JP4946960B2 - Synthetic quartz glass and manufacturing method thereof - Google Patents

Synthetic quartz glass and manufacturing method thereof Download PDF

Info

Publication number
JP4946960B2
JP4946960B2 JP2008102553A JP2008102553A JP4946960B2 JP 4946960 B2 JP4946960 B2 JP 4946960B2 JP 2008102553 A JP2008102553 A JP 2008102553A JP 2008102553 A JP2008102553 A JP 2008102553A JP 4946960 B2 JP4946960 B2 JP 4946960B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass
fluorine
porous
synthetic quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008102553A
Other languages
Japanese (ja)
Other versions
JP2008189547A (en
Inventor
修平 吉沢
順亮 生田
信也 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008102553A priority Critical patent/JP4946960B2/en
Publication of JP2008189547A publication Critical patent/JP2008189547A/en
Application granted granted Critical
Publication of JP4946960B2 publication Critical patent/JP4946960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • C03B19/1461Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、波長180nm以下の光を光源とする光学装置の光学部材用合成石英ガラスおよびその製造方法に関する。より詳細には、Xeエキシマランプ(波長172nm)や重水素ランプ(波長170〜400nm)、Fレーザ(波長157nm)等を光源とした光学装置の、レンズ(投影系、照明系)、プリズム、エタロン、回折格子、フォトマスク、ペリクル(ペリクル材、ペリクルフレームまたはその両者)、窓材などの光学部品材料として用いられる光学部材用合成石英ガラスとその製造方法に関する。 The present invention relates to a synthetic quartz glass for an optical member of an optical device using light having a wavelength of 180 nm or less as a light source and a method for producing the same. More specifically, a lens (projection system, illumination system), prism of an optical device using a Xe 2 excimer lamp (wavelength 172 nm), a deuterium lamp (wavelength 170 to 400 nm), an F 2 laser (wavelength 157 nm) or the like as a light source. The present invention relates to synthetic quartz glass for optical members used as optical component materials such as etalon, diffraction grating, photomask, pellicle (pellicle material, pellicle frame or both) and window material, and a method for producing the same.

従来から光リソグラフィ技術において、ウエハ上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く利用されている。集積回路の高集積化および高機能化に伴い、集積回路の微細化が進み、高解像度の回路パターンを深い焦点深度でウエハ面上に結像させることが露光装置に求められ、露光光源の短波長化が進められている。露光光源は、従来のg線(波長436nm)やi線(波長365nm)から進んで、KrFエキシマレーザ(波長248nm)やArFエキシマレーザ(波長193nm)が用いられようとしている。またさらに回路パターンが100nm以下となる次世代の集積回路に対応するため、露光光源としてFレーザ(波長157.6nm)を用いることが検討され始めている。 Conventionally, in an optical lithography technique, an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a wafer has been widely used. As integrated circuits become highly integrated and highly functional, miniaturization of integrated circuits advances, and exposure apparatuses are required to form high-resolution circuit patterns on the wafer surface with a deep focal depth. Wavelengths are being promoted. The exposure light source is advanced from the conventional g-line (wavelength 436 nm) and i-line (wavelength 365 nm), and KrF excimer laser (wavelength 248 nm) and ArF excimer laser (wavelength 193 nm) are about to be used. Further, in order to cope with next-generation integrated circuits whose circuit pattern is 100 nm or less, it has begun to consider using an F 2 laser (wavelength 157.6 nm) as an exposure light source.

こうした光源を用いた光学装置に使用される光学部材に対して、使用波長域での光透過性(以下、単に「真空紫外線透過性」という)に安定して優れることが要求される。   An optical member used in an optical apparatus using such a light source is required to be stable and excellent in light transmittance in a used wavelength region (hereinafter simply referred to as “vacuum ultraviolet light transmittance”).

真空紫外線透過性の向上を図るためには、合成石英ガラス中のOH基含有量を所定の範囲内にする必要があり、例えば特開平8−75901公報において、OH基含有量が10ppb〜100ppmでありかつフッ素含有量が100ppm以上であることを特徴とする合成石英ガラスが提案されている。   In order to improve the vacuum ultraviolet ray transmittance, the OH group content in the synthetic quartz glass needs to be within a predetermined range. For example, in JP-A-8-75901, the OH group content is 10 ppb to 100 ppm. There has been proposed a synthetic quartz glass having a fluorine content of 100 ppm or more.

前記特開平8−75901公報において、このような合成石英ガラスの製造方法として、珪素化合物を火炎中で加水分解してガラス微粒子を得、該ガラス微粒子を堆積させて多孔質石英ガラスを形成し、次いでフッ素含有雰囲気中で多孔質石英ガラスを加熱処理した後、透明化してフッ素ドープされた合成石英ガラスを得ることを特徴とする合成石英ガラスの製造方法が提案されている。しかしながらこの方法は、多孔質石英ガラスをフッ素含有雰囲気で加熱処理することによりそのOH基含有量を低減するものであり、続く透明ガラス化工程で酸素欠乏型欠陥が生成する場合があり得、真空紫外線透過性に優れた合成石英ガラスを安定して製造することができない。   In JP-A-8-75901, as a method for producing such synthetic quartz glass, a silicon compound is hydrolyzed in a flame to obtain glass fine particles, and the glass fine particles are deposited to form porous quartz glass. Next, a method for producing synthetic quartz glass has been proposed, in which porous quartz glass is heat-treated in a fluorine-containing atmosphere and then transparentized to obtain fluorine-doped synthetic quartz glass. However, this method reduces the OH group content by heat-treating porous quartz glass in a fluorine-containing atmosphere, and oxygen-deficient defects may be generated in the subsequent transparent vitrification process, and vacuum Synthetic quartz glass excellent in ultraviolet transmittance cannot be stably produced.

また透明ガラス化工程以前の工程にて生成した酸素欠乏型欠陥を修復するために、透明合成石英ガラスブロックを酸素ガス含有雰囲気中にて加熱処理する方法も同公報には提案されているが、その処理には非常に時間を要すること、酸素過剰型欠陥が生成し真空紫外域光透過性や耐光性が損なわれる場合があるなどの問題があった。   Moreover, in order to repair the oxygen-deficient defects generated in the process before the transparent vitrification process, a method of heat-treating the transparent synthetic quartz glass block in an oxygen gas-containing atmosphere has also been proposed in the publication, There are problems such as the fact that the treatment takes a very long time, oxygen excess type defects are generated, and the vacuum ultraviolet light transmittance and light resistance may be impaired.

