JP2001311801A - Synthetic quartz glass - Google Patents

Synthetic quartz glass

Info

Publication number
JP2001311801A
JP2001311801A JP2000131331A JP2000131331A JP2001311801A JP 2001311801 A JP2001311801 A JP 2001311801A JP 2000131331 A JP2000131331 A JP 2000131331A JP 2000131331 A JP2000131331 A JP 2000131331A JP 2001311801 A JP2001311801 A JP 2001311801A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
less
wavelength
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000131331A
Other languages
Japanese (ja)
Inventor
Yorisuke Ikuta
順亮 生田
Kaname Okada
要 岡田
Shinya Kikukawa
信也 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000131331A priority Critical patent/JP2001311801A/en
Publication of JP2001311801A publication Critical patent/JP2001311801A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synthetic quartz glass excellent in vacuum UV transmittance. SOLUTION: The synthetic quartz glass used as an optical member of an optical device using F2 laser light as a light source has >=85%/cm internal transmittance at 157.6 nm wavelength and <=5%/cm variation of the internal transmittance at 157.6 nm by irradiation with UV from an F2 laser, an Xe2 excimer lamp or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成石英ガラスに
関し、F2 レーザ(波長157.6nm)を光源とする
光学装置の光学部材、具体的にはレンズ(投影系、照明
系)、プリズム、エタロン、フォトマスク基板、ペリク
ル(ペリクル材、ペリクルフレームまたはその両者)、
窓材などの光学部材用合成石英ガラスに関する。
The present invention relates to relates to a synthetic quartz glass optical member of the optical device as a light source an F 2 laser (wavelength 157.6 nm), specifically the lens (projection system, the illumination system), a prism, Etalon, photomask substrate, pellicle (pellicle material, pellicle frame or both),
The present invention relates to a synthetic quartz glass for an optical member such as a window material.

【0002】[0002]

【従来の技術】従来から、光リソグラフィ技術において
は、ウエハ上に微細な回路パターンを転写して集積回路
を製造するための露光装置が広く利用されている。近
年、集積回路の高集積化および高機能化に伴い、集積回
路の微細化が進み、露光装置には深い焦点深度で高解像
度の回路パターンをウエハ面上に結像させることが求め
られ、露光光源の短波長化が進められている。露光光源
は、従来のg線(波長436nm)やi線(波長365
nm)から進んで、KrFエキシマレーザ(波長24
8.3nm)やArFエキシマレーザ(波長193.4
nm)が用いられようとしている。また、さらに回路パ
ターンが100nm以下となる次世代の集積回路に対応
するため、露光光源としてF2 レーザ(波長157.6
nm)の使用が検討され始めている。
2. Description of the Related Art Conventionally, in an optical lithography technique, an exposure apparatus for transferring a fine circuit pattern onto a wafer to manufacture an integrated circuit has been widely used. In recent years, as integrated circuits have become more highly integrated and sophisticated, miniaturization of integrated circuits has progressed, and exposure apparatuses have been required to form high-resolution circuit patterns with a large depth of focus on a wafer surface. Shorter wavelength light sources are being promoted. Exposure light sources include conventional g-rays (wavelength 436 nm) and i-rays (wavelength 365
nm), a KrF excimer laser (wavelength 24
8.3 nm) or ArF excimer laser (wavelength 193.4)
nm) is about to be used. Further, in order to support a next-generation integrated circuit having a circuit pattern of 100 nm or less, an F 2 laser (wavelength: 157.6) is used as an exposure light source.
nm) has begun to be considered.

【0003】こうした光源を用いた光学装置に使用され
る光学部材には、使用波長域、すなわち、157.6n
m以下の波長域における光透過性(以下、単に「真空紫
外線透過性」という)に安定して優れることが要求され
る。
An optical member used in an optical device using such a light source includes a working wavelength band, that is, 157.6 n.
It is required to have stable and excellent light transmittance in a wavelength range of m or less (hereinafter, simply referred to as “vacuum ultraviolet ray transmittance”).

【0004】真空紫外線透過性の向上を図るために、特
開平8−91867号公報には、OH基含有量が200
ppm以下、塩素濃度が2ppm以下、かつ≡Si−S
i≡濃度1×1015個/cm3 以下である合成石英ガラ
スが提案されている。また、特願平10−370014
号では、OH基含有量が10ppm未満、かつ還元型欠
陥を実質的に含有しない合成石英ガラスが提案されてい
る。
[0004] In order to improve the vacuum ultraviolet ray transmittance, Japanese Patent Application Laid-Open No. Hei 8-91867 discloses that the OH group content is 200.
ppm or less, chlorine concentration is 2 ppm or less, and ΔSi-S
A synthetic quartz glass having an i≡ concentration of 1 × 10 15 / cm 3 or less has been proposed. Also, Japanese Patent Application No. 10-370014.
In JP-A No. 2-2, a synthetic quartz glass having an OH group content of less than 10 ppm and containing substantially no reduced defects is proposed.

