JP2003201126A - Synthetic quartz glass for optical member and method of manufacturing the same - Google Patents

Synthetic quartz glass for optical member and method of manufacturing the same

Info

Publication number
JP2003201126A
JP2003201126A JP2001399667A JP2001399667A JP2003201126A JP 2003201126 A JP2003201126 A JP 2003201126A JP 2001399667 A JP2001399667 A JP 2001399667A JP 2001399667 A JP2001399667 A JP 2001399667A JP 2003201126 A JP2003201126 A JP 2003201126A
Authority
JP
Japan
Prior art keywords
quartz glass
fluorine
porous
synthetic quartz
porous quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001399667A
Other languages
Japanese (ja)
Other versions
JP2003201126A5 (en
Inventor
Yorisuke Ikuta
順亮 生田
Koshin Iwahashi
康臣 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001399667A priority Critical patent/JP2003201126A/en
Publication of JP2003201126A publication Critical patent/JP2003201126A/en
Publication of JP2003201126A5 publication Critical patent/JP2003201126A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • C03B19/1461Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain synthetic quartz glass for optical members which excels stably in light transmittance and light resistance in UV to vacuum UV rays. <P>SOLUTION: This method includes (a) a process step of forming porous quartz glass by depositing and growing quartz glass particulates obtained by flame hydrolyzing glass-forming raw materials on a base material, (b) a process step of reducing the OH group content in the porous quartz glass by holding the porous quartz glass under a hydrogen-containing atmosphere, (c) a process step of doping fluorine to the porous quartz glass by holding the porous quartz glass under a fluorine compound-containing atmosphere, and (d) a process step of obtaining a transparent quartz glass body containing the fluorine by heating the porous quartz glass up to a temperature above 1,300°C thereby forming the transparent glass. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、波長155〜25
0nmの光を光源とする光学装置の光学部材用合成石英
ガラスおよびその製造方法に関する。より詳細には、A
rFエキシマレーザ(波長193nm)、Xeエキシ
マランプ(波長172nm)や重水素ランプ(波長17
0〜400nm)、Fレーザ(波長157nm)等を
光源とした光学装置の、レンズ、プリズム、エタロン、
回折格子、フォトマスク、ペリクル(ペリクル材および
ペリクルフレーム)、窓材などの光学部品材料として用
いられる光学部材用合成石英ガラスとその製造方法に関
する。
TECHNICAL FIELD The present invention relates to wavelengths of 155 to 25.
The present invention relates to a synthetic quartz glass for an optical member of an optical device using 0 nm light as a light source and a method for manufacturing the same. More specifically, A
rF excimer laser (wavelength 193 nm), Xe 2 excimer lamp (wavelength 172 nm) and deuterium lamp (wavelength 17
0-400 nm), F 2 laser (wavelength 157 nm), etc.
The present invention relates to a synthetic quartz glass for an optical member used as an optical component material such as a diffraction grating, a photomask, a pellicle (a pellicle material and a pellicle frame), a window material, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来から光リソグラフィ技術において、
ウエハ上に微細な回路パターンを転写して集積回路を製
造するための露光装置が広く利用されている。集積回路
の高集積化および高機能化に伴い、集積回路の微細化が
進み、高解像度の回路パターンを深い焦点深度でウエハ
面上に結像させることが露光装置に求められ、露光光源
の短波長化が進められている。露光光源は、従来のg線
(波長436nm)やi線(波長365nm)から進ん
で、KrFエキシマレーザ(波長248nm)やArF
エキシマレーザ(波長193nm)が用いられようとし
ている。またさらに回路パターンが100nm以下とな
る次世代の集積回路に対応するため、露光光源としてF
レーザ(波長157.6nm)を用いることが検討さ
れ始めている。
2. Description of the Related Art Conventionally, in optical lithography technology,
An exposure apparatus for transferring a fine circuit pattern onto a wafer to manufacture an integrated circuit is widely used. As integrated circuits have become highly integrated and highly functionalized, miniaturization of integrated circuits has progressed, and it is required for an exposure apparatus to form a high-resolution circuit pattern on a wafer surface with a deep depth of focus. Wavelength conversion is in progress. The exposure light source is advanced from the conventional g-line (wavelength 436 nm) or i-line (wavelength 365 nm) to KrF excimer laser (wavelength 248 nm) or ArF.
An excimer laser (wavelength 193 nm) is about to be used. In addition, in order to support next-generation integrated circuits with circuit patterns of 100 nm or less, the exposure light source F
The use of two lasers (wavelength 157.6 nm) is being investigated.

【0003】波長155〜400nmの光を光源とする
光源とする露光装置の光学部材には、近赤外域から紫外
域までの広範囲にわたって透過性に優れ、熱膨張係数が
極めて小さく加工が比較的容易などの理由から、合成石
英ガラスが主に用いられてきた。従来用いられてきた合
成石英ガラスは、例えば特開平3−88742号公報に
開示されたものが知られている。すなわち合成石英ガラ
ス体中のOH基含有量が10ppm以上であり、かつ水
素を5×1016分子/cm以上含有することを特徴
とするものである。
An optical member of an exposure apparatus using a light source having a wavelength of 155 to 400 nm as a light source has excellent transparency over a wide range from the near infrared region to the ultraviolet region, has a very small coefficient of thermal expansion, and is relatively easy to process. For these reasons, synthetic quartz glass has been mainly used. As the synthetic quartz glass that has been conventionally used, for example, the one disclosed in Japanese Patent Laid-Open No. 3-88742 is known. That is, it is characterized in that the synthetic quartz glass body has an OH group content of 10 ppm or more and contains hydrogen of 5 × 10 16 molecules / cm 3 or more.

【0004】しかしながら同報発明の合成石英ガラスで
あっても、紫外線を照射した場合に屈折率の上昇や透過
率低下などのダメージが生じ問題であった。KrFエキ
シマレーザ、ArFエキシマレーザさらにはFレーザ
と光の波長が短くなるにつれ光子の持つエネルギーが増
すため、波長200nm以下の深紫外光〜真空紫外光に
対する耐光性は特に問題であった。紫外線を照射した場
合の屈折率上昇や透過率低下の原因は明確ではないが、
合成石英ガラス中の歪んだ構造、例えば三員環構造や四
員環構造などの欠陥前駆体が紫外線照射により切断さ
れ、E’センターやNBOHCなどの構造欠陥が生成す
るためと推定される。また合成石英ガラス中のOH基
は、紫外線照射時の赤色蛍光発光に影響を与えるだけで
なく、波長180nm以下の真空紫外域における光透過
性を低下させる。従って合成石英ガラス中のOH基含有
量は少ないほうが好ましい。
However, even the synthetic quartz glass of the same invention has a problem that when it is irradiated with ultraviolet rays, damage such as increase in refractive index and decrease in transmittance occurs. Since the energy of photons increases as the wavelength of light becomes shorter with KrF excimer laser, ArF excimer laser, and further with F 2 laser, light resistance to deep ultraviolet light to vacuum ultraviolet light having a wavelength of 200 nm or less has been a particular problem. Although the cause of the increase in the refractive index and the decrease in the transmittance when irradiated with ultraviolet rays is not clear,
It is presumed that the distorted structure in the synthetic quartz glass, for example, a defect precursor such as a three-membered ring structure or a four-membered ring structure is cut by the irradiation of ultraviolet rays to generate structural defects such as E ′ center and NBOHC. Further, the OH group in the synthetic quartz glass not only affects the red fluorescence emission at the time of ultraviolet irradiation, but also reduces the light transmittance in the vacuum ultraviolet region having a wavelength of 180 nm or less. Therefore, it is preferable that the OH group content in the synthetic quartz glass is small.