また特開2001−89170公報においては、多孔質石英ガラスのOH基含有量の低減処理、またはフッ素ドープ処理の後、あるいはこれらの処理を実施する際に、酸素ガスを含んだ雰囲気中で多孔質石英ガラスを処理することにより、酸素欠乏型欠陥を修復する方法が提案されている。しかしこの場合も酸素過剰型欠陥が生成する場合があり問題であった。   Further, in Japanese Patent Laid-Open No. 2001-89170, the porous quartz glass is porous in an atmosphere containing oxygen gas after the reduction treatment of the OH group or the fluorine doping treatment, or when performing these treatments. A method for repairing oxygen-deficient defects by treating quartz glass has been proposed. However, even in this case, oxygen-excess type defects may be generated, which is a problem.

特開平8−75901号公報JP-A-8-75901 特開2001−89170号公報JP 2001-89170 A

本発明は、優れた真空紫外線透過性を安定して発揮する合成石英ガラスおよびその製造方法の提供を目的とする。   An object of this invention is to provide the synthetic quartz glass which exhibits the outstanding vacuum ultraviolet-ray transmittance stably, and its manufacturing method.

本発明者らは、最終的に得られる合成石英ガラス体中に存在する酸素欠乏型欠陥の含有量に対して、多孔質石英ガラス中のOH基含有量を低減する工程および透明硝子化する工程の各条件が及ぼす影響を詳細に検討した結果、多孔質石英ガラスを透明ガラス化する際に使用する電気炉の種類および透明ガラス化する際の雰囲気が非常に重要であり、所定の電気炉にて透明ガラス化すれば酸素欠乏型欠陥を含まないフッ素ドープ合成石英ガラスが得られることを見出した。   The inventors of the present invention have a process for reducing the OH group content in the porous quartz glass and a transparent vitrification process with respect to the content of oxygen-deficient defects present in the finally obtained synthetic quartz glass body. As a result of detailed examination of the effects of each of the above conditions, the type of electric furnace to be used for transparent vitrification of porous quartz glass and the atmosphere to be used for transparent vitrification are very important. It has been found that a fluorine-doped synthetic quartz glass containing no oxygen-deficient defects can be obtained by forming a transparent glass.

そこで本発明は、波長180nm以下の光を光源とする光学装置の光学部材用合成石英ガラスの製造方法において、
(a)ガラス形成原料を火炎加水分解して得られる石英ガラス微粒子を基材に堆積・成長させて多孔質石英ガラスを形成する工程と、
(b)該多孔質石英ガラスのOH基含有量の低減を行う工程と、
(c)該多孔質石英ガラスを、フッ素化合物含有雰囲気下にて処理し、多孔質石英ガラスにフッ素をドープする工程と、
(d)該多孔質石英ガラスを、タングステンまたはモリブテンを含む材料をヒーター及びリフレクターの構成材料に用いたメタル炉にて、1300℃以上の温度に昇温して透明ガラス化し、
フッ素含有量が300ppm以上の実質的に酸素欠乏型欠陥を含有しない透明石英ガラス体を得る工程と、を含むことを特徴とする合成石英ガラスの製造方法を提供するものである。
Therefore, the present invention provides a method for producing synthetic quartz glass for an optical member of an optical device using light having a wavelength of 180 nm or less as a light source.
(A) a step of depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material on a substrate to form porous quartz glass;
(B) a step of reducing the OH group content of the porous quartz glass;
(C) treating the porous quartz glass in a fluorine compound-containing atmosphere and doping the porous quartz glass with fluorine;
(D) The porous quartz glass is made into a transparent glass by raising the temperature to 1300 ° C. or higher in a metal furnace using a material containing tungsten or molybdenum as a constituent material of a heater and a reflector ,
And a step of obtaining a transparent quartz glass body containing substantially no oxygen-deficient defects having a fluorine content of 300 ppm or more .

本発明によれば、波長157.6nmおける光透過率が安定している合成石英ガラスが得られる。   According to the present invention, a synthetic quartz glass having a stable light transmittance at a wavelength of 157.6 nm can be obtained.

本発明の工程(a)は多孔質石英ガラスの製造工程である。
合成石英ガラスの形成原料としては、ガス化可能な原料であれば特に制限されないが、SiCl、SiHCl、SiHCl、SiCHClなどの塩化物、SiF、SiHF、SiHなどのフッ化物、SiBr、SiHBrなどの臭化物、SiIなどの沃化物といったハロゲン化珪素化合物、またはRSi(OR)4−n(ここにRは炭素数1〜4のアルキル基、nは0〜3の整数)で示されるアルコキシシランや(CHSi−O−Si(CHなどのハロゲンを含まない珪素化合物が挙げられる。
Process (a) of the present invention is a process for producing porous quartz glass.
The raw material for forming synthetic quartz glass is not particularly limited as long as it is a gasifiable raw material, but chlorides such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , and SiCH 3 Cl 3 , SiF 4 , SiHF 3 , SiH 2. fluorides such as F 2, SiBr 4, bromides such as SiHBr 3, halogenated silicon compounds such as iodide such as SiI 4, or R n Si (oR) 4- n ( wherein R is an alkyl of 1 to 4 carbon atoms Group, n is an integer of 0 to 3), and silicon compounds containing no halogen such as (CH 3 ) 3 Si—O—Si (CH 3 ) 3 .