【0005】これら従来の合成石英ガラスは、いずれも
OH基含有量などの成分組成を所定の範囲とすることに
より真空紫外線透過性の向上を図るものであるが、波長
180nm以下の紫外線を照射した場合に真空紫外線透
過性が上昇または低下する場合があり、安定した真空紫
外線透過性を発揮することができなかった。
[0005] All of these conventional synthetic quartz glasses are intended to improve the vacuum ultraviolet transmittance by setting the component composition such as the OH group content within a predetermined range. However, ultraviolet rays having a wavelength of 180 nm or less are irradiated. In some cases, the vacuum ultraviolet light transmittance may increase or decrease, and stable vacuum ultraviolet light transmittance cannot be exhibited.

【0006】[0006]

【発明が解決しようとする課題】本発明は、優れた真空
紫外線透過性を安定して発揮する合成石英ガラスの提供
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a synthetic quartz glass which stably exhibits excellent vacuum ultraviolet ray transmittance.

【0007】[0007]

【課題を解決するための手段】本発明者らは、合成石英
ガラスの真空紫外線透過性について詳細な検討を行った
結果、F2 レーザを照射すると、真空紫外線透過性が向
上する場合、また逆に低下する場合があることを始めて
知見し、ともに真空紫外光を照射する前の合成石英ガラ
スの真空紫外線透過性と関係があることを突き止めた。
すなわち、真空紫外光を照射する前の真空紫外線性が高
いほど、真空紫外光を照射した場合の真空紫外線透過性
が安定して得られる。
The present inventors have SUMMARY OF THE INVENTION As a result of performing a detailed examination for VUV transparent synthetic quartz glass is irradiated with F 2 laser, when improving the vacuum ultraviolet rays permeability, and vice For the first time, and found that both were related to the vacuum ultraviolet transmittance of synthetic quartz glass before irradiation with vacuum ultraviolet light.
That is, the higher the vacuum ultraviolet ray property before irradiation with vacuum ultraviolet light, the more stable the vacuum ultraviolet ray transmittance when vacuum ultraviolet light is applied is obtained.

【0008】そこで、本発明は、F2 レーザを光源とす
る光学装置の光学部材に用いられる合成石英ガラスにお
いて、波長157.6nmにおける内部透過率が88%
/cm以上、 好ましくは92%/cmであって、かつエ
ネルギー密度1mJ/cm2/pulse以下のF2
ーザを合計で20kJ/cm2 照射する間の157.6
nm内部透過率変動量が±4%/cm以下である合成石
英ガラスを提供する。
Accordingly, the present invention relates to a synthetic quartz glass used for an optical member of an optical device using an F 2 laser as a light source, wherein the internal transmittance at a wavelength of 157.6 nm is 88%.
157.6% during irradiation with a total of 20 kJ / cm 2 of an F 2 laser having a energy density of 1 mJ / cm 2 / pulse or more, preferably 92% / cm or more and an energy density of 1 mJ / cm 2 / pulse or less.
Provided is a synthetic quartz glass having a variation in nm internal transmittance of ± 4% / cm or less.

【0009】また本発明は、F2 レーザを光源とする光
学装置の光学部材に用いられる合成石英ガラスにおい
て、波長157.6nmにおける内部透過率が88%/
cm以上、 好ましくは92%/cmであって、かつ照度
50mW/cm2 以下のXe2エキシマランプ光を合計
で20kJ/cm2 、好ましくは54kJ/cm2 照射
する間の157.6nm内部透過率変動量が±5%/c
m以下、好ましくは±3%/cm以下である合成石英ガ
ラスを提供する。
Further, according to the present invention, in a synthetic quartz glass used for an optical member of an optical device using an F 2 laser as a light source, the internal transmittance at a wavelength of 157.6 nm is 88% /.
cm or more, 157.6 nm internal transmission between preferably a 92% / cm, and an illuminance 50mW / cm 20kJ / cm 2 2 The following Xe 2 excimer lamp light in total, preferably of 54kJ / cm 2 irradiation ± 5% / c fluctuation
m, preferably ± 3% / cm or less.

【0010】本発明において、合成石英ガラス中のOH
基含有量は波長180nm以下の光透過率に影響を及ぼ
し、OH基含有量が多いほど初期真空紫外線透過性は低
下する。その含有量は1ppm以下であることが好まし
く、特に0.1ppm以下であることが好ましい。また
真空紫外線透過性は合成石英ガラス中のOH基の存在状
態による影響も受け、隣接するOH基同士が互いに水素
結合した状態の方が、孤立した状態よりも好ましい。
In the present invention, OH in synthetic quartz glass is used.
The group content affects the light transmittance at a wavelength of 180 nm or less, and the higher the OH group content, the lower the initial vacuum ultraviolet ray transmittance. The content is preferably 1 ppm or less, particularly preferably 0.1 ppm or less. The vacuum ultraviolet ray transmittance is also affected by the state of OH groups in the synthetic quartz glass, and a state in which adjacent OH groups are hydrogen-bonded to each other is more preferable than an isolated state.