【0005】そこで紫外線照射により受けるダメージを
低減する方法として、本発明者らは、特開2001−1
9450公報にて、フッ素を含有しかつOH基含有量が
100ppm未満であることを特徴とする波長400n
m以下の紫外線〜真空紫外線を光源とする光学部材用合
成石英ガラスを提案した。合成石英ガラス内にフッ素を
含有させることにより、合成石英ガラス中のひずんだ構
造が低減され、紫外線照射した場合のダメージは低減さ
れる。また合成石英ガラス中のOH基含有量が100p
pm未満と少ないため、紫外線照射時の赤色蛍光発光強
度も小さく耐光性に優れる。
Therefore, as a method for reducing the damage caused by the irradiation of ultraviolet rays, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 2001-1.
9450 discloses a wavelength of 400n containing fluorine and having an OH group content of less than 100 ppm.
A synthetic quartz glass for an optical member has been proposed which uses ultraviolet rays of m or less to vacuum ultraviolet rays as a light source. By containing fluorine in the synthetic quartz glass, the distorted structure in the synthetic quartz glass is reduced, and the damage caused by ultraviolet irradiation is reduced. In addition, the OH group content in synthetic quartz glass is 100 p
Since it is as small as less than pm, the red fluorescence emission intensity at the time of ultraviolet irradiation is also small and the light resistance is excellent.

【0006】このようなフッ素を含有しかつOH基含有
量の少ない合成石英ガラスの製造方法として、特開20
01−199735公報や特開平8−75901号公報
などが提案されている。これらの提案は、ガラス形成原
料を火炎加水分解して得られる石英ガラス微粒子を基材
に堆積、成長させて多孔質石英ガラスを形成し、次いで
多孔質石英ガラスをまず塩素化合物雰囲気下にて加熱処
理することにより多孔質石英ガラス中のOH基含有量を
低減させた後、フッ素化合物雰囲気下にて加熱処理する
ことにより多孔質石英ガラス中へフッ素をドープした
後、透明ガラス化する工程を含むことを特徴とする合成
石英ガラスの製造方法である。しかしながら、この製造
方法は多孔質石英ガラスを塩素化合物含有雰囲気で処理
する工程を含むため、最終的に得られる合成石英ガラス
中に塩素が残留する可能性がある。合成石英ガラス中の
塩素は紫外線照射によりE’センターなどの常磁性欠陥
となるため、合成石英ガラス中に塩素が多量に含まれる
と、耐光性に欠け、問題であった。
As a method for producing such synthetic quartz glass containing fluorine and having a small OH group content, Japanese Patent Application Laid-Open No. 20-58200
No. 01-199735 and Japanese Patent Laid-Open No. 8-75901 are proposed. In these proposals, silica glass fine particles obtained by flame hydrolysis of a glass forming raw material are deposited and grown on a substrate to form a porous silica glass, and then the porous silica glass is first heated in a chlorine compound atmosphere. The method includes a step of reducing the OH group content in the porous quartz glass by treatment, and then performing heat treatment in a fluorine compound atmosphere to dope fluorine into the porous quartz glass, and then making it transparent glass. It is a method for producing synthetic quartz glass, which is characterized by the above. However, since this manufacturing method includes the step of treating the porous quartz glass in a chlorine compound-containing atmosphere, chlorine may remain in the finally obtained synthetic quartz glass. Since chlorine in the synthetic quartz glass becomes paramagnetic defects such as E'center due to the irradiation of ultraviolet rays, if a large amount of chlorine is contained in the synthetic quartz glass, the light resistance is insufficient, which is a problem.

【0007】また前記の提案以外に、ガラス形成原料を
火炎加水分解して得られる石英ガラス微粒子を基材に堆
積、成長させて多孔質石英ガラスを形成し、得られた多
孔質石英ガラスをフッ素化合物含有雰囲気にて処理する
ことにより多孔質石英ガラス中のOH基含有量を低減す
るとともにフッ素をドープした後、透明ガラス化する提
案もある。しかしながらこの方法では塩素化合物を用い
る場合と比較して、多孔質石英ガラスをフッ素化合物雰
囲気中で処理する際に、多孔質石英ガラス中のOH基含
有量を安定して低減することができず、さらに条件によ
っては同処理中に酸素欠乏型欠陥(≡Si−Si≡)が
生成する場合があった。酸素欠乏型欠陥は163nmを
中心とした吸収帯を有し波長155〜180nmの真空
紫外域における光透過率を損なうだけでなく、耐光性に
も悪影響を及ぼすため酸素欠乏型欠陥は実質的に含有し
ないことが好ましい。さらにこの酸素欠乏型欠陥は、同
処理後に多孔質石英ガラス中に残留するOH基含有量が
少なければ少ないほど生成しやすい傾向にあり、問題で
あった。
In addition to the above proposal, silica glass fine particles obtained by flame hydrolysis of a glass forming raw material are deposited and grown on a substrate to form a porous silica glass, and the obtained porous silica glass is converted into fluorine. There is also a proposal to reduce the OH group content in the porous quartz glass by treating it in a compound-containing atmosphere and to make it transparent glass after doping with fluorine. However, in this method, as compared with the case of using a chlorine compound, when the porous quartz glass is treated in a fluorine compound atmosphere, the OH group content in the porous quartz glass cannot be stably reduced, Further, depending on the conditions, oxygen deficiency type defects (≡Si-Si≡) may be generated during the same treatment. Oxygen-deficient defects have an absorption band centered at 163 nm and not only impair the light transmittance in the vacuum ultraviolet region of wavelength 155 to 180 nm, but also adversely affect the light resistance, so oxygen-deficient defects are substantially contained. Not preferably. Further, this oxygen deficiency type defect is more likely to be generated as the OH group content remaining in the porous quartz glass after the same treatment is smaller, which is a problem.

【0008】[0008]

【発明が解決しようとする課題】本発明は、紫外線〜真
空紫外線における光透過率および耐光性に安定して優れ
る光学部材用合成石英ガラスおよびその製造方法の提供
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a synthetic quartz glass for optical members, which is stable and excellent in light transmittance and light resistance in ultraviolet rays to vacuum ultraviolet rays, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、合成石英
ガラス中に塩素が残留する原因について鋭意検討を行っ
た結果、まず多孔質石英ガラスを水素ガス含有雰囲気中
にて処理することにより多孔質石英ガラス中のOH基含
有量を低減し、次いで多孔質石英ガラスをフッ素化合物
含有雰囲気中で処理した後、透明ガラス化すれば、塩素
含有量の少ない耐光性に安定して優れるフッ素ドープ合
成石英ガラスを作製することができることを見出した。
Means for Solving the Problems As a result of intensive studies on the cause of chlorine remaining in synthetic quartz glass, the inventors of the present invention firstly treated porous quartz glass in an atmosphere containing hydrogen gas. If the OH group content in the porous quartz glass is reduced and then the porous quartz glass is treated in a fluorine compound-containing atmosphere and then made into a transparent vitreous material, the chlorine content is low and the fluorine dope is stable and excellent in light resistance. It has been found that synthetic quartz glass can be produced.

