containing a fluorine compound (step (2) or step (2 ')).

【0032】続いて、圧力10Torr以下の減圧に保
持した状態で1450℃まで昇温し、この温度にて10
時間保持し透明石英ガラス体(105mmφ×長さ65
0mm)を作製した(工程(3))。得られた透明石英
ガラス体を200mmφ×10mmに切断し、合成石英
ガラスを得た。
Subsequently, the temperature was raised to 1450 ° C. while maintaining the pressure at a reduced pressure of 10 Torr or less.
Hold the transparent quartz glass body (105mmφ x length 65)
0 mm) (step (3)). The obtained transparent quartz glass body was cut into 200 mmφ × 10 mm to obtain a synthetic quartz glass.

【0033】(例9〜15)例1〜8における工程
(3)の後に、得られた透明石英ガラス体を200mm
φ×10mmに切断し、表1に示す条件にて処理し、合
成石英ガラス中に水素分子をドープさせた(工程
(4))。
(Examples 9 to 15) After the step (3) in Examples 1 to 8, the obtained transparent quartz glass body was removed by 200 mm.
It was cut into φ × 10 mm, treated under the conditions shown in Table 1, and doped into synthetic quartz glass with hydrogen molecules (step (4)).

【0034】例1〜16で得られた合成石英ガラス中の
OH基濃度、水素分子濃度、フッ素濃度、酸化型欠陥濃
度、還元型欠陥濃度を表2に示す。なおOH基濃度、フ
ッ素濃度および水素分子濃度は以下の方法により求め
た。
Table 2 shows the OH group concentration, hydrogen molecule concentration, fluorine concentration, oxidized defect concentration, and reduced defect concentration in the synthetic quartz glass obtained in Examples 1 to 16. The OH group concentration, fluorine concentration and hydrogen molecule concentration were determined by the following methods.

【0035】(OH基濃度)赤外分光光度計による測定
を行い、2.7μm波長での吸収ピークからOH濃度を
求めた(Cer.Bull.,55(5),524,
(1976))。
(OH Group Concentration) Measurement was carried out with an infrared spectrophotometer, and the OH concentration was determined from the absorption peak at a wavelength of 2.7 μm (Cer. Bull., 55 (5), 524, 524).
(1976)).

【0036】(水素分子濃度)ラマン分光測定を行い、
レーザラマンスペクトルの4135cm-1の散乱ピーク
により検出した強度I4135と、ケイ素と酸素との間の基
本振動である800cm-1の散乱ピークの強度I800
の強度比(I4135/I800)より、水素分子濃度[分子
/cm3]を求めた(Zhurnal Priklad
noi Spektroskopii,46(6),9
87(1986))。なお本法による検出限界は5×1
16分子/cm3である。
(Hydrogen molecule concentration) Raman spectroscopy was performed,
From the intensity ratio (I 4135 / I 800 ) between the intensity I 4135 detected by the scattering peak at 4135 cm −1 in the laser Raman spectrum and the intensity I 800 of the scattering peak at 800 cm −1 which is the fundamental vibration between silicon and oxygen. , Hydrogen molecule concentration [molecules / cm 3 ] was determined (Zhurn Priklad).
noi Spektroskopii, 46 (6), 9
87 (1986)). The detection limit by this method is 5 × 1
0 16 molecules / cm 3 .

【0037】(フッ素濃度)日本化学会誌,1972
(2),350に記載された方法にしたがって、合成石
英ガラスを無水炭酸ナトリウムにより加熱融解し、得ら
れた融液に蒸留水および塩酸(1+1)を加えて試料液
を調製した。試料液の起電力を、フッ素イオン選択性電
極および比較電極としてラジオメータトレーディング社
製No.945−220およびNo.945−468を
それぞれ用いてラジオメータにより測定し、フッ素イオ
ン標準溶液を用いてあらかじめ作製した検量線に基づい
てフッ素濃度を求めた。
(Fluorine concentration) Journal of the Chemical Society of Japan, 1972
According to the method described in (2), 350, synthetic quartz glass was heated and melted with anhydrous sodium carbonate, and distilled water and hydrochloric acid (1 + 1) were added to the obtained melt to prepare a sample solution. The electromotive force of the sample solution was measured using a No. No. manufactured by Radiometer Trading Co. as a fluorine ion selective electrode and a reference electrode. 945-220 and No. Each of the samples was measured with a radiometer using 945-468, and the fluorine concentration was determined based on a calibration curve prepared in advance using a fluorine ion standard solution.