本発明の工程(b)は、OH基含有量を低減する工程である。
多孔質石英ガラスに含まれるOH基の含有量を低減するためには、いくつかの方法が可能である。具体的には、以下の方法が例示できるが、本発明は、これらに限定されるものではない。
(方法1)該多孔質石英ガラスをフッ素化合物含有雰囲気下に保持する。この場合はフッ素ドープが同時に行われる。
(方法2)該多孔質石英ガラスを塩素化合物含有雰囲気下に保持する。
(方法3)該多孔質石英ガラスを一酸化炭素含有雰囲気下に保持する。
(方法4)該多孔質石英ガラスを水素ガス含有雰囲気下に保持する。この場合は、多孔質石英ガラスに水素がドープされる。したがって、必要に応じて、ドープされた水素の含有量低減処理が併用される。
Step (b) of the present invention is a step of reducing the OH group content.
In order to reduce the content of OH groups contained in the porous quartz glass, several methods are possible. Specifically, the following methods can be exemplified, but the present invention is not limited to these.
(Method 1) The porous quartz glass is held in a fluorine compound-containing atmosphere. In this case, fluorine doping is performed simultaneously.
(Method 2) The porous quartz glass is held in a chlorine compound-containing atmosphere.
(Method 3) The porous quartz glass is held in an atmosphere containing carbon monoxide.
(Method 4) The porous quartz glass is held in a hydrogen gas-containing atmosphere. In this case, the porous quartz glass is doped with hydrogen. Therefore, a doped hydrogen content reduction process is used in combination as necessary.

これら4つの方法の中では、最終的に得られる合成石英ガラス中の残留塩素含有量が少ないことや安全性が高いことから、方法1または方法4が好ましい。   Among these four methods, Method 1 or Method 4 is preferred because the residual chlorine content in the finally obtained synthetic quartz glass is low and the safety is high.

また本発明において、OH基含有量制御工程を実施する際の多孔質石英ガラスの平均かさ密度は1.6g/cm以下、かさ密度分布(すなわち、多孔質石英ガラスの成長軸方向に垂直な断面において、外周から20mmを除いた領域内でのかさ密度の最大と最小との差)は0.6g/cm以下であることが好ましい。これは、多孔質石英ガラスの形成条件を調整したり、あるいは多孔質石英ガラスの製造工程とOH基含有量を低減する工程との間で多孔質石英ガラスを1000℃〜1500℃の範囲内にて加熱したりして、行える。 In the present invention, the average bulk density of the porous quartz glass when performing the OH group content control step is 1.6 g / cm 3 or less, and the bulk density distribution (that is, perpendicular to the growth axis direction of the porous quartz glass). In the cross section, the difference between the maximum and minimum bulk density in the region excluding 20 mm from the outer periphery is preferably 0.6 g / cm 3 or less. This is because the porous quartz glass is adjusted within the range of 1000 ° C. to 1500 ° C. between the process of producing the porous quartz glass or reducing the OH group content. Can be done by heating.

OH基含有量制御工程における、多孔質石英ガラスの平均かさ密度を前記範囲内とすることにより、多孔質石英ガラス中のOH基含有量を充分に制御することができ、また、この後のフッ素ドープ工程におけるフッ素ドープを充分に行うことができる。またかさ密度分布を前記範囲内とすることにより、最終的に得られた合成石英ガラス体中のOH基含有量やフッ素含有量に分布が生じにくく、屈折率や光透過率の均一性が向上する。   In the OH group content control step, by setting the average bulk density of the porous quartz glass within the above range, the OH group content in the porous quartz glass can be sufficiently controlled, and the subsequent fluorine Fluorine dope can be sufficiently performed in the dope process. In addition, by setting the bulk density distribution within the above range, the distribution of the OH group content and fluorine content in the finally obtained synthetic quartz glass body is difficult to occur, and the uniformity of refractive index and light transmittance is improved. To do.

本発明の工程(c)は、フッ素ドープ工程である。
フッ素をドープするためには、多孔質石英ガラスをフッ素化合物含有雰囲気中に保持する。フッ素化合物含有雰囲気としては、含フッ素ガス(例えばSiF、SF、CHF、CF、Fなど)を0.1〜50体積%含有する不活性ガス雰囲気が好ましい。雰囲気温度は室温〜1300℃が好ましい。また、雰囲気圧力100Pa〜101kPa(101kPa=大気圧)が好ましい。さらに、保持時間は、数十分〜数十時間が好ましい。
Step (c) of the present invention is a fluorine doping step.
In order to dope fluorine, the porous quartz glass is held in a fluorine compound-containing atmosphere. As the fluorine compound-containing atmosphere, an inert gas atmosphere containing 0.1 to 50% by volume of a fluorine-containing gas (for example, SiF 4 , SF 6 , CHF 3 , CF 4 , F 2, etc.) is preferable. The ambient temperature is preferably room temperature to 1300 ° C. Moreover, the atmospheric pressure is preferably 100 Pa to 101 kPa (101 kPa = atmospheric pressure). Furthermore, the holding time is preferably several tens of minutes to several tens of hours.

この場合、多孔質石英ガラスへ均一に短時間でフッ素をドープできることから、減圧下(100Torr(13.3kPa)以下、特に10Torr(1.33kPa)以下が好ましい。)で保持した状態で含フッ素ガスを常圧になるまで導入し、フッ素化合物含有雰囲気とすることが好ましい。また400℃以上の高温でフッ素ドープする場合には、酸素欠乏型欠陥などの還元型欠陥が生成しやすくなる。このため、400℃以上の高温でフッ素ドープする場合は、含フッ素ガスの他に酸素ガスを含んだ不活性ガス雰囲気下で多孔質石英ガラスを保持し、還元型欠陥の生成を防ぐことが好ましい。   In this case, since the porous quartz glass can be uniformly doped with fluorine in a short time, the fluorine-containing gas is maintained under reduced pressure (100 Torr (13.3 kPa) or less, particularly preferably 10 Torr (1.33 kPa) or less). It is preferable to introduce until a normal pressure is reached to obtain a fluorine compound-containing atmosphere. Further, when fluorine doping is performed at a high temperature of 400 ° C. or higher, reduced defects such as oxygen-deficient defects are likely to be generated. For this reason, when fluorine doping is performed at a high temperature of 400 ° C. or higher, it is preferable to hold porous quartz glass in an inert gas atmosphere containing oxygen gas in addition to the fluorine-containing gas to prevent the generation of reduced defects. .