【0010】すなわち本発明は、波長155〜250n
mの光を光源とする光学装置の光学部材として用いられ
る光学部材用合成石英ガラスの製造方法において、
(a)ガラス形成原料を火炎加水分解して得られる石英
ガラス微粒子を基材に堆積・成長して多孔質石英ガラス
を形成する工程と、(b)該多孔質石英ガラスを水素含
有雰囲気下に保持し、多孔質石英ガラス中のOH基含有
量を低減する工程と、(c)該多孔質石英ガラスをフッ
素化合物含有雰囲気下に保持し、該多孔質石英ガラスに
フッ素をドープする工程と、(d)該多孔質石英ガラス
を1300℃以上の温度に昇温して透明ガラス化し、フ
ッ素を含有した透明石英ガラス体を得る工程と、を含む
ことを特徴とする光学部材用合成石英ガラスの製造方法
を提供するものである。
That is, the present invention has a wavelength of 155 to 250n.
In a method of manufacturing synthetic quartz glass for an optical member used as an optical member of an optical device using m light as a light source,
(A) a step of depositing and growing fine quartz glass particles obtained by flame hydrolysis of a glass forming raw material on a base material to form porous quartz glass; and (b) exposing the porous quartz glass to a hydrogen-containing atmosphere. Holding and reducing the OH group content in the porous quartz glass; (c) holding the porous quartz glass in a fluorine compound-containing atmosphere and doping the porous quartz glass with fluorine; (D) a step of raising the temperature of the porous quartz glass to a temperature of 1300 ° C. or higher to obtain a transparent quartz glass body containing fluorine to obtain a transparent quartz glass body containing fluorine. A manufacturing method is provided.

【0011】[0011]

【発明の実施の形態】本発明の工程(a)は、多孔質石
英ガラスの製造工程である。合成石英ガラスの形成原料
としては、ガス化可能な原料であれば特に制限されない
が、SiCl、SiHCl、SiHCl、Si
CHClなどの塩化物、SiF、SiHF、S
iHなどのフッ化物、SiBr、SiHBr
などの臭化物、SiIなどの沃化物といったハロゲン
化珪素化合物、またはRnSi(OR)4−n(ここに
Rは炭素数1〜4のアルキル基、nは0〜3の整数)で
示されるアルコキシシランや(CHSi−O−S
i(CHなどのハロゲンを含まない珪素化合物が
挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Step (a) of the present invention is a step for producing porous quartz glass. The raw material for forming the synthetic quartz glass is not particularly limited as long as it is a gasifiable raw material, but SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Si
Chlorides such as CH 3 Cl 3 , SiF 4 , SiHF 3 , S
Fluoride such as iH 2 F 2 , SiBr 4 , SiHBr 3
Bromides such as, alkoxy represented by halogenated silicon compounds such as iodide such as SiI 4, or RnSi (OR) 4-n (wherein R is an alkyl group having 1 to 4 carbon atoms, n represents an integer of 0 to 3) silane and (CH 3) 3 Si-O -S
A halogen-free silicon compound such as i (CH 3 ) 3 may be mentioned.

【0012】本発明の工程(b)は、水素によりOH基
含有量の低減化を行う工程である。水素によるOH基含
有量低減化工程では、水素ガスを含有する雰囲気下にて
多孔質石英ガラスを処理することにより、式(1)およ
び式(2)に示す反応によって多孔質石英ガラスのOH
基含有量を低減する。
The step (b) of the present invention is a step of reducing the OH group content with hydrogen. In the step of reducing the OH group content by hydrogen, the porous quartz glass is treated in an atmosphere containing hydrogen gas, so that the OH of the porous quartz glass is reacted by the reactions shown in Formulas (1) and (2).
Reduce the group content.

【0013】[0013]

【数1】 [Equation 1]

【0014】OH基含有量低減工程における水素ガス含
有雰囲気としては、水素ガスを0.1〜100体積%含
有する不活性ガス雰囲気が好ましく、特に水素ガス10
0体積%の雰囲気が好ましい。処理温度は500〜13
00℃が好ましく、特に800〜1200℃が好まし
い。500℃より低いと前記(1)および(2)の反応
速度が極端に遅くなり多孔質石英ガラス中のOH基含有
量を充分に低減することができないおそれがあり、また
1300℃より高いと多孔質石英ガラスの緻密化が進む
ため多孔質石英ガラス中のOH基濃度を低減することが
できないおそれがある。処理圧力は101(大気圧)〜
1500kPaが好ましい。処理時間は、処理する多孔
質石英ガラスのサイズ、処理条件にもよるが、数時間〜
数百時間が好ましい。
The hydrogen gas-containing atmosphere in the step of reducing the OH group content is preferably an inert gas atmosphere containing 0.1 to 100% by volume of hydrogen gas, and particularly hydrogen gas 10
An atmosphere of 0% by volume is preferred. Processing temperature is 500-13
00 ° C. is preferable, and 800 to 1200 ° C. is particularly preferable. If it is lower than 500 ° C, the reaction rates of the above (1) and (2) become extremely slow, and the OH group content in the porous quartz glass may not be sufficiently reduced. Since the densification of the fine quartz glass progresses, the OH group concentration in the porous quartz glass may not be reduced. Processing pressure is from 101 (atmospheric pressure)
1500 kPa is preferable. The treatment time depends on the size of the porous quartz glass to be treated and the treatment conditions, but is from several hours to
Hundreds of hours are preferred.

【0015】本発明の工程(c)は、フッ素ドープ工程
である。フッ素ドープ工程では、多孔質石英ガラスをフ
ッ素含有雰囲気下にて保持することにより、式(3)に
示す反応によってOH基低減化工程にて生成した酸素欠
乏型欠陥を≡S−F結合に置換し、酸素欠乏型欠陥を実
質的に含まないフッ素ドープ多孔質石英ガラスを得る。
The step (c) of the present invention is a fluorine doping step. In the fluorine doping step, by holding the porous quartz glass in a fluorine-containing atmosphere, oxygen-deficient defects generated in the OH group reducing step by the reaction shown in the formula (3) are replaced with ≡SF bonds. Then, a fluorine-doped porous quartz glass that does not substantially contain oxygen-deficient defects is obtained.

【0016】[0016]

【数2】 [Equation 2]

【0017】従って、最終的に得られる合成石英ガラス
体中のフッ素濃度は、OH基低減化工程にて生成した酸
素欠乏型欠陥の濃度によって決まり、酸素欠乏型欠陥の
濃度が高いほど、多くのフッ素を含有する合成石英ガラ
ス体が得られる。
Therefore, the concentration of fluorine in the finally obtained synthetic quartz glass body is determined by the concentration of oxygen-deficient defects generated in the OH group reduction step, and the higher the concentration of oxygen-deficient defects, the more the fluorine concentration. A synthetic quartz glass body containing fluorine is obtained.