【0011】本発明において、酸素欠乏型欠陥とは、≡
Si−Si≡をいい、波長163nmを中心とする吸収
帯を有する。163nmにおける内部透過率T163 (%
/cm)は、合成石英ガラス中のOH基含有量COH(p
pm)により次式のように推測される。 T163 (%/cm)≧exp(−0.02COH 0.85)×100 (1) しかし、酸素欠乏型欠陥があると、163nmを中心と
した吸収帯によって、実際の波長163nmにおける内
部透過率(T163 )は、式(1)の右辺の値よりも小さ
くなる。そこで、酸素欠乏型欠陥を実質的に含有しなけ
れば、優れた真空紫外線透過性が得られるため、好まし
い。
In the present invention, the oxygen-deficient defect is defined as
Si-Si≡ has an absorption band centered on a wavelength of 163 nm. The internal transmittance T 163 at 163 nm (%
/ Cm) is the OH group content C OH (p
pm), it is estimated as follows. T 163 (% / cm) ≧ exp (−0.02 C OH 0.85 ) × 100 (1) However, if there is an oxygen-deficient defect, the internal transmittance at an actual wavelength of 163 nm is determined by an absorption band centered at 163 nm. T 163 ) is smaller than the value on the right side of Expression (1). Therefore, it is preferable that oxygen-deficient defects are not substantially contained, since excellent vacuum ultraviolet ray permeability can be obtained.

【0012】本発明において、合成石英ガラス中の三員
環構造、四員環構造などの歪んだ構造は、波長165n
m以下の光透過率を低下させ、真空紫外線透過性を悪化
させる傾向があるため、少ない方が好ましい。具体的に
はレーザラマンスペクトルにおける495cm-1の散乱
ピーク強度I1 および606cm-1の散乱ピーク強度I
2 が、440cm-1の散乱ピーク強度I0 に対してそれ
ぞれI1 /I0 ≦0.59、I2 /I0 ≦0.15であ
ることが好ましい。
In the present invention, a distorted structure such as a three-membered ring structure or a four-membered ring structure in synthetic quartz glass has a wavelength of 165 nm.
m or less, there is a tendency that the light transmittance of m or less is reduced and the vacuum ultraviolet light transmittance is deteriorated. Scattering peak intensity I of the specific scattering peak intensity of 495cm -1 in the laser Raman spectrum is I 1 and 606 cm -1
2 preferably satisfies I 1 / I 0 ≦ 0.59 and I 2 / I 0 ≦ 0.15 for a scattering peak intensity I 0 of 440 cm −1 .

【0013】本発明において、合成石英ガラス中の塩素
は、真空紫外線透過性およびその安定性を損なうため、
その含有量が少ない方が好ましい。具体的には合成石英
ガラス中の塩素含有量は10ppm以下、特には5pp
m以下、さらには実質的に含有しないことが好ましい。
[0013] In the present invention, chlorine in synthetic quartz glass impairs vacuum ultraviolet ray transmission and its stability.
It is preferable that the content is small. Specifically, the chlorine content in the synthetic quartz glass is 10 ppm or less, particularly 5 pp.
m or less, more preferably substantially not contained.

【0014】合成石英ガラスにフッ素を含有させると、
OH基と置換しOH基含有量を低減する効果を有し、さ
らに、上記の三員環構造、四員環構造などの歪んだ構造
を低減する効果もあるので好ましい。具体的には、本発
明の合成石英ガラスはフッ素を10ppm以上、好まし
くは100ppm以上、特には200ppm以上含有す
ることが好ましい。
When fluorine is contained in synthetic quartz glass,
It has an effect of reducing the OH group content by substituting with an OH group, and further has an effect of reducing a distorted structure such as the above three-membered ring structure or four-membered ring structure, which is preferable. Specifically, the synthetic quartz glass of the present invention contains fluorine at 10 ppm or more, preferably 100 ppm or more, particularly preferably 200 ppm or more.

【0015】また本発明において、合成石英ガラス中の
アルカリ金属、アルカリ土類金属、遷移金属などの金属
不純物は、紫外域から真空紫外域における透過率を低下
させるだけでなく、耐紫外線性を低下させる原因ともな
るため、その含有量は極力少ない方が好ましい。具体的
には金属不純物の合計含有量が100ppb以下、特に
50ppb以下であることが好ましい。
In the present invention, metal impurities such as alkali metals, alkaline earth metals, and transition metals in the synthetic quartz glass not only reduce the transmittance in the ultraviolet region to the vacuum ultraviolet region, but also reduce the ultraviolet resistance. Therefore, the content is preferably as small as possible. Specifically, the total content of metal impurities is preferably 100 ppb or less, particularly preferably 50 ppb or less.

【0016】このように、合成石英ガラス中のOH基含
有量が5ppm以下、塩素含有量が10ppm以下、三
員環構造および四員環構造に関する指標I1 /I0 およ
びI 2 /I0 がそれぞれ0.59以下および0.14以
下、ならびにフッ素含有量が10ppm以上であれば、
2 レーザ照射あるいはXe2 エキシマランプ照射によ
る157nm内部透過率の上昇量または低下量を抑える
ことが可能である。
As described above, the synthetic quartz glass contains OH groups.
With a content of 5 ppm or less, a chlorine content of 10 ppm or less,
Index I for four- and four-membered ring structures1/ I0And
And I Two/ I0Are 0.59 or less and 0.14 or less, respectively.
Below, and if the fluorine content is 10 ppm or more,
FTwoLaser irradiation or XeTwoExcimer lamp irradiation
The rise or fall of the 157 nm internal transmittance
It is possible.