本発明の工程(d)は、透明ガラス化工程である。
透明ガラス化は、多孔質石英ガラスを所定の透明ガラス化温度で所定時間保持することにより行われる。透明ガラス化温度は、通常は1300〜1600℃であり、特に1350〜1500℃であることが好ましい。またこの際の雰囲気としては、ヘリウムや窒素などの不活性ガス100体積%の雰囲気、またはヘリウムや窒素などの不活性ガスを主成分とする雰囲気を用いることができる。圧力については、減圧または常圧であればよい。特に常圧の場合にはヘリウムガスを用いることができる。また、減圧の場合には100Torr(13.3kPa)以下とすることが好ましい。
Step (d) of the present invention is a transparent vitrification step.
Transparent vitrification is performed by holding porous quartz glass at a predetermined transparent vitrification temperature for a predetermined time. The transparent vitrification temperature is usually 1300 to 1600 ° C, particularly preferably 1350 to 1500 ° C. As an atmosphere at this time, an atmosphere containing 100% by volume of an inert gas such as helium or nitrogen, or an atmosphere containing an inert gas such as helium or nitrogen as a main component can be used. The pressure may be reduced pressure or normal pressure. In particular, helium gas can be used at normal pressure. In the case of reduced pressure, it is preferably 100 Torr (13.3 kPa) or less.

透明ガラス化の際に用いる電気炉としては、断熱材、試料容器、試料台およびヒーター材料がカーボンではない電気炉、通称黒鉛炉以外の炉を用いる。具体的にはタングステンまたはモリブテンを含む材料をヒーターおよびリフレクター(熱反射板や遮熱板)に用いた電気炉(以下、メタル炉ともいう)を使用できる。また、二珪化モリブテンや炭化珪素をヒーターに用い、またアルミナを主成分とする耐熱セラミックスを断熱材にそれぞれ用いた電気炉(以下、マルチ炉ともいう)を使用することができる。透明ガラス化の際の雰囲気中に酸素ガスが含まれる場合にはマルチ炉を使用することが好ましい。   As the electric furnace used for transparent vitrification, a heat insulating material, a sample container, a sample table, and an electric furnace whose heater material is not carbon, or a furnace other than a graphite furnace is used. Specifically, an electric furnace (hereinafter also referred to as a metal furnace) in which a material containing tungsten or molybdenum is used for a heater and a reflector (a heat reflection plate or a heat shield plate) can be used. In addition, an electric furnace (hereinafter, also referred to as a multi-furnace) in which disilicide molybdenum or silicon carbide is used as a heater and heat-resistant ceramic mainly composed of alumina is used as a heat insulating material can be used. When oxygen gas is contained in the atmosphere during transparent vitrification, it is preferable to use a multi-furnace.

本発明の方法により得られた合成石英ガラスは、露光装置用のレンズ、その他の光学部材として用いるために、光学部材として必要な屈折率均質性や低複屈折性などの光学特性を与えるための均質化、成形、アニールなどの各熱処理(以下、光学的熱処理という)を適宜行う必要がある。窒素ガスやアルゴンガスなどの不活性ガス雰囲気下、温度500〜1200℃、圧力101kPa(大気圧)〜1Paにて数十〜数百時間保持して、アニールを実施することにより合成石英ガラス中の三員環構造や四員環構造などの歪んだ構造を低減することができるが、合成石英ガラス中のフッ素含有量が多いほどよりより短時間のアニール処理により合成石英ガラス中の歪んだ構造を低減できる。光学的熱処理は透明ガラス化の後に行うことができる。   The synthetic quartz glass obtained by the method of the present invention is used to provide optical characteristics such as refractive index homogeneity and low birefringence necessary for an optical member for use as a lens for an exposure apparatus and other optical members. Each heat treatment (hereinafter referred to as optical heat treatment) such as homogenization, molding, and annealing needs to be appropriately performed. In an atmosphere of an inert gas such as nitrogen gas or argon gas, a temperature of 500 to 1200 ° C. and a pressure of 101 kPa (atmospheric pressure) to 1 Pa are maintained for several tens to several hundred hours, and annealing is performed. Although distorted structures such as three-membered ring structures and four-membered ring structures can be reduced, the more fluorine content in synthetic quartz glass, the shorter the annealing treatment, the more distorted structure in synthetic quartz glass. Can be reduced. The optical heat treatment can be performed after transparent vitrification.

本発明において、合成石英ガラス中のOH基含有量は波長180nm以下の光透過率に影響を及ぼし、OH基含有量が多いほど初期真空紫外線透過性は低下する。その含有量は1ppm以下であることが好ましく、特に0.1ppm以下であることが好ましい。   In the present invention, the OH group content in the synthetic quartz glass affects the light transmittance at a wavelength of 180 nm or less, and the initial vacuum ultraviolet transmittance decreases as the OH group content increases. The content is preferably 1 ppm or less, and particularly preferably 0.1 ppm or less.

本発明において、合成石英ガラス中のフッ素は、OH基と置換しOH基含有量を低減する効果を有するうえ、三員環構造、四員環構造などの歪んだ構造を低減する効果がある。具体的には本発明の合成石英ガラスはフッ素を100ppm以上、特には300ppm以上含有することが好ましい。   In the present invention, fluorine in the synthetic quartz glass has the effect of substituting OH groups to reduce the OH group content, and also has the effect of reducing distorted structures such as three-membered ring structures and four-membered ring structures. Specifically, the synthetic quartz glass of the present invention preferably contains 100 ppm or more, particularly 300 ppm or more of fluorine.

本発明において、合成石英ガラス中の酸素欠乏型欠陥(≡Si−Si≡(≡は、Si−O結合を示す。以下同様)、酸素過剰型欠陥(≡Si−O−O−Si≡)、≡SiH結合、溶存酸素分子などは、真空紫外光透過性および耐光性に悪影響を及ぼすため、実質的に含有しない方が好ましい。   In the present invention, oxygen-deficient defects (≡Si—Si≡ (≡ represents Si—O bond; the same applies hereinafter), oxygen-rich defects (≡Si—O—O—Si≡), Since ≡SiH bonds, dissolved oxygen molecules, and the like adversely affect vacuum ultraviolet light transmittance and light resistance, it is preferable not to contain them substantially.