【0018】フッ素化合物含有雰囲気としては、含フッ
素ガス(例えばSiF、SF、CHF、CF
など)を0.1〜100体積%含有する不活性ガス
雰囲気が好ましい。雰囲気温度は500〜1300℃、
特に800〜1200℃が好ましい。また、雰囲気圧力
10〜101kPa(101kPa=大気圧)が好まし
い。さらに、保持時間は、多孔質石英ガラスのサイズ、
処理条件、OH基含有量低減化工程にて生成した酸素欠
乏型欠陥の濃度にもよるが、数十分〜数十時間が好まし
い。この場合、多孔質石英ガラスへ均一に短時間でフッ
素をドープできることから、減圧下(100Pa以下、
特に10Pa以下が好ましい。)で保持した状態で含フ
ッ素ガスを常圧になるまで導入し、フッ素化合物含有雰
囲気とすることが好ましい。またフッ素化合物含有雰囲
気で1000℃以上の高温で多孔質母材を処理する場合
には、還元型欠陥が生成しやすくなるため、含フッ素ガ
ス、不活性ガスの他に酸素ガスを含んだ雰囲気下で処理
し還元型欠陥の生成を防ぐことが好ましい。
The fluorine compound-containing atmosphere may be a fluorine-containing gas (eg, SiF 4 , SF 6 , CHF 3 , CF 4 ,
An inert gas atmosphere containing 0.1 to 100% by volume of (F 2 etc.) is preferable. The ambient temperature is 500 to 1300 ° C,
Especially 800-1200 degreeC is preferable. Further, the atmospheric pressure is preferably 10 to 101 kPa (101 kPa = atmospheric pressure). Furthermore, the holding time depends on the size of the porous quartz glass,
Although it depends on the treatment conditions and the concentration of oxygen-deficient defects generated in the step of reducing the OH group content, several tens of minutes to several tens of hours are preferable. In this case, since the porous quartz glass can be uniformly doped with fluorine in a short time, under reduced pressure (100 Pa or less,
Particularly, 10 Pa or less is preferable. It is preferable to introduce a fluorine-containing gas until it reaches a normal pressure while keeping it in (1) to make a fluorine compound-containing atmosphere. Further, when the porous base material is treated at a high temperature of 1000 ° C. or higher in a fluorine compound-containing atmosphere, reduction type defects are easily generated. Therefore, in an atmosphere containing oxygen gas in addition to fluorine-containing gas and inert gas. It is preferable to prevent the generation of reduction-type defects by treating with.

【0019】本発明の工程(d)は、透明ガラス化工程
である。透明ガラス化は、多孔質石英ガラスを所定の透
明ガラス化温度で所定時間保持することにより行われ
る。透明ガラス化温度は、通常は1300〜1600℃
であり、特に1350〜1500℃であることが好まし
い。またこの際の雰囲気としては、ヘリウムや窒素など
の不活性ガス100体積%の雰囲気、またはヘリウムや
窒素などの不活性ガスを主成分とする雰囲気を用いるこ
とができる。圧力については、減圧または常圧であれば
よい。特に常圧の場合にはヘリウムガスを用いることが
できる。また、減圧の場合には100Torr(13.
3kPa)以下とすることが好ましい。
The step (d) of the present invention is a transparent vitrification step. The transparent vitrification is performed by maintaining the porous quartz glass at a predetermined transparent vitrification temperature for a predetermined time. The transparent vitrification temperature is usually 1300 to 1600 ° C.
And particularly preferably 1350 to 1500 ° C. As the atmosphere at this time, an atmosphere containing 100% by volume of an inert gas such as helium or nitrogen, or an atmosphere containing an inert gas such as helium or nitrogen as a main component can be used. The pressure may be reduced pressure or normal pressure. Helium gas can be used especially under normal pressure. In the case of decompression, 100 Torr (13.
It is preferably 3 kPa) or less.

【0020】本発明において、水素によるOH基含有量
低減化工程の後に、多孔質石英ガラス中の水素分子含有
量を低減する水素含有量低減化工程(e)を実施するこ
ともできる。多孔質石英ガラス中に水素分子が溶存され
ていると、後工程のフッ素ドープ工程や透明ガラス化工
程において、1000〜1500℃の高温で加熱処理し
た場合に、新たに酸素欠乏型欠陥の生成を招く可能性が
ある。これを防ぐために、多孔質石英ガラス中の水素分
子含有量を低減する処理をOH基含有量低減化工程とフ
ッ素ドープ工程との間、またはフッ素ドープ工程と兼ね
て水素含有量低減化工程を実施することが好ましい。
In the present invention, the hydrogen content reducing step (e) for reducing the hydrogen molecule content in the porous quartz glass may be carried out after the OH group content reducing step by hydrogen. When hydrogen molecules are dissolved in the porous quartz glass, when a heat treatment is performed at a high temperature of 1000 to 1500 ° C. in the subsequent fluorine doping step or transparent vitrification step, generation of oxygen deficiency type defects is newly generated. May invite. In order to prevent this, a treatment to reduce the hydrogen molecule content in the porous quartz glass is performed between the OH group content reduction step and the fluorine doping step, or the hydrogen content reduction step is performed in combination with the fluorine doping step. Preferably.

【0021】水素含有量低減化工程は、多孔質石英ガラ
スを実質的に水素を含まない雰囲気下で処理することに
より行う。また水素含有量低減化工程をフッ素ドープ工
程と兼ねることも可能であるが、フッ素ドープ工程の最
高処理温度がOH基含有量低減化工程の最高処理温度と
比べて高い場合に限られる。実質的に水素を含まない雰
囲気としては、水素ガスが0.1体積%以下であれば特
に限定されず、不活性ガスを主成分とする雰囲気である
ことが好ましい。圧力については、常圧でも可能である
が、処理時間を短縮するため減圧で行うことが好まし
い。減圧の場合は、100Pa以下の圧力で行うことが
特に好ましい。これらの雰囲気下、500〜1400℃
で数十時間処理することが好ましい。
The step of reducing the hydrogen content is performed by treating the porous quartz glass in an atmosphere containing substantially no hydrogen. Further, the hydrogen content reducing step can also serve as the fluorine doping step, but only when the maximum processing temperature of the fluorine doping step is higher than the maximum processing temperature of the OH group content reducing step. The atmosphere containing substantially no hydrogen is not particularly limited as long as the hydrogen gas is 0.1 vol% or less, and an atmosphere containing an inert gas as a main component is preferable. The pressure may be normal pressure, but it is preferably reduced pressure in order to shorten the treatment time. In the case of reducing the pressure, it is particularly preferable that the pressure is 100 Pa or less. 500 to 1400 ° C under these atmospheres
It is preferable that the treatment is performed for several tens of hours.

【0022】また本発明において、OH基含有量低減化
工程を実施する際の多孔質石英ガラスの平均かさ密度は
1.6g/cm以下、かさ密度分布(すなわち、多孔
質石英ガラスの成長軸方向に垂直な断面において、外周
から20mmを除いた領域内でのかさ密度の最大と最小
との差)は0.6g/cm以下であることが好まし
い。これは、多孔質石英ガラスの形成条件を調整した
り、あるいは多孔質石英ガラスの製造工程とOH基含有
量を低減する工程との間で多孔質石英ガラスを1000
℃〜1500℃の範囲内にて加熱したりして、行える。
Further, in the present invention, the average bulk density of the porous quartz glass when carrying out the step of reducing the OH group content is 1.6 g / cm 3 or less, and the bulk density distribution (that is, the growth axis of the porous quartz glass is In the cross section perpendicular to the direction, the difference between the maximum and minimum bulk densities in the region excluding 20 mm from the outer circumference) is preferably 0.6 g / cm 3 or less. This is because the conditions for forming the porous quartz glass are adjusted, or the amount of the porous quartz glass is reduced to 1000 between the step of manufacturing the porous quartz glass and the step of reducing the OH group content.
It can be performed by heating in the range of ℃ to 1500 ℃.