【0017】本発明の合成石英ガラスを製造する方法と
しては、直接法、スート法(VAD法、OVD法)、プ
ラズマ法などを挙げることができる。製造時の温度が低
く、塩素および金属などの不純物の混入を避けることが
できる観点で、スート法が特に好ましい。スート法によ
れば、原料に四塩化ケイ素を用いた場合でも塩素含有量
が10ppm未満である合成石英ガラスを得ることがで
きる。
As a method for producing the synthetic quartz glass of the present invention, a direct method, a soot method (VAD method, OVD method), a plasma method and the like can be mentioned. The soot method is particularly preferred from the viewpoint that the production temperature is low and contamination of impurities such as chlorine and metal can be avoided. According to the soot method, even when silicon tetrachloride is used as a raw material, a synthetic quartz glass having a chlorine content of less than 10 ppm can be obtained.

【0018】このとき、得られた合成石英ガラスに低照
射量のXe2 エキシマランプを比較的長時間照射する
と、合成石英ガラスの真空紫外線透過性およびその安定
性が向上するため、有効である。
At this time, it is effective to irradiate the obtained synthetic quartz glass with a low irradiation Xe 2 excimer lamp for a relatively long time, since the synthetic quartz glass has improved vacuum ultraviolet transmittance and stability.

【0019】[0019]

【実施例】以下に本発明の実施例を示す。本発明はこれ
ら実施例に限定されるものではない。
Examples of the present invention will be described below. The present invention is not limited to these examples.

【0020】(例1〜19)表1に示すガラス原料、す
なわち四塩化ケイ素またはヘキサメチルジシラザンを酸
水素火炎中で加水分解させ、形成されたSiO2 微粒子
を基材上に堆積させて直径350mm、長さ600mm
の円柱状の多孔質石英ガラス体を作製した。このとき、
原料として四塩化ケイ素を用いた場合は、酸素と水素の
体積比が四塩化ケイ素を1として15:25となる酸水
素火炎中で加水分解し、原料としてヘキサメチルジシラ
ザンを用いた場合は、酸素と水素の体積比がヘキサメチ
ルジシラザンを1として10:25となる酸水素火炎中
で加水分解した。次に、この多孔質石英ガラス体を雰囲
気制御可能な電気炉に設置し、表1に示す脱水処理条件
にて保持することにより、多孔質石英ガラス体の脱水
(低OH基化)を行った。
(Examples 1 to 19) The glass raw materials shown in Table 1, ie, silicon tetrachloride or hexamethyldisilazane were hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles were deposited on a substrate to obtain a diameter. 350mm, length 600mm
Was produced. At this time,
When silicon tetrachloride is used as a raw material, hydrolysis is performed in an oxyhydrogen flame in which the volume ratio of oxygen to hydrogen is 15:25 with silicon tetrachloride as 1, and when hexamethyldisilazane is used as a raw material, Hydrolysis was carried out in an oxyhydrogen flame in which the volume ratio of oxygen to hydrogen was 10:25 with hexamethyldisilazane being 1. Next, the porous quartz glass body was placed in an electric furnace capable of controlling the atmosphere and maintained under the conditions of dehydration treatment shown in Table 1 to dehydrate (low OH-based) the porous quartz glass body. .

【0021】続いて圧力150Pa以下の減圧に保持し
た状態で1450℃まで昇温し、この温度にて10時間
保持し透明石英ガラス体(直径180mm、長さ400
mm)を作製した。この透明石英ガラス体を、カーボン
製発熱体を有する電気炉内で軟化点以上の1750℃に
加熱して自重変形を行わせ、200mm□×250mm
長のブロック形状に成形して合成石英ガラスブロック試
料を得た。ついで、表1に示すアニール条件にてアニー
ル処理を行った。
Subsequently, the temperature was raised to 1450 ° C. while maintaining the pressure at 150 Pa or less, and the temperature was maintained at this temperature for 10 hours, and the transparent quartz glass body (180 mm in diameter, 400 mm in length) was formed.
mm). This transparent quartz glass body is heated to 1750 ° C. above the softening point in an electric furnace having a heating element made of carbon to cause its own weight deformation, and 200 mm × 250 mm
A synthetic quartz glass block sample was obtained by molding into a long block shape. Next, annealing was performed under the annealing conditions shown in Table 1.