【0038】また、得られた200mmφ×10mmの
合成石英ガラスの中心部から、30mmφ×10mmの
評価用試料を切出し、30mmφの面を鏡面研磨して次
の評価を実施した。
Further, a sample for evaluation of 30 mmφ × 10 mm was cut out from the center of the obtained synthetic quartz glass of 200 mmφ × 10 mm, and the surface of 30 mmφ was mirror-polished for the following evaluation.

【0039】真空紫外分光光度計(アクトンリサーチ社
製VTMS一502)を用いて波長150〜200nm
の紫外線の透過率を測定した。波長150〜200nm
の紫外線の透過率を波長157nmおよび172nmに
おける透過率で代表させて評価した。また耐紫外線性に
ついては、波長172nmのXe2 *エキシマランプ光
(照度10mW/cm2)を3〜200kJ/cm2照射
した後の波長172nmにおける吸収係数の変化により
評価した。波長157nmおよび172nmにおける初
期透過率と耐紫外線性の評価結果を表3に示す。
A wavelength of 150 to 200 nm was measured using a vacuum ultraviolet spectrophotometer (VTMS-502 manufactured by Acton Research).
Was measured for ultraviolet transmittance. Wavelength 150-200nm
Was evaluated by representing the transmittance of ultraviolet rays at wavelengths of 157 nm and 172 nm. The UV resistance was evaluated based on the change in absorption coefficient at a wavelength of 172 nm after irradiation with Xe 2 * excimer lamp light (illuminance: 10 mW / cm 2 ) having a wavelength of 172 nm for 3 to 200 kJ / cm 2 . Table 3 shows the evaluation results of the initial transmittance and the ultraviolet light resistance at wavelengths of 157 nm and 172 nm.

【0040】例8、例15はOH基濃度が高いため、初
期透過率の低下がみられる。また、例16は還元型欠陥
を含むため、初期透過率がだけでなく、耐紫外線性の低
下もみられる。初期透過率は、実用上は、用途にもよる
が、波長157nmで60%以上、また波長172nm
で80%以上であることが好ましい。
In Examples 8 and 15, since the OH group concentration was high, a decrease in the initial transmittance was observed. Further, since Example 16 contains reduced defects, not only the initial transmittance but also a decrease in UV resistance is observed. Practically, the initial transmittance is 60% or more at a wavelength of 157 nm and 172 nm, although it depends on the application.
Is preferably 80% or more.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】本発明によれば、波長150〜200n
mの紫外線を光源とする装置に用いられ、波長150〜
200nmの紫外線を光源とする紫外線を照射しても使
用波長付近の透過率が低下しない合成石英ガラスとその
製造方法が得られる。
According to the present invention, a wavelength of 150 to 200 n
m used as a light source, and a wavelength of 150 to
The present invention provides a synthetic quartz glass and a method for producing the same in which the transmittance near the used wavelength does not decrease even when irradiated with ultraviolet light using ultraviolet light of 200 nm as a light source.

フロントページの続き (72)発明者 増井 暁夫 東京都目黒区碑文谷2−13−9−404 Fターム(参考) 4G014 AH11 AH21 4G062 AA04 BB02 CC07 MM02 NN01 NN16 Continued on the front page (72) Inventor Akio Masui 2-13-9-404 Himonya, Meguro-ku, Tokyo F-term (reference) 4G014 AH11 AH21 4G062 AA04 BB02 CC07 MM02 NN01 NN16