特に、酸素欠乏欠陥は波長163nmを中心とする吸収帯を有するため、実質的に含有しないことが特に好ましい。また、酸素過剰型欠陥は、波長155〜180nmにかけてブロードな吸収帯を有するだけでなく、紫外線照射時にNBOHCを生成させる。NBOHCは紫外線照射中の赤色蛍光の原因であり、かつ180nm付近と260nm付近に吸収帯を有するため、155〜300nmの広い波長域における光透過率が損なわれる。以上のように、酸素過剰型欠陥も実質的に含有しないことが特に好ましい。   In particular, the oxygen deficiency defect has an absorption band centered at a wavelength of 163 nm, and therefore it is particularly preferable that the oxygen deficiency defect is not substantially contained. Further, the oxygen excess type defect not only has a broad absorption band from a wavelength of 155 to 180 nm, but also generates NBOHC when irradiated with ultraviolet rays. NBOHC is a cause of red fluorescence during ultraviolet irradiation, and has absorption bands near 180 nm and 260 nm, so that light transmittance in a wide wavelength range of 155 to 300 nm is impaired. As described above, it is particularly preferable that oxygen-excess defects are not substantially contained.

本発明において、合成石英ガラス中の三員環構造、四員環構造などの歪んだ構造は、波長165nm以下の光透過率を低下させる傾向があるため、少ない方が好ましい。具体的にはレーザラマンスペクトルにおける495cm−1の散乱ピーク強度Iおよび606cm−1の散乱ピーク強度Iが、440cm−1の散乱ピーク強度Iに対してそれぞれI/I≦0.59、I/I≦0.15であることが好ましい。 In the present invention, a distorted structure such as a three-membered ring structure or a four-membered ring structure in the synthetic quartz glass tends to lower the light transmittance at a wavelength of 165 nm or less, and therefore it is preferable that the number is less. Scattering peak intensity I 2 of the specific scattering peak intensity of 495cm -1 in the laser Raman spectrum is I 1 and 606 cm -1 is, I 1 / I 0 ≦ 0.59 respectively scattering peak intensity I 0 of 440 cm -1 , I 2 / I 0 ≦ 0.15 is preferable.

本発明において、合成石英ガラス中の塩素は、真空紫外域における光透過性および耐光性を悪化させるため、その含有量が少ない方が好ましい。具体的には合成石英ガラス中の塩素含有量は10ppm以下、特には5ppm以下、さらには実質的に含有しないことが好ましい。   In the present invention, chlorine in the synthetic quartz glass deteriorates the light transmittance and light resistance in the vacuum ultraviolet region, so that the content thereof is preferably small. Specifically, the chlorine content in the synthetic quartz glass is preferably 10 ppm or less, particularly preferably 5 ppm or less, and further not substantially contained.

本発明において、合成石英ガラス中のアルカリ金属(Na,K,Liなど)、アルカリ土類金属(Mg,Caなど)、遷移金属(Fe,Ni,Cr,Cu,Mo,W,Al,Ti,Ceなど)などの金属不純物は、紫外域から真空紫外域における透過率を低下させるだけでなく、耐紫外線性を低下させる原因ともなるため、その含有量は極力少ない方が好ましい。具体的には金属不純物の合計含有量が100ppb以下、特に50ppb以下が好ましい。   In the present invention, alkali metals (Na, K, Li, etc.), alkaline earth metals (Mg, Ca, etc.), transition metals (Fe, Ni, Cr, Cu, Mo, W, Al, Ti, etc.) in synthetic quartz glass are used. A metal impurity such as Ce) not only lowers the transmittance from the ultraviolet region to the vacuum ultraviolet region, but also causes a decrease in ultraviolet resistance, so that its content is preferably as small as possible. Specifically, the total content of metal impurities is preferably 100 ppb or less, particularly preferably 50 ppb or less.

さらに本発明の方法により得られた合成石英ガラスは、耐紫外線性を向上させるために、水素分子を含有させると効果的な場合がある。具体的には合成石英ガラスを水素含有雰囲気下、600℃以下の温度で加熱処理することにより、合成石英ガラス中へ水素分子を拡散、含有させる。   Furthermore, the synthetic quartz glass obtained by the method of the present invention may be effective if it contains hydrogen molecules in order to improve ultraviolet resistance. Specifically, the synthetic quartz glass is heat-treated in a hydrogen-containing atmosphere at a temperature of 600 ° C. or lower to diffuse and contain hydrogen molecules in the synthetic quartz glass.

水素分子は紫外線照射により生じるE’センターやNBOHCなどの常磁性欠陥を修復し波長180〜300nmにおける吸収帯の生成を抑制するはたらきを有する。波長180〜250nmの光を光源とする光学装置の光学部材として用いる場合には、水素分子を1×1017分子/cm以上含有させることが好ましい。 Hydrogen molecules have a function of repairing paramagnetic defects such as E ′ center and NBOHC caused by ultraviolet irradiation and suppressing generation of absorption bands at wavelengths of 180 to 300 nm. When used as an optical member of an optical device using light having a wavelength of 180 to 250 nm as a light source, it is preferable to contain 1 × 10 17 molecules / cm 3 or more of hydrogen molecules.

しかしながら、合成石英ガラス体中の水素分子は紫外線照射中の酸素欠乏型欠陥(≡Si−Si≡)生成を促進する作用があり、同欠陥は波長163nmを中心とする吸収体を有するため、波長155〜180nmの光を光源とする光学装置の光学部材として用いる場合には、用途、使用条件にもよるが、合成石英ガラス中の水素分子含有量を1×1017分子/cm以下とすることが好ましい場合がある。 However, the hydrogen molecules in the synthetic quartz glass body have an action of promoting the generation of oxygen-deficient defects (≡Si—Si≡) during ultraviolet irradiation, and the defects have an absorber centered at a wavelength of 163 nm. When used as an optical member of an optical device using light of 155 to 180 nm as a light source, the hydrogen molecule content in the synthetic quartz glass is 1 × 10 17 molecules / cm 3 or less, depending on the application and use conditions. It may be preferable.