【0022】さらに例18および19の合成石英ガラス
ブロックについては、厚さ30mmにスライスし、長さ
方向の中央付近からスライスした200mm□×30m
m厚のブロック1個について、200mm□の2面を鏡
面研磨した後、200mm□の面に垂直な方向から表1
に示す条件にて、窒素雰囲気下でXe2 エキシマランプ
を照射して合成石英ガラスブロック試料とした。
Further, the synthetic quartz glass blocks of Examples 18 and 19 were sliced to a thickness of 30 mm and sliced from the vicinity of the center in the longitudinal direction.
For one block having a thickness of m, two surfaces of 200 mm square were mirror-polished, and then from the direction perpendicular to the surface of 200 mm square.
The sample was irradiated with a Xe 2 excimer lamp under a nitrogen atmosphere under the conditions shown in (1) to obtain a synthetic quartz glass block sample.

【0023】例1〜19で得られた合成石英ガラスブロ
ック試料の中心付近から50mm□×10mm厚および
50mm□×3mm厚の評価用試料を切出し、以下の評
価を行った。
From the vicinity of the center of the synthetic quartz glass block samples obtained in Examples 1 to 19, evaluation samples of 50 mm □ × 10 mm thickness and 50 mm □ × 3 mm thickness were cut out and evaluated as follows.

【0024】(評価1:OH基含有量およびその存在状
態)評価用試料の50mm角の中央付近について赤外分
光光度計による測定を行ない、波長2.7μmにおける
吸収ピークからOH基含有量を求めた(J.P.Wiliams e
t. al.,Ceramic Bulletin,55(5),524,1976 )。本法に
よる検出限界は0.1ppmである。
(Evaluation 1: Content of OH Group and Its Existence) Measurement was performed by an infrared spectrophotometer around the center of a 50 mm square of the evaluation sample, and the OH group content was determined from an absorption peak at a wavelength of 2.7 μm. TA (JPWiliams e
t. al., Ceramic Bulletin, 55 (5), 524,1976). The detection limit by this method is 0.1 ppm.

【0025】またOH基の存在状態については、波長2
000〜3000nmにおける吸収ピークの位置により
判定した。すなわち吸収ピークが2700〜2730n
mの波長域に位置する場合は水素結合することなくフリ
ーな状態で存在しており、吸収ピークが2730〜27
67nmの波長域に位置する場合は水素結合した状態で
存在している。
Regarding the existence state of the OH group, the wavelength 2
The determination was made based on the position of the absorption peak at 000 to 3000 nm. That is, the absorption peak is 2700-2730n
m, it exists in a free state without hydrogen bonding and has an absorption peak of 2730 to 27.
When it is located in the wavelength region of 67 nm, it exists in a hydrogen-bonded state.

【0026】(評価2:塩素含有量)評価用試料の50
mm角の中央付近についてGD−Mass分析を行い、
合成石英ガラス中の塩素含有量を求めた。本法による検
出限界は1ppmである。
(Evaluation 2: Chlorine Content) 50
GD-Mass analysis is performed about the center of the mm square,
The chlorine content in the synthetic quartz glass was determined. The detection limit by this method is 1 ppm.

【0027】(評価3:フッ素含有量)評価用試料の5
0mm角の中央より10mm×10mm×10mmの試
料を切出し、フッ素濃度を分析した。なおフッ素濃度の
分析方法は下記の通りである。日本化学会誌、1972
(2),350に記載された方法に従って、合成石英ガラスを
無水炭酸ナトリウムにより加熱融解し、得られた融液に
蒸留水および塩酸(1+1)を加えて試料液を調製し
た。試料液の起電力をフッ素イオン選択性電極および比
較電極としてラジオメータトレーディング社製No.9
45−220およびNo.945−468をそれぞれ用
いてラジオメータにより測定し、フッ素イオン標準溶液
を用いて予め作成した検量線に基づいて、フッ素含有量
を求めた。本法による検出限界は10ppmである。
(Evaluation 3: Fluorine content)
A sample of 10 mm × 10 mm × 10 mm was cut out from the center of the 0 mm square, and the fluorine concentration was analyzed. The method for analyzing the fluorine concentration is as follows. The Chemical Society of Japan, 1972
(2) According to the method described in 350, synthetic quartz glass was heated and melted with anhydrous sodium carbonate, and distilled water and hydrochloric acid (1 + 1) were added to the obtained melt to prepare a sample solution. The electromotive force of the sample solution was used as a fluorine ion selective electrode and a reference electrode by Radiometer Trading Co., Ltd. 9
No. 45-220 and No. 45. Each of the samples was measured with a radiometer using 945-468, and the fluorine content was determined based on a calibration curve prepared in advance using a fluorine ion standard solution. The detection limit by this method is 10 ppm.