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】波長150〜200nmの紫外線を照射し
て使用される合成石英ガラスであって、合成石英ガラス
中のOH基濃度が100ppm以下、水素分子濃度が1
×1017分子/cm3未満であって、実質的に還元型欠
陥を含まず、かつ波長172nmの紫外線を照度10m
W/cm2で10kJ/cm2照射した後の波長150〜
200nmにおける吸光係数の変化量が0.2cm-1
下であることを特徴とする合成石英ガラス。
1. A synthetic quartz glass used by irradiating ultraviolet rays having a wavelength of 150 to 200 nm, wherein the synthetic quartz glass has an OH group concentration of 100 ppm or less and a hydrogen molecule concentration of 1 ppm.
Less than × 10 17 molecules / cm 3 , substantially free from reduced defects and having an illuminance of 10 m
W / cm 2 at 10kJ / cm 2 wavelength after irradiation 150
Synthetic quartz glass characterized in that the amount of change in the extinction coefficient at 200 nm is 0.2 cm -1 or less.
【請求項2】波長150〜200nmの紫外線を照射し
て使用される合成石英ガラスであって、合成石英ガラス
中のOH基濃度が100ppm以下、水素分子濃度が1
×1017分子/cm3以上であって、実質的に還元型欠
陥を含まず、かつ波長172nmの紫外線を照度10m
W/cm2で3kJ/cm2照射した後の波長150〜2
00nmにおける吸光係数の変化量が0.05cm-1
下であることを特徴とする合成石英ガラス。
2. A synthetic quartz glass used by irradiating ultraviolet rays having a wavelength of 150 to 200 nm, wherein the synthetic quartz glass has an OH group concentration of 100 ppm or less and a hydrogen molecule concentration of 1 ppm.
× 10 17 molecules / cm 3 or more, substantially free from reduced defects and having an illuminance of 10 m
W / cm 2 in 3kJ / cm 2 wavelength after irradiation 150-2
Synthetic quartz glass characterized in that the variation of the extinction coefficient at 00 nm is 0.05 cm -1 or less.
【請求項3】OH基濃度が10ppm未満であることを
特徴とする請求項1または2に記載の合成石英ガラス。
3. The synthetic quartz glass according to claim 1, wherein the OH group concentration is less than 10 ppm.
【請求項4】請求項1に記載の合成石英ガラスを製造す
る方法であって、 (1)ガラス形成原料を酸化性雰囲気にて火炎加水分解
して得られる石英ガラス微粒子を基材上に堆積、成長さ
せて多孔質石英ガラス体を形成する工程と、 (2)多孔質石英ガラス体を900〜1300℃の温度
に加熱し脱水する工程と、 (3)脱水された多孔質石英ガラス体を1400℃以上
に加熱して透明ガラス体を得る工程と、をこの順に行う
合成石英ガラスの製造方法。
4. A method for producing a synthetic quartz glass according to claim 1, wherein: (1) quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material in an oxidizing atmosphere are deposited on a substrate. Growing the porous quartz glass body to form a porous quartz glass body; (2) heating the porous quartz glass body to a temperature of 900 to 1300 ° C. to dehydrate; and (3) removing the dehydrated porous quartz glass body. A process of heating to 1400 ° C. or higher to obtain a transparent glass body, in this order.
【請求項5】請求項2に記載の合成石英ガラスを製造す
る方法であって、 (1)ガラス形成原料を酸化性雰囲気にて火炎加水分解
して得られる石英ガラス微粒子を基材上に堆積、成長さ
せて多孔質石英ガラス体を形成する工程と、 (2)多孔質石英ガラス体を900〜1300℃の温度
に加熱し脱水する工程と、 (3)脱水された多孔質石英ガラス体を1400℃以上
に加熱して透明ガラス体を得る工程と、 (4)透明ガラス体を水素を含んだ雰囲気下で加熱して
水素をドープする工程と、をこの順に行う合成石英ガラ
スの製造方法。
5. A method for producing a synthetic quartz glass according to claim 2, wherein: (1) depositing quartz glass fine particles obtained by flame hydrolysis of a glass-forming raw material in an oxidizing atmosphere on a substrate. Growing the porous quartz glass body to form a porous quartz glass body; (2) heating the porous quartz glass body to a temperature of 900 to 1300 ° C. to dehydrate; and (3) removing the dehydrated porous quartz glass body. A method for producing synthetic quartz glass, comprising: heating a transparent glass body at 1400 ° C. or higher to obtain a transparent glass body; and (4) heating the transparent glass body in an atmosphere containing hydrogen to dope hydrogen.
【請求項6】工程(2)の代りに、多孔質石英ガラス体
を1200℃以下のフッ素化合物含有ガス雰囲気下に曝
して脱水する工程を行う請求項4または5に記載の合成
石英ガラスの製造方法。
6. The process for producing a synthetic quartz glass according to claim 4, wherein, instead of the step (2), a step of exposing the porous quartz glass body to a gas atmosphere containing a fluorine compound at 1200 ° C. or lower to perform dehydration is performed. Method.
JP36630899A 1999-12-24 1999-12-24 Synthesized quartz glass and manufacturing method Withdrawn JP2001180962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36630899A JP2001180962A (en) 1999-12-24 1999-12-24 Synthesized quartz glass and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36630899A JP2001180962A (en) 1999-12-24 1999-12-24 Synthesized quartz glass and manufacturing method