【0023】OH基含有量低減化工程における、多孔質
石英ガラスの平均かさ密度を前記範囲内とすることによ
り、多孔質石英ガラス中のOH基含有量を充分に低減す
ることができ、また、フッ素ドープ工程における多孔質
石英ガラス中の酸素欠乏型欠陥の修復およびフッ素ドー
プを充分に行うことができて酸素欠乏型欠陥が残留する
などの問題が生じにくい。またかさ密度分布を前記範囲
内とすることにより、最終的に得られた合成石英ガラス
体中のOH基含有量やフッ素含有量に分布が生じにく
く、屈折率や光透過率の均一性が向上する。
By setting the average bulk density of the porous quartz glass within the above range in the step of reducing the OH group content, the OH group content in the porous quartz glass can be sufficiently reduced, and In the fluorine doping step, oxygen deficiency type defects in the porous quartz glass can be repaired and fluorine doping can be sufficiently performed, and problems such as residual oxygen deficiency type defects hardly occur. Further, by setting the bulk density distribution within the above range, distribution is unlikely to occur in the OH group content and the fluorine content in the finally obtained synthetic quartz glass body, and the uniformity of the refractive index and the light transmittance is improved. To do.

【0024】本発明の方法により得られた合成石英ガラ
スは、露光装置用のレンズ、その他の光学部材として用
いるために、光学部材として必要な屈折率均質性や低複
屈折性などの光学特性を与えるための均質化、成形、ア
ニールなどの各熱処理(以下、光学的熱処理という)を
適宜行う必要がある。光学的熱処理は透明ガラス化の後
に行うことができる。
The synthetic quartz glass obtained by the method of the present invention has optical characteristics such as a refractive index homogeneity and a low birefringence necessary for an optical member in order to be used as a lens for an exposure apparatus and other optical members. It is necessary to appropriately perform each heat treatment such as homogenization, forming, and annealing (hereinafter referred to as an optical heat treatment) for giving. The optical heat treatment can be performed after the transparent vitrification.

【0025】特にアニールについては、アニールにより
合成石英ガラス中の三員環構造や四員環構造などの歪ん
だ構造を低減し、真空紫外域における光透過率や耐光性
を向上することができるため、実施することが好まし
い。具体的なアニール条件としては、合成石英ガラス
を、窒素ガスやアルゴンガスなどの不活性ガス雰囲気、
または空気、酸素ガス雰囲気中、温度600〜1100
℃、圧力101kPa(大気圧)〜1Paにて数十〜数
百時間保持することが好ましい。
With respect to annealing, in particular, annealing can reduce distorted structures such as a three-membered ring structure and a four-membered ring structure in the synthetic quartz glass, and can improve light transmittance and light resistance in the vacuum ultraviolet region. , Is preferably carried out. Specific annealing conditions include synthetic quartz glass, an inert gas atmosphere such as nitrogen gas or argon gas,
Alternatively, in air or oxygen gas atmosphere, temperature 600 to 1100
It is preferable to maintain the temperature at a temperature of 101 kPa (atmospheric pressure) to 1 Pa for several tens to several hundreds of hours.

【0026】次に本発明の光学部材用合成石英ガラスの
組成について、説明する。本発明において、合成石英ガ
ラス中のOH基は、紫外線照射時の赤色蛍光発光を増加
させるだけでなく真空紫外域における光透過性を損なう
ため、その含有量は少ない方が好ましい。具体的には合
成石英ガラス中のOH基含有量は10ppm未満、特に
は5ppm以下、さらには1ppm以下が好ましい。
Next, the composition of the synthetic quartz glass for optical members of the present invention will be described. In the present invention, the OH group in the synthetic quartz glass not only increases the red fluorescence emission upon irradiation with ultraviolet rays but also impairs the light transmittance in the vacuum ultraviolet region, so that the content thereof is preferably small. Specifically, the OH group content in the synthetic quartz glass is less than 10 ppm, particularly preferably 5 ppm or less, more preferably 1 ppm or less.

【0027】本発明において、合成石英ガラス中の塩素
は、真空紫外域における光透過性および耐光性を悪化さ
せるため、その含有量が少ない方が好ましい。具体的に
は合成石英ガラス中の塩素含有量は10ppm以下、特
には5ppm以下、さらには実質的に含有しないことが
好ましい。
In the present invention, the chlorine content in the synthetic quartz glass deteriorates the light transmittance and light resistance in the vacuum ultraviolet region, so that it is preferable that the content of chlorine is small. Specifically, the chlorine content in the synthetic quartz glass is 10 ppm or less, particularly 5 ppm or less, and further preferably substantially no chlorine.

【0028】本発明において、合成石英ガラス中のフッ
素は、OH基と置換しOH基含有量を低減する効果を有
するうえ、三員環構造、四員環構造などの歪んだ構造を
低減する効果がある。具体的には本発明の合成石英ガラ
スはフッ素を50ppm以上、特には200ppm以上
含有することが好ましい。
In the present invention, fluorine in the synthetic quartz glass has the effect of substituting with OH groups to reduce the content of OH groups, and also has the effect of reducing distorted structures such as a three-membered ring structure and a four-membered ring structure. There is. Specifically, the synthetic quartz glass of the present invention preferably contains 50 ppm or more of fluorine, and particularly preferably 200 ppm or more.

【0029】本発明において、合成石英ガラス中の酸素
欠乏型欠陥(≡Si−Si≡(≡は、Si−O結合を示
す。以下同様)、酸素過剰型欠陥(≡Si−O−O−S
i≡)、≡SiH結合、溶存酸素分子などは、真空紫外
光透過性および耐光性に悪影響を及ぼすため、実質的に
含有しない方が好ましい。特に、酸素欠乏欠陥は、OH
基含有量低減化の際に導入されやすいので、実質的に含
まれないよう、慎重に管理することが好ましい。
In the present invention, oxygen-deficient type defects (≡Si—Si≡ (≡ represents Si—O bond; hereinafter the same)) and oxygen excess type defects (≡Si—O—O—S) in synthetic quartz glass.
i≡), ≡SiH bond, dissolved oxygen molecule and the like adversely affect the vacuum ultraviolet light transmittance and the light resistance, and thus it is preferable that they are not substantially contained. In particular, the oxygen deficiency defect is OH
Since it is likely to be introduced when reducing the group content, it is preferable to carefully control so that it is not substantially contained.

【0030】本発明において、合成石英ガラス中のアル
カリ金属(Na,K,Liなど)、アルカリ土類金属
(Mg,Caなど)、遷移金属(Fe,Ni,Cr,C
u,Mo,W,Al,Ti,Ceなど)などの金属不純
物は、紫外域から真空紫外域における透過率を低下させ
るだけでなく、耐紫外線性を低下させる原因ともなるた
め、その含有量は極力少ない方が好ましい。具体的には
金属不純物の合計含有量が100ppb以下、特に50
ppb以下が好ましい。
In the present invention, alkali metals (Na, K, Li, etc.), alkaline earth metals (Mg, Ca, etc.), transition metals (Fe, Ni, Cr, C) in synthetic quartz glass are used.
Since metal impurities such as u, Mo, W, Al, Ti, and Ce) not only lower the transmittance in the ultraviolet region to the vacuum ultraviolet region but also reduce the ultraviolet resistance, their content is It is preferable that the number is as small as possible. Specifically, the total content of metal impurities is 100 ppb or less, especially 50
It is preferably ppb or less.