【0028】(評価4:還元型欠陥)評価用試料の50
mm角の中央より50mm×50mm×3mmの試料、
および50mm×50mm×10mmの試料を切り出
し、それぞれ50mm角の2面を鏡面研磨し、試料の温
度を25℃に保持した状態で真空紫外分光光度計(分光
計器社製「UV201M」、以下同じ)により波長16
3nmでの光透過率を測定した。厚み3mmおよび厚み
10mmの2種類の試料の波長163nm光透過率
1 、T2 より波長163nmにおける内部光透過率T
163 を式(2)に従って求め、式(3)の条件を満足す
るかどうかを調べた。式(3)の条件を満たさない場
合、すなわち式(3)の左辺の値が右辺の値よりも小さ
い場合は、還元型欠陥が存在することを意味する。 T163 (%/cm)=exp(−ln(T1 /T2 )/0.7)×100 (2) T163 (%/cm)≧exp(−0.02COH 0.85)×100 (3)
(Evaluation 4: Reduction type defect) 50 of the evaluation sample
50 mm x 50 mm x 3 mm sample from the center of the mm square
And a sample of 50 mm × 50 mm × 10 mm, each of which is mirror-polished on two sides of 50 mm square, and a vacuum ultraviolet spectrophotometer (“UV201M” manufactured by Spectrometer Co., Ltd .; the same applies hereinafter) with the temperature of the sample kept at 25 ° C. Wavelength 16
The light transmittance at 3 nm was measured. The internal light transmittance T at a wavelength of 163 nm from the light transmittances T 1 and T 2 of the two types of samples having a thickness of 3 mm and a thickness of 10 mm.
163 was determined according to equation (2), and it was examined whether or not the condition of equation (3) was satisfied. When the condition of Expression (3) is not satisfied, that is, when the value on the left side of Expression (3) is smaller than the value on the right side, it means that a reduced defect exists. T 163 (% / cm) = exp (−ln (T 1 / T 2 ) /0.7) × 100 (2) T 163 (% / cm) ≧ exp (−0.02C OH 0.85 ) × 100 (3) )

【0029】(評価5:三員環構造、四員環構造)ラマ
ン分光測定(JobinYbon製Ramonor T
64000冷気光源:アルゴンイオンレーザ(波長51
4.5nm))を行い、レーザラマンスペクトルにおけ
る495cm-1の散乱ピーク強度I1 および605cm
-1の散乱ピーク強度I2 と、440cm-1の散乱ピーク
強度I0 との強度比I1 /I0 およびI2 /I0 を求め
た。強度比I1 /I0 、強度比I2 /I0 の値が小さい
ほど良好である。
(Evaluation 5: Three- and four-membered ring structures) Raman spectroscopy (Ramonor T manufactured by Jobin Ybon)
64000 cold air light source: argon ion laser (wavelength 51
4.5 nm)) and a scattering peak intensity I 1 of 495 cm −1 and 605 cm −1 in the laser Raman spectrum.
The scattering peak intensity I 2 of -1 to obtain the intensity ratio I 1 / I 0 and I 2 / I 0 of the scattering peak intensity I 0 of 440 cm -1. The smaller the value of the intensity ratio I 1 / I 0 and the value of the intensity ratio I 2 / I 0 , the better.

【0030】なお、各散乱ピーク強度I1 、I2 、I0
の求め方は以下のとおりである。495cm-1の散乱ピ
ークおよび605cm-1の散乱ピークに対してそれぞれ
1本のローレンツ関数によりカーブフィッテングを行
い、実スペクトルとの最小二乗誤差が最小となるように
近似を行って各関数の係数を決定した。440cm -1
散乱ピークに対しては3本のガウス関数の合成により、
また495cm-1の散乱ピークと605cm-1の散乱ピ
ークと440cm-1の散乱ピークとを除いた残余(ベー
スライン)に対しては2次関数により、それぞれカーブ
フィッテングを行い、実スペクトルとの最小二乗誤差が
最小となるよう近似を行って各関数の係数を決定した。
以上により求められた関数を用いて各散乱ピークの強度
を求めた。
Note that each scattering peak intensity I1, ITwo, I0
Is as follows. 495cm-1Scattered pi
And 605cm-1For each scattering peak
Perform curve fitting with one Lorentz function
So that the least square error with the real spectrum is minimized.
An approximation was made to determine the coefficients for each function. 440cm -1of
For the scattering peak, by combining three Gaussian functions,
Also 495cm-1Scattering peak of 605cm-1Scattered pi
And 440cm-1(Excluding the scattering peak of
Curve) by a quadratic function
Perform fitting and find the least square error with the real spectrum.
The coefficient of each function was determined by approximation so as to be the minimum.
Using the function obtained above, the intensity of each scattering peak
I asked.

【0031】(評価6)Xe2 エキシマランプ(中心波
長172nm、ウシオ電機製UER20−172)を3
0mW/cm2 の条件で厚み3mmおよび10mmの試
料に計500時間照射した。2つの試料について照射
前、10時間照射後(1.08kJ/cm 2 に相当)、
500時間照射後(54kJ/cm2 に相当)の15
7.6nm透過率を真空紫外分光光度計により測定し式
(4)に従って157.6nm内部透過率を求め、照射
前後における157.6nm内部透過率の変化量ΔT
157 を式(5)に従って算出した。ΔT157 は小さいほ
ど、真空紫外線透過性に安定して優れている。 T157 (%/cm)=exp(−ln(T1 /T2 )/0.7)×100 (4) ΔT157 =T157 (照射後)−T157 (照射前) (5)
(Evaluation 6) XeTwoExcimer lamp (center wave
Length 172 nm, Ushio's UER20-172)
0mW / cmTwo3mm and 10mm thickness test
The sample was irradiated for a total of 500 hours. Irradiation on two samples
Before and after irradiation for 10 hours (1.08 kJ / cm Two),
After irradiation for 500 hours (54 kJ / cmTwo15)
The 7.6 nm transmittance is measured by a vacuum ultraviolet spectrophotometer, and the formula is used.
The internal transmittance of 157.6 nm was determined according to (4), and irradiation was performed.
Change amount ΔT of internal transmittance at 157.6 nm before and after
157Was calculated according to equation (5). ΔT157Is small
It is stable and excellent in vacuum ultraviolet ray transmittance. T157(% / Cm) = exp (−ln (T1/ TTwo) /0.7) × 100 (4) ΔT157= T157(After irradiation) -T157(Before irradiation) (5)