Publications (1)

Publication Number Publication Date
JP2001180962A true JP2001180962A (en) 2001-07-03

Family

ID=18486460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36630899A Withdrawn JP2001180962A (en) 1999-12-24 1999-12-24 Synthesized quartz glass and manufacturing method

Country Status (1)

Country Link
JP (1) JP2001180962A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057637A1 (en) * 2001-12-21 2003-07-17 Corning Incorporated Fused silica containing aluminum
EP1340722A1 (en) * 2002-01-31 2003-09-03 Heraeus Quarzglas GmbH & Co. KG Synthetic quartz glass material for ArF aligners
WO2003080526A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency Synthetic quartz glass
US6689706B2 (en) 2001-12-21 2004-02-10 Corning Incorporated Fused silica containing aluminum
WO2006031650A3 (en) * 2004-09-10 2006-07-20 Axcelis Tech Inc Electrodeless lamp for emitting ultraviolet and/or vacuum ultraviolet radiation
EP1712528A3 (en) * 2005-04-15 2007-07-04 Heraeus Quarzglas GmbH & Co. KG Optical component of quartz glass, method for producing said component and use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057637A1 (en) * 2001-12-21 2003-07-17 Corning Incorporated Fused silica containing aluminum
US6689706B2 (en) 2001-12-21 2004-02-10 Corning Incorporated Fused silica containing aluminum
EP1340722A1 (en) * 2002-01-31 2003-09-03 Heraeus Quarzglas GmbH & Co. KG Synthetic quartz glass material for ArF aligners
WO2003080526A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency Synthetic quartz glass
JP2003286040A (en) * 2002-03-27 2003-10-07 Japan Science & Technology Corp Synthetic quartz glass
WO2006031650A3 (en) * 2004-09-10 2006-07-20 Axcelis Tech Inc Electrodeless lamp for emitting ultraviolet and/or vacuum ultraviolet radiation
US7166963B2 (en) 2004-09-10 2007-01-23 Axcelis Technologies, Inc. Electrodeless lamp for emitting ultraviolet and/or vacuum ultraviolet radiation
EP1712528A3 (en) * 2005-04-15 2007-07-04 Heraeus Quarzglas GmbH & Co. KG Optical component of quartz glass, method for producing said component and use thereof

Similar Documents

Publication Publication Date Title
KR100667636B1 (en) Synthetic quartz glass and method for preparing the same
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
JP3069562B1 (en) Silica glass optical material for excimer laser and excimer lamp and method for producing the same
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2001180962A (en) Synthesized quartz glass and manufacturing method
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JP3531870B2 (en) Synthetic quartz glass
WO2000039040A1 (en) Synthetic quartz glass and method for preparation thereof
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JPH0867530A (en) Optical glass for ultraviolet light
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP2001302275A (en) Optical member made from synthetic quartz glass
JP4677072B2 (en) Synthetic quartz glass for vacuum ultraviolet optical member and manufacturing method thereof
JP2000154029A (en) Synthetic quartz glass for optical member and its production
JP4459608B2 (en) Method for producing synthetic quartz glass member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080313