【0031】さらに本発明の方法により得られた合成石
英ガラスは、耐紫外線性を向上させるために、水素分子
を含有させると効果的な場合がある。具体的には合成石
英ガラスを水素含有雰囲気下、600℃以下の温度で加
熱処理することにより、合成石英ガラス中へ水素分子を
拡散、含有させる。
Further, the synthetic quartz glass obtained by the method of the present invention may be effective in containing hydrogen molecules in order to improve the ultraviolet resistance. Specifically, synthetic quartz glass is heat-treated in a hydrogen-containing atmosphere at a temperature of 600 ° C. or lower to diffuse and contain hydrogen molecules in the synthetic quartz glass.

【0032】水素分子は紫外線照射により生じるE’セ
ンターやNBOHCなどの常磁性欠陥を修復し波長18
0〜300nmにおける吸収帯の生成を抑制するはたら
きを有する。波長180〜250nmの光を光源とする
光学装置の光学部材として用いる場合には、水素分子を
1×1017分子/cm以上含有させることが好まし
い。しかしながら、合成石英ガラス体中の水素分子は紫
外線照射中の酸素欠乏型欠陥(≡Si−Si≡)生成を
促進する作用があり、同欠陥は波長163nmを中心と
する吸収体を有するため、波長155〜180nmの光
を光源とする光学装置の光学部材として用いる場合に
は、合成石英ガラス中の水素分子含有量を1×1017
分子/cm以下とすることが好ましい。なお、用途、
使用条件にもよるが、合成石英ガラス中の水素分子含有
量を1×1017分子/cm以下とすることが好まし
い場合がある。
The hydrogen molecule repairs paramagnetic defects such as E'center and NBOHC generated by ultraviolet irradiation and has a wavelength of 18
It has a function of suppressing the generation of an absorption band at 0 to 300 nm. When used as an optical member of an optical device that uses light having a wavelength of 180 to 250 nm as a light source, it is preferable that hydrogen molecules are contained in an amount of 1 × 10 17 molecules / cm 3 or more. However, the hydrogen molecules in the synthetic quartz glass body have an action of promoting the generation of oxygen-deficient type defects (≡Si-Si≡) during irradiation of ultraviolet rays, and since the defects have an absorber centered at a wavelength of 163 nm, When used as an optical member of an optical device having a light source of 155 to 180 nm as the light source, the hydrogen molecule content in the synthetic quartz glass is 1 × 10 17.
The number of molecules / cm 3 or less is preferable. In addition,
Depending on the conditions of use, it may be preferable to set the hydrogen molecule content in the synthetic quartz glass to 1 × 10 17 molecules / cm 3 or less.

【0033】[0033]

【実施例】(例1〜例11)四塩化珪素を酸水素火炎中
で加水分解させ、形成されたSiO微粒子を基材上に
堆積させて直径350mm、長さ600mmの多孔質石
英ガラスを作製した(工程(a))。
EXAMPLES (Examples 1 to 11) Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles were deposited on a substrate to form a porous quartz glass having a diameter of 350 mm and a length of 600 mm. It was produced (step (a)).

【0034】次いで、多孔質石英ガラスを雰囲気制御可
能な電気炉内に設置し、以下に記す処理を順次実施し
た。表1に示す条件にて水素含有雰囲気下にて処理し、
多孔質石英ガラス中のOH基含有量を低減させた(工程
(b))。
Next, the porous quartz glass was placed in an electric furnace capable of controlling the atmosphere, and the treatments described below were sequentially carried out. Treated under a hydrogen-containing atmosphere under the conditions shown in Table 1,
The OH group content in the porous quartz glass was reduced (step (b)).

【0035】続いて、表1に示す条件にて多孔質石英ガ
ラスを処理し、多孔質石英ガラス中の残留水素を低減、
除去した(工程(e))後、表1に示す条件にてフッ素
化合物含有雰囲気下にて処理し、フッ素ドープ多孔質石
英ガラスを得た(工程(c))。
Subsequently, the porous quartz glass was treated under the conditions shown in Table 1 to reduce the residual hydrogen in the porous quartz glass,
After the removal (step (e)), it was treated under a fluorine compound-containing atmosphere under the conditions shown in Table 1 to obtain a fluorine-doped porous quartz glass (step (c)).

【0036】最後に圧力150Pa以下の減圧に保持し
た状態で1450℃まで昇温し、この温度にて10時間
保持し透明石英ガラス体(直径180mm、長さ350
mm)を作製した。
Finally, the transparent quartz glass body (diameter 180 mm, length 350) was heated to 1450 ° C. while maintaining a reduced pressure of 150 Pa or less and kept at this temperature for 10 hours.
mm) was produced.

【0037】(例12)四塩化珪素を酸水素火炎中で加
水分解させ、形成されたSiO微粒子を基材上に堆積
させて直径350mm、長さ600mmの多孔質石英ガ
ラスを作製した。次いで、多孔質石英ガラスを雰囲気制
御可能な電気炉内に設置し、以下に記す処理を順次実施
した。まず塩素/ヘリウム=10/90vol%、10
1kPa、1200℃にて10時間処理し、多孔質石英
ガラス中のOH基含有量を低減させた。続いて、四フッ
化珪素/酸素/ヘリウム=10/10/80vol%、
101kPa、1200℃にて5時間処理し、フッ素ド
ープ多孔質石英ガラスを得た。最後に圧力150Pa以
下の減圧に保持した状態で1450℃まで昇温し、この
温度にて10時間保持し透明石英ガラス体(直径180
mm、長さ350mm)を作製した。
(Example 12) Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles were deposited on a substrate to prepare a porous quartz glass having a diameter of 350 mm and a length of 600 mm. Next, the porous quartz glass was placed in an electric furnace capable of controlling the atmosphere, and the treatments described below were sequentially performed. First, chlorine / helium = 10/90 vol%, 10
The treatment was performed at 1 kPa and 1200 ° C. for 10 hours to reduce the OH group content in the porous quartz glass. Then, silicon tetrafluoride / oxygen / helium = 10/10/80 vol%,
It was treated at 101 kPa and 1200 ° C. for 5 hours to obtain a fluorine-doped porous quartz glass. Finally, the temperature was raised to 1450 ° C. while the pressure was reduced to 150 Pa or less, and the transparent quartz glass body (diameter 180
mm, length 350 mm).