[例1〜8]
表1に示すガラス形成原料、すなわち四塩化珪素またはヘキサメチルジシラザン(HMDS)を酸水素火炎中で加水分解させ、形成されたSiO微粒子を基材上に堆積させて直径350mm、長さ600mmの多孔質石英ガラス(平均かさ密度=0.5g/cm、かさ密度分布=0.3g/cm)を作製した。この多孔質石英ガラスを雰囲気制御可能な電気炉に設置し、表1に示す条件にて工程(b)および工程(c)を実施し、多孔質石英ガラスのOH基含有量の低減およびフッ素ドープを行った。なお工程(b)および工程(c)の実施に際しては、多孔質石英ガラスを150Pa以下の圧力にて表1に記載の所定の温度にまで昇温した後、所定のガスを導入し、所定の雰囲気とした。
[Examples 1 to 8]
The glass forming raw materials shown in Table 1, namely, silicon tetrachloride or hexamethyldisilazane (HMDS) are hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles are deposited on the substrate to have a diameter of 350 mm and a length of 600 mm. Porous silica glass (average bulk density = 0.5 g / cm 3 , bulk density distribution = 0.3 g / cm 3 ) was prepared. This porous quartz glass was installed in an electric furnace capable of controlling the atmosphere, and the steps (b) and (c) were carried out under the conditions shown in Table 1, to reduce the OH group content of the porous quartz glass and to dope fluorine Went. In carrying out the steps (b) and (c), the porous quartz glass is heated to a predetermined temperature described in Table 1 at a pressure of 150 Pa or less, and then a predetermined gas is introduced, The atmosphere.

続いて、タングステンロッドヒーター、タングステンリフレクターからなる電気炉(メタル炉)に多孔質石英ガラスを入れて表1に示す条件にて透明石英ガラス体(直径180mm、長さ400mm)を作製した。   Subsequently, porous quartz glass was put into an electric furnace (metal furnace) composed of a tungsten rod heater and a tungsten reflector, and a transparent quartz glass body (diameter 180 mm, length 400 mm) was produced under the conditions shown in Table 1.

[例9〜11]
四塩化珪素を酸水素火炎中で加水分解させ、形成されたSiO微粒子を基材上に堆積させて直径350mm、長さ600mmの多孔質石英ガラス(平均かさ密度=0.5g/cm、かさ密度分布=0.3g/cm)を作製した。この多孔質石英ガラスを雰囲気制御可能な電気炉に設置し、表1に示す条件にて工程(b)および工程(c)を実施し、多孔質石英ガラスのOH基含有量の低減およびフッ素ドープを行った。なお工程(b)および工程(c)の実施に際しては、多孔質石英ガラスを150Pa以下の圧力にて表1記載の所定の温度にまで昇温した後、所定のガスを導入し、所定の雰囲気とした。多孔質石英ガラスを、二珪化モリブテンヒーター、アルミナ断熱材から成る電気炉(マルチ炉)に入れて、表1に示す条件にて透明石英ガラス体(直径180mm、長さ400mm)を作製した。
[Examples 9 to 11]
Silicon tetrachloride is hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles are deposited on a substrate to form porous quartz glass having a diameter of 350 mm and a length of 600 mm (average bulk density = 0.5 g / cm 3 , Bulk density distribution = 0.3 g / cm 3 ) was produced. This porous quartz glass was installed in an electric furnace capable of controlling the atmosphere, and the steps (b) and (c) were carried out under the conditions shown in Table 1, to reduce the OH group content of the porous quartz glass and to dope fluorine Went. In carrying out the steps (b) and (c), the porous quartz glass is heated to a predetermined temperature described in Table 1 at a pressure of 150 Pa or less, and then a predetermined gas is introduced to a predetermined atmosphere. It was. The porous quartz glass was put into an electric furnace (multi-furnace) composed of a disilicide molybdenum heater and an alumina heat insulating material, and a transparent quartz glass body (diameter 180 mm, length 400 mm) was produced under the conditions shown in Table 1.

[例12〜14]
四塩化珪素を酸水素火炎中で加水分解させ、形成されたSiO微粒子を基材上に堆積させて直径350mm、長さ600mmの多孔質石英ガラス(平均かさ密度=0.5g/cm、かさ密度分布=0.3g/cm)を作製した。この多孔質石英ガラスを雰囲気制御可能な電気炉に設置し、表1に示す条件にて工程(b)および工程(c)を実施し、多孔質石英ガラスのOH基含有量の低減およびフッ素ドープを行った。なお工程(b)および工程(c)の実施に際しては、多孔質石英ガラスを150Pa以下の圧力にて表1記載の所定の温度にまで昇温した後、所定のガスを導入し、所定の雰囲気とした。多孔質石英ガラスを、カーボンヒーター、カーボン断熱材から成る電気炉(黒鉛炉)に入れて、表1に示す条件にて透明石英ガラス体(直径180mm、長さ400mm)を作製した。
[Examples 12 to 14]
Silicon tetrachloride is hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles are deposited on a substrate to form porous quartz glass having a diameter of 350 mm and a length of 600 mm (average bulk density = 0.5 g / cm 3 , Bulk density distribution = 0.3 g / cm 3 ) was produced. This porous quartz glass was installed in an electric furnace capable of controlling the atmosphere, and the steps (b) and (c) were carried out under the conditions shown in Table 1, to reduce the OH group content of the porous quartz glass and to dope fluorine Went. In carrying out the steps (b) and (c), the porous quartz glass is heated to a predetermined temperature described in Table 1 at a pressure of 150 Pa or less, and then a predetermined gas is introduced to a predetermined atmosphere. It was. The porous quartz glass was put into an electric furnace (graphite furnace) composed of a carbon heater and a carbon heat insulating material, and a transparent quartz glass body (diameter 180 mm, length 400 mm) was produced under the conditions shown in Table 1.

各例で得られた透明石英ガラス体を内径240mmのカーボン製るつぼの中にセットし、同るつぼを電気炉内でアルゴンガス、100vol%、1atmにて1750℃まで昇温して、この温度にて10時間保持することにより、透明石英ガラス体の成形を行った。
各例で得られた試料について、以下の評価を行った。
The transparent quartz glass body obtained in each example was set in a carbon crucible having an inner diameter of 240 mm, and the crucible was heated to 1750 ° C. in argon gas, 100 vol%, 1 atm in an electric furnace. For 10 hours to form a transparent quartz glass body.
The following evaluation was performed about the sample obtained in each case.