【0032】(評価7)F2 レーザ(中心波長157.
6nm、ラムダフイジーク社製LPX240)を1mJ
/cm2 /pulseの条件で厚み3mmおよび厚み1
0mmの試料に計2×107 パルス照射した。2つの試
料について照射前、2×106 パルス照射後、2×10
7 パルス照射後の157.6nm透過率を真空紫外分光
光度計により測定し前記式(4)に従って157.6n
m内部透過率を求め、前記式(5)に従って照射前後に
おける157.6nm内部透過率の変化量ΔT157 を算
出した。ΔT157 は小さいほど、真空紫外線透過性に安
定して優れている。
(Evaluation 7) F 2 laser (center wavelength: 157.
6 nm, 1 mJ of Lambda Physique LPX240)
/ Mm 2 / pulse 3mm thickness and 1 thickness
A 0 mm sample was irradiated with a total of 2 × 10 7 pulses. 2 × 10 6 before and 2 × 10 6 pulse irradiation for 2 samples
The transmittance of 157.6 nm after the irradiation of 7 pulses was measured with a vacuum ultraviolet spectrophotometer, and 157.6 n was measured according to the above formula (4).
m internal transmittance was obtained, and a change amount ΔT 157 of the internal transmittance at 157.6 nm before and after irradiation was calculated according to the above equation (5). The smaller ΔT 157 is, the more stable and excellent the vacuum ultraviolet ray transmittance is.

【0033】評価1〜評価5の結果を表2に、評価6お
よび7の結果を表3に示す。なお例1〜4および例1
3、例14は比較例、その他は実施例である。
Table 2 shows the results of the evaluations 1 to 5, and Table 3 shows the results of the evaluations 6 and 7. Examples 1 to 4 and Example 1
3, Example 14 is a comparative example, and others are examples.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】本発明の合成石英ガラスは、真空紫外線
透過性に優れ、しかもその真空紫外線透過性を安定して
発揮し、特に波長157.6nmにおける光透過率が安
定しているものである。
The synthetic quartz glass of the present invention is excellent in vacuum ultraviolet ray transmission and exhibits the vacuum ultraviolet ray transmission in a stable manner, and particularly has a stable light transmittance at a wavelength of 157.6 nm. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊川 信也 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 Fターム(参考) 4G062 AA04 BB02 CC07 GE02 JJ05 JJ06 MM02 MM35 NN01 NN16 5F071 AA04 FF07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shinya Kikukawa 1150 Hazawacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term in the Central Research Laboratory, Asahi Glass Co., Ltd. 4G062 AA04 BB02 CC07 GE02 JJ05 JJ06 MM02 MM35 NN01 NN16 5F071 AA04 FF07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】F2 レーザを光源とする光学装置の光学部
材に用いられる合成石英ガラスにおいて、波長157.
6nmにおける内部透過率が88%/cm以上であっ
て、かつエネルギー密度1mJ/cm2 /pulse以
下のF2 レーザを合計で20kJ/cm2 照射する間の
157.6nm内部透過率変動量が±4%/cm以下で
ある合成石英ガラス。
A synthetic quartz glass used for an optical member of an optical device using an F 2 laser as a light source has a wavelength of 157.
The variation of the internal transmittance at 157.6 nm during irradiation of a total of 20 kJ / cm 2 of an F 2 laser having an internal transmittance at 6 nm of 88% / cm or more and an energy density of 1 mJ / cm 2 / pulse or less is ± Synthetic quartz glass of not more than 4% / cm.
【請求項2】F2 レーザを光源とする光学装置の光学部
材に用いられる合成石英ガラスにおいて、波長157.
6nmにおける内部透過率が88%/cm以上であっ
て、かつ照度50mW/cm2 以下のXe2 エキシマラ
ンプ光を合計で20kJ/cm 2 照射する間の157.
6nm内部透過率変動量が±5%/cm以下である合成
石英ガラス。
2. FTwoOptical part of optical device using laser as light source
In the synthetic quartz glass used for the material, the wavelength 157.
The internal transmittance at 6 nm is 88% / cm or more.
And illuminance 50mW / cmTwoThe following XeTwoExcimara
Pump light is 20kJ / cm in total Two157 during irradiation
Synthesis with 6 nm internal transmittance variation of ± 5% / cm or less
Quartz glass.
【請求項3】合成石英ガラスが、OH基含有量が2pp
m以下、かつ実質的に酸素欠乏型欠陥を含有しないこと
を特徴とする請求項1または2記載の合成石英ガラス。
3. The synthetic quartz glass has an OH group content of 2 pp.
3. The synthetic quartz glass according to claim 1, wherein the synthetic quartz glass has a molecular weight of m or less and does not substantially contain oxygen-deficient defects.
【請求項4】合成石英ガラス中のOH基が水素結合した
状態で存在することを特徴とする請求項3記載の合成石
英ガラス。
4. The synthetic quartz glass according to claim 3, wherein the OH groups in the synthetic quartz glass are present in a state of hydrogen bonding.
【請求項5】レーザラマンスペクトルにおける495c
-1の散乱ピーク強度I1 および606cm-1の散乱ピ
ーク強度I2 が、440cm-1の散乱ピーク強度I0
対してそれぞれI1 /I0 ≦0.59、I2 /I0
0.15であることを特徴とする請求項1〜4のいずれ
かに記載の合成石英ガラス。
5. 495c in laser Raman spectrum
scattering peak intensity I 2 of the scattering peak intensity I 1 and 606 cm -1 in m -1 is, I 1 / I 0 ≦ 0.59 respectively scattering peak intensity I 0 of 440 cm -1, I 2 / I 0
The synthetic quartz glass according to any one of claims 1 to 4, wherein the ratio is 0.15.
【請求項6】塩素含有量が10ppm以下であり、かつ
フッ素含有量が10ppm以上であることを特徴とする
請求項1〜5のいずれかに記載の合成石英ガラス。
6. The synthetic quartz glass according to claim 1, wherein the chlorine content is 10 ppm or less and the fluorine content is 10 ppm or more.
JP2000131331A 2000-04-28 2000-04-28 Synthetic quartz glass Withdrawn JP2001311801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000131331A JP2001311801A (en) 2000-04-28 2000-04-28 Synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000131331A JP2001311801A (en) 2000-04-28 2000-04-28 Synthetic quartz glass

Publications (1)

Publication Number Publication Date
JP2001311801A true JP2001311801A (en) 2001-11-09

Family

ID=18640244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000131331A Withdrawn JP2001311801A (en) 2000-04-28 2000-04-28 Synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP2001311801A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114531A (en) * 2000-08-04 2002-04-16 Sumitomo Electric Ind Ltd Fluorine added glass
WO2003080526A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency Synthetic quartz glass
JP2004191399A (en) * 2002-12-06 2004-07-08 Hitachi Cable Ltd Low loss ultra-violet transmission fiber and ultraviolet irradiation apparatus using the same
JP2008189482A (en) * 2007-02-01 2008-08-21 Sumitomo Electric Ind Ltd Quartz glass and quartz glass formed article
JP2008303100A (en) * 2007-06-06 2008-12-18 Shin Etsu Chem Co Ltd Titania-doped quartz glass for nanoimprint mold
JP2011051893A (en) * 2010-11-29 2011-03-17 Shin-Etsu Chemical Co Ltd Titania-doped quartz glass for nanoimprint mold

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114531A (en) * 2000-08-04 2002-04-16 Sumitomo Electric Ind Ltd Fluorine added glass
WO2003080526A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency Synthetic quartz glass
JP2004191399A (en) * 2002-12-06 2004-07-08 Hitachi Cable Ltd Low loss ultra-violet transmission fiber and ultraviolet irradiation apparatus using the same
JP2008189482A (en) * 2007-02-01 2008-08-21 Sumitomo Electric Ind Ltd Quartz glass and quartz glass formed article
JP2008303100A (en) * 2007-06-06 2008-12-18 Shin Etsu Chem Co Ltd Titania-doped quartz glass for nanoimprint mold
US7935648B2 (en) 2007-06-06 2011-05-03 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass for nanoimprint molds
JP2011051893A (en) * 2010-11-29 2011-03-17 Shin-Etsu Chemical Co Ltd Titania-doped quartz glass for nanoimprint mold

Similar Documents

Publication Publication Date Title
EP1695375B1 (en) Synthetic quartz glass for optical member and its production method
EP1910237B1 (en) Synthetic silica material with low fluence-dependent-transmission and method of making the same
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
EP1125897A1 (en) Synthetic quartz glass and method for preparing the same
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
KR20010052399A (en) Synthetic quartz glass for optical member, process for producing the same, and method of using the same
EP1061052B1 (en) Synthetic silica glass optical members and process for the production thereof
KR100952093B1 (en) Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4437886B2 (en) Quartz glass blank for optical members and use thereof
JP2001311801A (en) Synthetic quartz glass
JP3531870B2 (en) Synthetic quartz glass
JP4085633B2 (en) Synthetic quartz glass for optical components
JP4228493B2 (en) Synthetic quartz glass
JP2001316123A (en) Synthetic quarts glass
JP2001316123A5 (en)
JP2001302275A (en) Optical member made from synthetic quartz glass
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2003321230A (en) Synthetic quartz glass for optical member
JP2001342027A (en) Method of manufacturing quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091022