【0038】(例13)四塩化珪素を酸水素火炎中で加
水分解させ、形成されたSiO微粒子を基材上に堆積
させて直径350mm、長さ600mmの多孔質石英ガ
ラスを作製した。次いで、多孔質石英ガラスを雰囲気制
御可能な電気炉内に設置し、まず四フッ化珪素/酸素=
10/90vol%、101kPa、1000℃にて1
0時間処理し、フッ素ドープ多孔質石英ガラスを得た。
次いで圧力150Pa以下の減圧に保持した状態で14
50℃まで昇温し、この温度にて10時間保持し透明石
英ガラス体(直径180mm、長さ350mm)を作製
した。
(Example 13) Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame and the formed SiO 2 fine particles were deposited on a substrate to prepare a porous quartz glass having a diameter of 350 mm and a length of 600 mm. Next, the porous quartz glass was placed in an electric furnace capable of controlling the atmosphere, and first, silicon tetrafluoride / oxygen =
10 / 90vol%, 101kPa, 1 at 1000 ° C
The treatment was carried out for 0 hours to obtain a fluorine-doped porous quartz glass.
Then, with the pressure maintained at 150 Pa or less,
The temperature was raised to 50 ° C., and this temperature was maintained for 10 hours to prepare a transparent quartz glass body (diameter 180 mm, length 350 mm).

【0039】各例で得られた透明石英ガラス体を内径2
40mmのカーボン製るつぼの中にセットし、同るつぼ
を電気炉内でアルゴンガス、100vol%、1atm
にて1750℃まで昇温して、この温度にて10時間保
持することにより、透明石英ガラス体の成形を行った。
The inner diameter of the transparent quartz glass body obtained in each example was 2
Set in a 40 mm carbon crucible, and place the crucible in an electric furnace with argon gas, 100 vol%, 1 atm.
The transparent quartz glass body was molded by raising the temperature to 1750 ° C. and holding at this temperature for 10 hours.

【0040】次いで、得られた透明石英ガラス体の長手
方向ほぼ中央からサイズφ150mm×20mm厚の評
価用試料を切出し、表面の平坦度が5μm以下となるよ
うに#1000の研削盤にて研削を実施し、以下の評価
を行った。
Then, a sample for evaluation having a size of φ150 mm × 20 mm was cut out from approximately the center in the longitudinal direction of the obtained transparent quartz glass body, and ground with a # 1000 grinder so that the surface flatness was 5 μm or less. It carried out and evaluated the following.

【0041】(OH基含有量評価)評価用試料の中央付
近について赤外分光光度計による測定を行い、波長2.
7μmにおける吸収ピークからOH基含有量を求めた
(J.P.Wiliamset.al.,Cerami
c Bulletin, 55(5), 524,19
76)。本法による検出限界は1ppmである。
(Evaluation of OH group content) Measurement was carried out by an infrared spectrophotometer in the vicinity of the center of the sample for evaluation to obtain a wavelength of 2.
The OH group content was determined from the absorption peak at 7 μm (JP Williams et al., Cerami.
c Bulletin, 55 (5), 524, 19
76). The detection limit of this method is 1 ppm.

【0042】(フッ素含有量評価)評価用試料中央付近
のフッ素含有量をフッ素イオン電極法により分析した。
フッ素含有量の分析方法は下記の通りである。日本化学
会誌、1972(2), 350に記載された方法に従って、合成石
英ガラスを無水炭酸ナトリウムにより加熱融解し、得ら
れた融液に蒸留水および塩酸(体積比で1:1)を加え
て試料液を調整した。試料液の起電力をフッ素イオン選
択性電極および比較電極としてラジオメータトレーディ
ング社製No.945−220およびNo.945−4
68をそれぞれ用いてラジオメータにより測定し、フッ
素イオン標準溶液を用いてあらかじめ作成した検量線に
基づいて、フッ素含有量を求めた。本法による検出限界
は10ppmである。
(Evaluation of Fluorine Content) The fluorine content near the center of the sample for evaluation was analyzed by the fluorine ion electrode method.
The method for analyzing the fluorine content is as follows. According to the method described in The Chemical Society of Japan, 1972 (2), 350, synthetic quartz glass was heated and melted with anhydrous sodium carbonate, and distilled water and hydrochloric acid (volume ratio 1: 1) were added to the obtained melt. A sample solution was prepared. The electromotive force of the sample liquid was changed to No. 945-220 and No. 945-4
68 was used to measure with a radiometer, and the fluorine content was determined based on a calibration curve prepared in advance using a fluorine ion standard solution. The detection limit of this method is 10 ppm.

【0043】(塩素含有量評価)評価用試料の中央付近に
ついて蛍光X線分析法により塩素含有量を分析した。本
法による検出限界は10ppm以下である。
(Evaluation of chlorine content) The chlorine content was analyzed by fluorescent X-ray analysis in the vicinity of the center of the sample for evaluation. The detection limit of this method is 10 ppm or less.

【0044】(酸素欠乏型欠陥の有無評価)評価用試料の
中央付近より20mm×20mm×5mmの試料、およ
び20mm×20mm×30mmの試料を切り出し、そ
れぞれ20mm角の2面を鏡面研磨し、試料の温度を2
5℃に保持した状態で真空紫外分光光度計(分光計器社
製「UV201M」、以下同じ)により波長163nm
での光透過率を窒素雰囲気下にて測定し、式(4)より
163nmにおける内部透過率T163を算出し、石英
ガラス中のOH基濃度COH(ppm)から式(5)に
より計算される値T idと比較することにより還元型欠
陥の有無を評価した。
(Evaluation of Presence / Absence of Oxygen Deficiency Type Defects) Evaluation Samples
20mm x 20mm x 5mm sample from near the center, and
And cut a sample of 20 mm × 20 mm × 30 mm and
Mirror-polish two surfaces of 20 mm square each and increase the sample temperature to 2
Vacuum ultraviolet spectrophotometer (Spectrometer Co., Ltd.)
Made by "UV201M", same below) wavelength 163nm
From the formula (4) by measuring the light transmittance in
Internal transmittance T at 163 nm163Calculate the quartz
OH group concentration C in glassOH(Ppm) to formula (5)
Value calculated by T idBy comparing with
The presence or absence of the depression was evaluated.

【0045】[0045]

【数3】 [Equation 3]

【0046】[0046]

【数4】 [Equation 4]

【0047】酸素欠乏型欠陥があると、163nmを中
心とした吸収帯があるため、上式(5)より計算される
値より低くなる。
When there is an oxygen deficiency type defect, since it has an absorption band centered at 163 nm, it becomes lower than the value calculated by the above equation (5).

【0048】(157.6nm初期光透過率評価)評価
用試料の中央付近より20mm×20mm×10mmの
試料を切り出し、20mm角の2面を鏡面研磨し、真空
紫外分光光度計(分光計器社製「UV201M」)にて
波長157.6nmにおける光透過率(%)を評価し
た。
(Evaluation of initial light transmittance of 157.6 nm) A sample of 20 mm × 20 mm × 10 mm was cut out from the vicinity of the center of the sample for evaluation, two 20 mm square surfaces were mirror-polished, and a vacuum ultraviolet spectrophotometer (manufactured by Spectrometer Co., Ltd.) was used. "UV201M") was used to evaluate the light transmittance (%) at a wavelength of 157.6 nm.

【0049】(耐光性評価)評価用試料の中央付近より
20mm角の面に垂直な方向にFレーザをエネルギー
密度5mJ/cm/pulse、周波数200Hzに
て計5×10パルス照射し、照射前後の157.6n
mにおける光透過率低下量(光透過率の差)(%)を真
空紫外分光光度計(分光計器社製「UV201M」)に
て測定し、耐光性を評価した。透過率低下量が少ないほ
ど耐光性は優れることを意味する。なお、耐光性評価
は、例1〜例8及び例12の評価用試料について行っ
た。
(Evaluation of light resistance) An F 2 laser was irradiated in the direction perpendicular to the surface of 20 mm square from the vicinity of the center of the sample for evaluation at an energy density of 5 mJ / cm 2 / pulse and a frequency of 200 Hz for a total of 5 × 10 6 pulses, 157.6n before and after irradiation
The light transmittance reduction amount (difference in light transmittance) (%) at m was measured with a vacuum ultraviolet spectrophotometer (“UV201M” manufactured by Spectrometer Co., Ltd.) to evaluate the light resistance. It means that the smaller the decrease in transmittance is, the more excellent the light resistance is. The light resistance evaluation was performed on the evaluation samples of Examples 1 to 8 and 12.

【0050】各評価の結果を表2に示す。例1〜8は実
施例、その他は比較例である。
The results of each evaluation are shown in Table 2. Examples 1 to 8 are examples, and others are comparative examples.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】本発明によれば、紫外線〜真空紫外線に
おける光透過率および耐光性に安定して優れる光学部材
用合成石英ガラスおよびその製造方法が得られる。
EFFECTS OF THE INVENTION According to the present invention, a synthetic quartz glass for optical members, which is stable and excellent in light transmittance and light resistance from ultraviolet rays to vacuum ultraviolet rays, and a method for producing the same can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】波長155〜250nmの光を光源とする
光学装置の光学部材として用いられる光学部材用合成石
英ガラスの製造方法において、(a)ガラス形成原料を
火炎加水分解して得られる石英ガラス微粒子を基材に堆
積・成長して多孔質石英ガラスを形成する工程と、
(b)該多孔質石英ガラスを水素含有雰囲気下に保持
し、多孔質石英ガラス中のOH基含有量を低減する工程
と、(c)該多孔質石英ガラスをフッ素化合物含有雰囲
気下に保持し、該多孔質石英ガラスにフッ素をドープす
る工程と、(d)該多孔質石英ガラスを1300℃以上
の温度に昇温して透明ガラス化し、フッ素を含有した透
明石英ガラス体を得る工程と、を含むことを特徴とする
光学部材用合成石英ガラスの製造方法。
1. A method for producing synthetic quartz glass for an optical member used as an optical member of an optical device having a light source having a wavelength of 155 to 250 nm as a light source, wherein (a) a quartz glass obtained by flame hydrolysis of a glass forming raw material. A step of depositing and growing fine particles on a base material to form a porous quartz glass,
(B) a step of keeping the porous quartz glass in a hydrogen-containing atmosphere to reduce the content of OH groups in the porous quartz glass, and (c) keeping the porous quartz glass in a fluorine compound-containing atmosphere. A step of doping the porous quartz glass with fluorine, and (d) a step of raising the temperature of the porous quartz glass to a temperature of 1300 ° C. or higher to obtain a transparent vitreous material to obtain a transparent quartz glass body containing fluorine. A method of manufacturing synthetic quartz glass for optical members, comprising:
【請求項2】波長155〜250nmの光を光源とする
光学装置の光学部材として用いられる光学部材用合成石
英ガラスにおいて、フッ素含有量が50ppm以上、O
H基含有量が10ppm以下、塩素含有量が50ppm
以下であり、酸素欠乏型欠陥を実質的に含まないことを
特徴とする光学部材用合成石英ガラス。
2. A synthetic quartz glass for an optical member used as an optical member of an optical device having a light source having a wavelength of 155 to 250 nm as a light source, wherein the fluorine content is 50 ppm or more, O
H group content is 10ppm or less, chlorine content is 50ppm
The synthetic quartz glass for optical members is as follows, which is substantially free of oxygen-deficient defects.
【請求項3】波長155〜180nmの光を光源とする
光学装置の光学部材として用いられる光学部材用合成石
英ガラスにおいて、フッ素含有量が50ppm以上、O
H基含有量が1ppm以下、塩素含有量が50ppm以
下であり、酸素欠乏型欠陥を実質的に含まないことを特
徴とする光学部材用合成石英ガラス。
3. A synthetic quartz glass for an optical member used as an optical member of an optical device having a light source having a wavelength of 155 to 180 nm as a light source, wherein the fluorine content is 50 ppm or more, O
A synthetic quartz glass for an optical member, which has an H group content of 1 ppm or less, a chlorine content of 50 ppm or less, and is substantially free of oxygen-deficient defects.
JP2001399667A 2001-12-28 2001-12-28 Synthetic quartz glass for optical member and method of manufacturing the same Withdrawn JP2003201126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399667A JP2003201126A (en) 2001-12-28 2001-12-28 Synthetic quartz glass for optical member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399667A JP2003201126A (en) 2001-12-28 2001-12-28 Synthetic quartz glass for optical member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003201126A true JP2003201126A (en) 2003-07-15
JP2003201126A5 JP2003201126A5 (en) 2005-07-14

Family

ID=27639741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399667A Withdrawn JP2003201126A (en) 2001-12-28 2001-12-28 Synthetic quartz glass for optical member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003201126A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179088A (en) * 2003-12-17 2005-07-07 Asahi Glass Co Ltd Synthetic quartz glass for optical member and method of manufacturing the same
WO2005096083A1 (en) * 2004-03-31 2005-10-13 Zeon Corporation Optical waveguide for liquid crystal display and process for producing the same
JP2007223889A (en) * 2006-01-30 2007-09-06 Asahi Glass Co Ltd Synthetic quartz glass with radial distribution of fast axes of birefringence and process for producing the same
JP2007223888A (en) * 2006-01-30 2007-09-06 Asahi Glass Co Ltd Synthetic quartz glass with fast axes of birefringence distributed in concentric-circle tangent directions and process for producing the same
JP2008156206A (en) * 2006-08-31 2008-07-10 Corning Inc F-doped quartz glass and process of making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179088A (en) * 2003-12-17 2005-07-07 Asahi Glass Co Ltd Synthetic quartz glass for optical member and method of manufacturing the same
WO2005096083A1 (en) * 2004-03-31 2005-10-13 Zeon Corporation Optical waveguide for liquid crystal display and process for producing the same
JP2007223889A (en) * 2006-01-30 2007-09-06 Asahi Glass Co Ltd Synthetic quartz glass with radial distribution of fast axes of birefringence and process for producing the same
JP2007223888A (en) * 2006-01-30 2007-09-06 Asahi Glass Co Ltd Synthetic quartz glass with fast axes of birefringence distributed in concentric-circle tangent directions and process for producing the same
JP2008156206A (en) * 2006-08-31 2008-07-10 Corning Inc F-doped quartz glass and process of making same

Similar Documents

Publication Publication Date Title
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
US6499317B1 (en) Synthetic quartz glass and method for production thereof
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
EP2495220B1 (en) Optical member for deep ultraviolet and process for producing same
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4085633B2 (en) Synthetic quartz glass for optical components
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP4228493B2 (en) Synthetic quartz glass
JP2003183034A (en) Synthetic quartz glass for optical member and its manufacturing method
JP2001302275A (en) Optical member made from synthetic quartz glass
JP2001180962A (en) Synthesized quartz glass and manufacturing method
JP4677072B2 (en) Synthetic quartz glass for vacuum ultraviolet optical member and manufacturing method thereof
JP2003321230A (en) Synthetic quartz glass for optical member

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070904