(OH基含有量評価)
評価用試料の中央付近から20mm×20mm×30mm厚の試料を切り出し、20mm角の2面を鏡面研磨した。ついで評価用試料の中央付近について赤外分光光度計による測定を行い、波長2.7μmにおける吸収ピークからOH基含有量を求めた(J.P.Wiliams et.al.,Ceramic Bulletin, 55(5), 524, 1976)。本法による検出限界は0.1ppmである。
(OH group content evaluation)
A 20 mm × 20 mm × 30 mm thick sample was cut out from the vicinity of the center of the evaluation sample, and two 20 mm square surfaces were mirror-polished. Subsequently, the vicinity of the center of the sample for evaluation was measured with an infrared spectrophotometer, and the OH group content was determined from the absorption peak at a wavelength of 2.7 μm (JP Williams et.al., Ceramic Bulletin, 55 (5 ), 524, 1976). The detection limit by this method is 0.1 ppm.

(フッ素含有量評価)
評価用試料中央付近から重量約5gの試料を切出し、フッ素含有量をフッ素イオン電極法により分析した。フッ素含有量の分析方法は下記の通りである。日本化学会誌、1972(2), 350に記載された方法に従って、合成石英ガラスを無水炭酸ナトリウムにより加熱融解し、得られた融液に蒸留水および塩酸(体積比で1:1)を加えて試料液を調整した。試料液の起電力をフッ素イオン選択性電極および比較電極としてラジオメータトレーディング社製No.945−220およびNo.945−468をそれぞれ用いてラジオメータにより測定し、フッ素イオン標準溶液を用いてあらかじめ作成した検量線に基づいて、フッ素含有量を求めた。本法による検出限界は10ppmである。
(Fluorine content evaluation)
A sample having a weight of about 5 g was cut out from the vicinity of the center of the sample for evaluation, and the fluorine content was analyzed by the fluorine ion electrode method. The analysis method of fluorine content is as follows. According to the method described in Journal of the Chemical Society of Japan, 1972 (2), 350, synthetic quartz glass was heated and melted with anhydrous sodium carbonate, and distilled water and hydrochloric acid (1: 1 by volume) were added to the resulting melt. A sample solution was prepared. The electromotive force of the sample solution was used as a fluorine ion selective electrode and a reference electrode. 945-220 and no. Each of 945-468 was measured with a radiometer, and the fluorine content was determined based on a calibration curve prepared in advance using a fluorine ion standard solution. The detection limit by this method is 10 ppm.

(塩素含有量評価)
評価用試料の中央付近から20mm×20mm×10mm厚の試料を切出し、20mm角の1面を鏡面研磨した。鏡面研磨した面について蛍光X線分析を行い、合成石英ガラス中の塩素含有量を求めた。本法による検出限界は10ppmである。
(Evaluation of chlorine content)
A 20 mm × 20 mm × 10 mm thick sample was cut out from the vicinity of the center of the evaluation sample, and one surface of 20 mm square was mirror-polished. The mirror-polished surface was subjected to fluorescent X-ray analysis to determine the chlorine content in the synthetic quartz glass. The detection limit by this method is 10 ppm.

(波長157.6nmでの内部光透過率評価)
評価用試料の中央より20mm×20mm×5mmの試料、および20mm×20mm×30mmの試料を切り出し、それぞれ20mm角の2面を鏡面研磨し、試料の温度を25℃に保持した状態で真空紫外分光光度計(分光計器社製UV201M)により波長157.6nmでの光透過率を窒素雰囲気下にて測定した。厚み5mmおよび厚み30mmの2種類の試料の波長157.6nm光透過率T、Tより、波長157.6nmにおける内部光透過率T157.6を下記の式(1)に従って求めた。
(Evaluation of internal light transmittance at a wavelength of 157.6 nm)
A 20 mm × 20 mm × 5 mm sample and a 20 mm × 20 mm × 30 mm sample were cut out from the center of the evaluation sample, and two surfaces of 20 mm square were each mirror-polished, and the temperature of the sample was kept at 25 ° C., vacuum ultraviolet spectroscopy The light transmittance at a wavelength of 157.6 nm was measured under a nitrogen atmosphere with a photometer (UV201M manufactured by Spectrometer Co., Ltd.). The internal light transmittance T 157.6 at a wavelength of 157.6 nm was determined according to the following formula (1) from the light transmittances T 1 and T 2 of two types of samples having a thickness of 5 mm and a thickness of 30 mm.

Figure 0004946960
Figure 0004946960

(酸素欠乏型欠陥の有無評価)
波長157.6nmでの内部光透過率評価にて作製した試料を用いて、試料の温度を25℃に保持した状態で真空紫外分光光度計(分光計器社製「UV201M」、以下同じ)により波長163nmでの光透過率を窒素雰囲気下にて測定し、式(2)より163nmにおける内部透過率T163を算出し、石英ガラス中のOH基濃度COH(ppm)から式(3)により計算される値Tidと比較することにより酸素欠乏型欠陥の有無を評価した。
(Evaluation of presence of oxygen-deficient defects)
Using a sample prepared by internal light transmittance evaluation at a wavelength of 157.6 nm, the wavelength was measured by a vacuum ultraviolet spectrophotometer (“UV201M” manufactured by Spectrometer Co., Ltd., the same shall apply hereinafter) with the sample temperature maintained at 25 ° C. The light transmittance at 163 nm was measured in a nitrogen atmosphere, the internal transmittance T 163 at 163 nm was calculated from the formula (2), and calculated from the OH group concentration C OH (ppm) in the quartz glass by the formula (3). The presence or absence of oxygen-deficient defects was evaluated by comparison with the value Tid .

Figure 0004946960
Figure 0004946960

Figure 0004946960
Figure 0004946960

酸素欠乏型欠陥があると、163nmを中心とした吸収帯があるため、上式(3)より計算される値より低くなる。   If there is an oxygen-deficient defect, there is an absorption band centered at 163 nm, which is lower than the value calculated from the above equation (3).

(酸素過剰型欠陥の有無評価)
評価用試料の中央付近より20mm角×10mm厚の合成石英ガラス試料を準備し試料中のOH基含有量を赤外分光光度計にて測定する。次いで同試料を水素ガス100%、101kPa,1000℃にて30時間保持し、室温まで冷却した後に、再度試料中のOH基含有量を同様の方法で測定する。熱処理前後での試料中のOH基含有量の変化量を算出し、同変化量が1ppm以下であれば、同試料中には酸素過剰型欠陥が含まれていないと判断した。
(Evaluation of presence of oxygen-rich defects)
A 20 mm square × 10 mm thick synthetic quartz glass sample is prepared from the vicinity of the center of the sample for evaluation, and the OH group content in the sample is measured with an infrared spectrophotometer. Next, the sample is kept at 100% hydrogen gas, 101 kPa, 1000 ° C. for 30 hours, cooled to room temperature, and then the OH group content in the sample is measured again by the same method. The amount of change in the OH group content in the sample before and after the heat treatment was calculated. If the amount of change was 1 ppm or less, it was determined that the sample did not contain oxygen-excess defects.

結果を表2に示す。例1〜は実施例、例12〜14は比較例、例9〜11は参考例である。例1から例11までは、波長157.6nmの内部透過率が高いことわかる。 The results are shown in Table 2. Examples 1 to 8 are Examples, Examples 12 to 14 are Comparative Examples, and Examples 9 to 11 are Reference Examples . From Examples 1 to 11, it can be seen that the internal transmittance at a wavelength of 157.6 nm is high.

Figure 0004946960
Figure 0004946960

Figure 0004946960
Figure 0004946960

Claims (3)

波長180nm以下の光を光源とする光学装置の光学部材用合成石英ガラスの製造方法において、
(a)ガラス形成原料を火炎加水分解して得られる石英ガラス微粒子を基材に堆積・成長させて多孔質石英ガラスを形成する工程と、
(b)該多孔質石英ガラスのOH基含有量の低減を行う工程と、
(c)該多孔質石英ガラスを、フッ素化合物含有雰囲気下にて処理し、多孔質石英ガラスにフッ素をドープする工程と、
(d)該多孔質石英ガラスを、タングステンまたはモリブテンを含む材料をヒーター及びリフレクターの構成材料に用いたメタル炉にて、1300℃以上の温度に昇温して透明ガラス化し、
フッ素含有量が300ppm以上の実質的に酸素欠乏型欠陥を含有しない透明石英ガラス体を得る工程と、を含むことを特徴とする合成石英ガラスの製造方法。
In the method for producing synthetic quartz glass for an optical member of an optical device using light having a wavelength of 180 nm or less as a light source,
(A) a step of depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material on a substrate to form porous quartz glass;
(B) a step of reducing the OH group content of the porous quartz glass;
(C) treating the porous quartz glass in a fluorine compound-containing atmosphere and doping the porous quartz glass with fluorine;
(D) The porous quartz glass is made into a transparent glass by raising the temperature to 1300 ° C. or higher in a metal furnace using a material containing tungsten or molybdenum as a constituent material of a heater and a reflector ,
And a step of obtaining a transparent quartz glass body substantially free of oxygen-deficient defects having a fluorine content of 300 ppm or more .
減圧下で透明ガラス化することを特徴とする請求項1記載の合成石英ガラス光学部材の製造方法。   2. The method for producing a synthetic quartz glass optical member according to claim 1, wherein the glass is transparent vitrified under reduced pressure. 1300℃〜1500℃の温度に昇温して透明ガラス化することを特徴とする請求項1または2記載の合成石英ガラスの製造方法。   The method for producing synthetic quartz glass according to claim 1, wherein the glass is heated to a temperature of 1300 ° C. to 1500 ° C. to form a transparent glass.
JP2008102553A 2008-04-10 2008-04-10 Synthetic quartz glass and manufacturing method thereof Expired - Fee Related JP4946960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102553A JP4946960B2 (en) 2008-04-10 2008-04-10 Synthetic quartz glass and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102553A JP4946960B2 (en) 2008-04-10 2008-04-10 Synthetic quartz glass and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001399666A Division JP2003201125A (en) 2001-12-28 2001-12-28 Synthetic quartz glass and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2008189547A JP2008189547A (en) 2008-08-21
JP4946960B2 true JP4946960B2 (en) 2012-06-06

Family

ID=39750011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102553A Expired - Fee Related JP4946960B2 (en) 2008-04-10 2008-04-10 Synthetic quartz glass and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4946960B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056008A (en) * 2008-08-29 2010-03-11 Ehime Univ Non-mercury bactericidal lamp and bactericidal device
JP5151816B2 (en) * 2008-08-29 2013-02-27 ウシオ電機株式会社 Excimer lamp
JP5293430B2 (en) * 2009-06-11 2013-09-18 ウシオ電機株式会社 Excimer lamp
US8313662B2 (en) * 2009-10-01 2012-11-20 Lawrence Livermore National Security, Llc Methods for globally treating silica optics to reduce optical damage
KR102337364B1 (en) * 2016-06-01 2021-12-09 신에쯔 세끼에이 가부시키가이샤 A method for manufacturing a quartz glass member for airtight sealing of an ultraviolet SMD type LLD element and a quartz glass member for an ultraviolet LED

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729790B2 (en) * 1991-05-15 1995-04-05 信越化学工業株式会社 Method for producing anhydrous synthetic quartz glass
JPH05339024A (en) * 1992-06-08 1993-12-21 Fujikura Ltd Heating device for glass preform
JP3596241B2 (en) * 1997-07-16 2004-12-02 住友電気工業株式会社 Method and apparatus for manufacturing glass articles
JP4453939B2 (en) * 1999-09-16 2010-04-21 信越石英株式会社 Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
JP3228732B2 (en) * 1999-11-24 2001-11-12 信越石英株式会社 Method for producing silica glass optical material for projection lens used in vacuum ultraviolet lithography

Also Published As

Publication number Publication date
JP2008189547A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
EP1695375B1 (en) Synthetic quartz glass for optical member and its production method
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
JP5473216B2 (en) Synthetic silica glass optical material and method for producing the same
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
US6499317B1 (en) Synthetic quartz glass and method for production thereof
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
TW201434778A (en) Optical component of quartz glass for use in ArF excimer laser lithography and method for producing the component
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
JP4085633B2 (en) Synthetic quartz glass for optical components
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JP3531870B2 (en) Synthetic quartz glass
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP4228493B2 (en) Synthetic quartz glass
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2003183034A (en) Synthetic quartz glass for optical member and its manufacturing method
JP2001311801A (en) Synthetic quartz glass
JP4459608B2 (en) Method for producing synthetic quartz glass member
JP4677072B2 (en) Synthetic quartz glass for vacuum ultraviolet optical member and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees