JPH05339024A - Heating device for glass preform - Google Patents

Heating device for glass preform

Info

Publication number
JPH05339024A
JPH05339024A JP17467792A JP17467792A JPH05339024A JP H05339024 A JPH05339024 A JP H05339024A JP 17467792 A JP17467792 A JP 17467792A JP 17467792 A JP17467792 A JP 17467792A JP H05339024 A JPH05339024 A JP H05339024A
Authority
JP
Japan
Prior art keywords
glass body
heat
porous glass
furnace
core tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17467792A
Other languages
Japanese (ja)
Inventor
Masahiro Horikoshi
雅博 堀越
Koichi Harada
光一 原田
Shigeru Emori
滋 江森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP17467792A priority Critical patent/JPH05339024A/en
Publication of JPH05339024A publication Critical patent/JPH05339024A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a transparent glass body with the characteristic stabilized in the longitudinal direction by minimizing the furnace temp. fluctuation even when the upper part of a porous vitrifying the glass body. CONSTITUTION:A porous glass body 5 is inserted into a furnace core tube 2 surrounded by a heater 3 and moved, the part of the tube not to be heated is covered with a heat reflecting material 82 and a heat insulating material 81, and a dummy porous glass body 7 formed with a heat reflecting material 72 and a heat insulating material 71 is fixed to the upper end of the body 5 in the tube 2 and moved in the tube 2 along with the body 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、VAD法や外付け法
などで光ファイバ母材を製造する工程において、多孔質
ガラス体を加熱することによりその脱水処理や焼結(透
明ガラス化)処理の工程を行なうガラス母材の加熱処理
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehydration treatment or a sintering (transparent vitrification) treatment by heating a porous glass body in a process of manufacturing an optical fiber preform by a VAD method or an external attachment method. The present invention relates to a heat treatment device for a glass base material, which performs the step of.

【0002】[0002]

【従来の技術】VAD法や外付け法などで光ファイバ母
材を製造するとき、バーナより酸水素火炎を生じさせて
その中に四塩化珪素などのガラスの原料ガス及びドーパ
ント材のガスを送り込み、加水分解反応及び熱酸化反応
によってガラス微粒子(二酸化珪素)を生成させ、この
ガラス微粒子をターゲットに堆積させて円柱状の多孔質
のガラス体を形成する。そして、この多孔質のガラス体
を加熱することによって、OH基を除去(脱水)し、透
明ガラス化(焼結)処理する。脱水処理と焼結処理と
は、同時に行なうこともあるし、最初にガラスの溶融温
度よりも低い温度で加熱することにより脱水処理のみを
行ない、つぎに温度をガラス溶融温度に上昇させて透明
ガラス化処理を行なうというように2段階に分けて処理
を行なうこともある。こうして透明なガラス母材を作
り、これを溶融して線引き紡糸することによって細い光
ファイバを作る。
2. Description of the Related Art When manufacturing an optical fiber preform by a VAD method or an external attachment method, an oxyhydrogen flame is generated from a burner and a raw material gas of glass such as silicon tetrachloride and a gas of a dopant material are sent into the flame. Glass particles (silicon dioxide) are generated by a hydrolysis reaction and a thermal oxidation reaction, and the glass particles are deposited on a target to form a cylindrical porous glass body. Then, by heating this porous glass body, the OH groups are removed (dehydrated), and a transparent vitrification (sintering) process is performed. The dehydration treatment and the sintering treatment may be performed at the same time, or only the dehydration treatment is performed by first heating at a temperature lower than the melting temperature of glass, and then the temperature is raised to the glass melting temperature to clear glass. In some cases, the processing is performed in two steps, such as performing the processing. In this way, a transparent glass preform is produced, and this is melted and drawn and spun to form a thin optical fiber.

【0003】従来、この脱水や焼結の処理を行う加熱処
理装置は図4のように構成されている。図4において、
加熱炉1はその中央部に石英ガラスの炉心管2を備え、
その周囲にヒーター3が設けられている。出発部材4に
形成された多孔質ガラス体5はこの炉心管2の中に移動
させられる。つまり、出発部材4を上から吊り下げて、
回転させながら下方に移動(トラバース)させ、ヒータ
ー3によって一定のガラス化温度を保っているヒートゾ
ーン31を、多孔質ガラス体5が上から下へと通過する
ようにする。炉心管2の下部からはヘリウムと塩素ガス
などの脱水剤のプロセスガスが送り込まれ、多孔質ガラ
ス体5はヒートゾーン31を通過する際に千から千数百
度という高温で処理されて、その中のOH基が除去され
るとともに、透明ガラス化が行われる。これによりヒー
トゾーン31を通過した多孔質ガラス体5は透明ガラス
体6となる。
Conventionally, a heat treatment apparatus for performing the dehydration and sintering treatments is constructed as shown in FIG. In FIG.
The heating furnace 1 is provided with a quartz glass core tube 2 in the center thereof,
A heater 3 is provided around it. The porous glass body 5 formed on the starting member 4 is moved into the furnace core tube 2. In other words, suspend the starting member 4 from above,
The porous glass body 5 is moved downward (traverse) while being rotated so that the porous glass body 5 passes from the top to the bottom through the heat zone 31 in which a constant vitrification temperature is maintained by the heater 3. Process gas of a dehydrating agent such as helium and chlorine gas is fed from the lower part of the core tube 2, and the porous glass body 5 is processed at a high temperature of 1,000 to several hundreds of degrees when passing through the heat zone 31, The OH group of is removed and transparent vitrification is performed. As a result, the porous glass body 5 passing through the heat zone 31 becomes the transparent glass body 6.

【0004】このとき、炉心管2内の熱伝導は放射とプ
ロセスガスによる伝導によって支配されていると考えら
れ、千から千数百度という温度領域での熱放射のピーク
波長は1μmから3μmの間にある。この波長領域は透
明の石英ガラスではほぼ透過するが、ガラス微粒子が集
合して堆積した多孔質のガラス体5では散乱する。その
ため多孔質ガラス体5の中央部がヒートゾーン31に位
置している場合にはその上部の未だ透明ガラス化してい
ない多孔質ガラス体5によって上記の波長領域の放射が
散乱され、炉外への熱放射量は少ない。また、ガラスは
基本的に熱伝導率が低いため、下部の透明ガラス体6を
通じて炉外へ熱放出される量も少ない。ところが、多孔
質ガラス体5の両端(上下端)、とくに上端がヒートゾ
ーン31に移動してきたときは熱放射を散乱させる多孔
質ガラス体5が少ないので、多くの熱が炉外に放射さ
れ、温度低下がもたらされる。
At this time, it is considered that the heat conduction in the core tube 2 is governed by the radiation and the conduction by the process gas, and the peak wavelength of the heat radiation in the temperature range of 1,000 to a few hundreds of degrees is between 1 μm and 3 μm. It is in. This wavelength region is almost transmitted by the transparent quartz glass, but is scattered by the porous glass body 5 in which the glass fine particles are aggregated and deposited. Therefore, when the central part of the porous glass body 5 is located in the heat zone 31, the radiation in the above wavelength region is scattered by the porous glass body 5 which is not yet vitrified, and is emitted to the outside of the furnace. The amount of heat radiation is small. Further, since glass basically has low thermal conductivity, the amount of heat released to the outside of the furnace through the lower transparent glass body 6 is small. However, when both ends (upper and lower ends) of the porous glass body 5, especially the upper end, move to the heat zone 31, there are few porous glass bodies 5 that scatter thermal radiation, so much heat is radiated to the outside of the furnace, A decrease in temperature is brought about.

【0005】近年、光ファイバの製造コストの低減のた
め、透明ガラス母材は大型化する傾向にあり、これに伴
いガラス母材の加熱炉も大型化している。このように母
材の大型化に伴って加熱炉が大型化すると、熱放出する
断面積がより増加するため、炉内の温度変動はより大き
なものとなっている。
In recent years, in order to reduce the manufacturing cost of optical fibers, the transparent glass base material tends to increase in size, and accordingly, the heating furnace for the glass base material also increases in size. When the heating furnace becomes larger as the base material becomes larger in this way, the cross-sectional area for releasing heat further increases, so that the temperature fluctuation in the furnace becomes larger.

【0006】そのため通常、炉内の温度制御が行なわれ
ている。その温度検出に関しては、不純物が母材に混入
すると光ファイバの伝送損失に悪影響が生じるので、熱
電対や保護管等からの不純物の混入を避けるためこれら
の測温部を炉心管2内に置くわけにはいかず、炉心管2
外のヒーター3の近傍の温度を測定するか、放射温度計
等を用いて炉外から炉内温度を測定するようにしてい
る。
Therefore, the temperature inside the furnace is usually controlled. Regarding the temperature detection, if impurities are mixed in the base material, the transmission loss of the optical fiber is adversely affected. Therefore, these temperature measuring parts are placed in the core tube 2 in order to avoid mixing of impurities from the thermocouple or the protection tube. I can't help but core tube 2
The temperature near the outer heater 3 is measured, or the temperature inside the furnace is measured from outside the furnace using a radiation thermometer or the like.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
ように炉外から温度測定して温度制御を行なうだけで
は、母材および加熱炉の大型化に伴う多孔質ガラス体位
置による炉内の温度分布の大きな変動に対処することが
できず、母材の長さ方向において特性が変動してしまう
という問題があった。すなわち、外部から測定した温度
が一定であっても、多孔質ガラス体の上部がヒートゾー
ン31に来たときには炉外への熱放出量が増大するた
め、実際の炉心管内の温度は低下してしまい、脱水が不
十分になったり、透明ガラス化処理が不十分になって不
透明部分が多くなってしまうことがある。
However, just by measuring the temperature from the outside of the furnace and controlling the temperature as in the conventional case, the temperature distribution in the furnace due to the position of the porous glass body accompanying the enlargement of the base material and the heating furnace will be described. However, there is a problem in that the characteristics of the base material change in the length direction of the base material. That is, even if the temperature measured from the outside is constant, when the upper part of the porous glass body reaches the heat zone 31, the amount of heat released to the outside of the furnace increases, so the actual temperature inside the core tube decreases. In some cases, the dehydration may be insufficient, or the transparent vitrification treatment may be insufficient to increase the number of opaque portions.

【0008】このような温度変動を避けるために、経験
的に、多孔質ガラス体上部がヒートゾーン31に移動し
てきた位置で設定温度を上昇させたり、あるいは多孔質
ガラス体の移動速度を変化させたりして特性変動を抑え
ることも試みられたが、それほど良好な結果は得られな
かった。また、このような母材の特性の安定化のみに着
目して加熱処理を行った場合、母材上端部や出発部材が
母材そのものの重さで引き延ばされてしまい、外径が細
くなるなどの問題が生じることもある。
In order to avoid such temperature fluctuation, empirically, the set temperature is raised at the position where the upper part of the porous glass body has moved to the heat zone 31, or the moving speed of the porous glass body is changed. Attempts have also been made to suppress characteristic fluctuations, but such favorable results have not been obtained. Moreover, when heat treatment is performed focusing only on the stabilization of the characteristics of the base material, the upper end of the base material and the starting member are stretched by the weight of the base material itself, and the outer diameter becomes small. There may be problems such as

【0009】この発明は、上記に鑑み、多孔質ガラス体
の上部がヒートゾーンに移動してきた場合でも加熱温度
に経験的な補正を加えることを少なくし炉内の温度変動
を最小限に抑え、脱水、透明ガラス化等の処理を安定に
行なって、母材の熱履歴を長さ方向において均一化し、
特性が長さ方向に安定し、且つ外径等の寸法が安定して
いる、透明ガラスの光ファイバ母材を得ることができ
る、加熱処理装置を提供することを目的とする。
In view of the above, the present invention reduces empirical corrections to the heating temperature to minimize temperature fluctuations in the furnace even when the upper part of the porous glass body moves to the heat zone. Stable processes such as dehydration and transparent vitrification are performed to make the heat history of the base material uniform in the length direction,
An object of the present invention is to provide a heat treatment apparatus capable of obtaining an optical fiber preform of transparent glass, the characteristics of which are stable in the length direction and the dimensions such as the outer diameter are stable.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、この発明によるガラス母材の加熱処理装置において
は、炉心管の非加熱部周囲を熱反射材と断熱材とで覆う
とともに、多孔質ガラス体の上端部に、熱反射材と断熱
材とにより構成された疑似多孔質ガラス体を取り付け、
この疑似多孔質ガラス体を、炉心管中で多孔質ガラス体
とともに移動させることが特徴となっている。
In order to achieve the above object, in the heat treatment apparatus for a glass base material according to the present invention, the periphery of the non-heated portion of the furnace tube is covered with a heat reflecting material and a heat insulating material, and Attaching a pseudo-porous glass body composed of a heat reflecting material and a heat insulating material to the upper end of the glass body,
This pseudo porous glass body is characterized in that it is moved together with the porous glass body in the core tube.

【0011】[0011]

【作用】多孔質ガラス体は、炉心管中で上から下へと移
動させられて、順次ヒートゾーンを通過し、脱水、透明
ガラス化等の処理を受けるが、多孔質ガラス体の上部が
ヒートゾーンに移動してきて熱を散乱する多孔質ガラス
体が少なくなったときでも、疑似多孔質ガラス体がその
作用を代わりに果たす。すなわち、この疑似多孔質ガラ
ス体は熱反射材と断熱材とにより構成されており、熱の
散乱、熱伝導の点では多孔質ガラス体とほぼ等価とする
ことができる。この疑似多孔質ガラス体は、多孔質ガラ
ス体の上端部周囲を覆うように取り付けられていて、炉
心管中で多孔質ガラス体とともに移動するので、多孔質
ガラス体の上端にさらに多孔質ガラス体が伸びているよ
うに考えることができ、本来の多孔質ガラス体の上端ま
で、中央部等と同じような状態(熱の炉外への放射度合
い等が同じ状態)で、加熱処理を行なうことができる。
その結果、母材および加熱処理装置が大型化しても、温
度変動を少なくし、母材長さ方向において、脱水、透明
ガラス化等の処理を安定に行なうことができる。これに
より、ガラス母材の熱履歴が長さ方向に均一になるた
め、特性が長さ方向に安定化し、また、加熱温度の補正
量が少ないので、外径寸法等の長さ方向での変動も最小
にできる。
[Function] The porous glass body is moved from the top to the bottom in the core tube, successively passes through the heat zone, and is subjected to treatments such as dehydration and transparent vitrification, but the upper part of the porous glass body is heated. Even when fewer porous glass bodies move to the zone to dissipate heat, the pseudo-porous glass body takes its place. That is, this pseudo-porous glass body is composed of a heat-reflecting material and a heat-insulating material, and can be almost equivalent to the porous glass body in terms of heat scattering and heat conduction. This pseudo-porous glass body is attached so as to cover the periphery of the upper end of the porous glass body, and moves together with the porous glass body in the furnace tube. Can be considered as extending, and the heat treatment should be performed up to the upper end of the original porous glass body in a state similar to the central part (the same degree of radiation of heat to the outside of the furnace). You can
As a result, even if the base material and the heat treatment apparatus are increased in size, temperature fluctuations can be reduced, and dehydration, transparent vitrification and the like can be stably performed in the length direction of the base material. As a result, the heat history of the glass base material becomes uniform in the lengthwise direction, the characteristics are stabilized in the lengthwise direction, and the correction amount of the heating temperature is small, so fluctuations in the lengthwise direction such as the outer diameter dimension. Can be minimized.

【0012】[0012]

【実施例】以下、この発明の一実施例について図面を参
照しながら詳細に説明する。図1において、加熱炉1は
その中央部に石英ガラスの炉心管2を有しており、その
周囲にヒーター3が設けられている。出発部材4の下端
には多孔質ガラス体5が形成されており、出発部材4を
上から吊り下げ、回転させながら下方にトラバースさせ
ることにより、ヒーター3によって形成されたヒートゾ
ーン31を、多孔質ガラス体5が通過させられる。この
多孔質ガラス体5の上部において出発部材4に疑似多孔
質ガラス体7が取り付けられている。炉心管2中にはヘ
リウムと塩素ガスなどの脱水剤のプロセスガスが送り込
まれ、多孔質ガラス体5はヒートゾーン31を通過する
際に千から千数百度という高温で処理されて、その中の
OH基が除去されるとともに、透明ガラス化が行われ
る。これによりヒートゾーン31を通過した多孔質ガラ
ス体5は透明ガラス体6となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In FIG. 1, a heating furnace 1 has a quartz glass core tube 2 in the center thereof, and a heater 3 is provided around the furnace core tube 2. A porous glass body 5 is formed at the lower end of the starting member 4, and the heating member 31 formed by the heater 3 is made porous by suspending the starting member 4 from above and traversing downward while rotating. The glass body 5 is passed through. The pseudo-porous glass body 7 is attached to the starting member 4 above the porous glass body 5. Process gas of a dehydrating agent such as helium and chlorine gas is fed into the core tube 2, and the porous glass body 5 is processed at a high temperature of 1,000 to several hundreds of degrees when passing through the heat zone 31, As the OH group is removed, transparent vitrification is performed. As a result, the porous glass body 5 passing through the heat zone 31 becomes the transparent glass body 6.

【0013】疑似多孔質ガラス体7は、主に可視から赤
外の波長領域を反射する材質の熱反射材72と、熱伝導
率の低い材質(ここでは断熱材という)71とからな
り、出発部材4に取り付けられていることにより、出発
部材4が下方にトラバースするとそれとともに下方に移
動する。この疑似多孔質ガラス体7の断熱材71と反射
材72は、耐熱性に優れ、ガラスおよび脱水剤等の雰囲
気のガスと反応しない材質から選択され、その大きさは
炉心管2の内径とほぼ等しいことが望ましい。脱水剤等
と間に反応性がある材質であっても、透明石英ガラス等
の他の材質の被膜で保護すれば使用可能である。また、
ここでは図示していないが、多孔質ガラス体5の上部が
ヒートゾーン31にきたとき、この疑似多孔質ガラス体
7も高温に晒されることになるので、この疑似多孔質ガ
ラス体7を冷却する機構を設け、これによって疑似多孔
質ガラス体7の寿命を長くするように構成することも可
能である。
The pseudo-porous glass body 7 is mainly composed of a heat-reflecting material 72, which is a material that reflects the visible to infrared wavelength region, and a material 71 having a low thermal conductivity (herein, called a heat insulating material). By being attached to the member 4, when the starting member 4 traverses downward, it moves downward with it. The heat insulating material 71 and the reflecting material 72 of the pseudo-porous glass body 7 are selected from materials that are excellent in heat resistance and do not react with atmospheric gas such as glass and dehydrating agent, and their size is almost the same as the inner diameter of the furnace tube 2. It is desirable to be equal. Even a material that is reactive with a dehydrating agent or the like can be used if it is protected by a film made of another material such as transparent quartz glass. Also,
Although not shown here, when the upper part of the porous glass body 5 reaches the heat zone 31, the pseudo-porous glass body 7 is also exposed to high temperature, so the pseudo-porous glass body 7 is cooled. It is also possible to provide a mechanism so as to extend the life of the pseudo porous glass body 7.

【0014】さらに、炉心管2の、加熱炉1の上部及び
下部における外周部を、反射材82で覆い、さらにその
周囲を断熱材81で覆うようにしている。この反射材8
2は主に可視から赤外の波長領域を反射する材質の熱反
射材からなる。
Further, the outer peripheral portions of the furnace core tube 2 in the upper portion and the lower portion of the heating furnace 1 are covered with a reflecting material 82, and the periphery thereof is further covered with a heat insulating material 81. This reflective material 8
The reference numeral 2 mainly comprises a heat reflecting material which is a material that reflects the visible to infrared wavelength range.

【0015】このように炉心管2の非加熱部周囲を反射
材82と断熱材81とで覆ってその部分での外部への熱
放射を防ぐとともに、この脱水・透明ガラス化処理に必
要な温度での熱の散乱及び伝導について多孔質ガラス体
5と似ている疑似多孔質ガラス体7を、多孔質ガラス体
5の上部に取り付けてこれとともに下方に移動させるよ
うにしているので、多孔質ガラス体5の上部がヒートゾ
ーン31に移動してきて熱を散乱する多孔質ガラス体5
が少なくなったときでも、この疑似多孔質ガラス体7に
より熱を反射することができ、熱の放射による熱損失が
低減し、温度が安定化して、安定な脱水、透明ガラス化
等の処理が可能となる。
As described above, the periphery of the non-heated portion of the core tube 2 is covered with the reflector 82 and the heat insulator 81 to prevent heat radiation to the outside at that portion, and the temperature required for this dehydration / transparent vitrification treatment. A pseudo-porous glass body 7 similar to the porous glass body 5 in terms of heat scattering and conduction in the above is attached to the upper part of the porous glass body 5 and moved downward together therewith. Porous glass body 5 in which the upper part of the body 5 moves to the heat zone 31 to scatter heat
Even when the amount of heat is reduced, heat can be reflected by the pseudo-porous glass body 7, heat loss due to radiation of heat is reduced, temperature is stabilized, and stable dehydration, transparent vitrification, etc. can be performed. It will be possible.

【0016】実際に、内径が250mmの炉心管2を有
する加熱炉1を用いて、外径が200mm、長さが16
00mmの多孔質ガラス体5を出発部材4により吊り下
げて脱水、透明ガラス化処理を行なった。このとき、そ
の出発部材4に外径210mm、長さ200mmの透明
石英ガラスの円筒で保護した円筒状の疑似多孔質ガラス
体7を取り付けた。この疑似多孔質ガラス体7は、反射
材72として白金箔を用い、断熱材71としてアルミナ
断熱材を用いたものである。また、炉心管2の非加熱部
分つまり加熱炉1の上部及び下部の周囲を、内面に白金
箔(反射材82)が張り付けられたアルミナ断熱材81
で覆っている。このとき、炉心管2の下部よりヘリウム
を15リットル/分、塩素を150cc/分の流量で炉
心管2内に導入した。また、上部より出発部材4を通し
てヘリウムを3リットル/分の流量で流し込み、疑似多
孔質ガラス体7を冷却するようにした。
In practice, a heating furnace 1 having a core tube 2 with an inner diameter of 250 mm was used, and the outer diameter was 200 mm and the length was 16 mm.
The 00 mm porous glass body 5 was suspended by the starting member 4 for dehydration and transparent vitrification treatment. At this time, a cylindrical pseudo-porous glass body 7 protected by a transparent quartz glass cylinder having an outer diameter of 210 mm and a length of 200 mm was attached to the starting member 4. The pseudo porous glass body 7 uses a platinum foil as the reflecting material 72 and an alumina heat insulating material as the heat insulating material 71. Further, the non-heated portion of the furnace core tube 2, that is, the periphery of the upper portion and the lower portion of the heating furnace 1, is an alumina heat insulating material 81 having a platinum foil (reflecting material 82) attached to its inner surface.
Covered with. At this time, helium was introduced into the core tube 2 from the lower part of the core tube 2 at a flow rate of 15 liters / minute and chlorine at a flow rate of 150 cc / minute. Further, helium was poured from the upper portion through the starting member 4 at a flow rate of 3 liter / min to cool the pseudo porous glass body 7.

【0017】これにより得た透明ガラス体6を紡糸して
光ファイバを作ったところ、その波長1.3μm帯、
1.38μm帯における損失はそれぞれ図2、図3の実
線のようになり、母材の全長にわたって各々0.34±
0.01dB/km、0.37±0.01dB/kmと
低損失になっており、十分に脱水されていることが確認
できた。
The transparent glass body 6 thus obtained was spun into an optical fiber, and its wavelength was 1.3 μm.
The loss in the 1.38 μm band is as shown by the solid lines in FIGS. 2 and 3, respectively, and is 0.34 ± 3
The loss was as low as 0.01 dB / km and 0.37 ± 0.01 dB / km, and it was confirmed that the product was sufficiently dehydrated.

【0018】これに対して、参考までに従来の、疑似多
孔質ガラス体7、及び炉心管2を覆う断熱材81と反射
材82を備えていない加熱処理装置を用いて多孔質ガラ
ス体5の脱水、透明ガラス化処理を行なってみた。この
場合、多孔質ガラス体の上部に未焼結部分が約150m
m残り、透明ガラス体となった部分を紡糸して作った光
ファイバについて、その損失を測定してみたところ、図
2、図3の点線のようなデータが得られた。図2、図3
はそれぞれ波長1.3μm帯、1.38μm帯における
損失を示す。これによると、従来の加熱処理装置を用い
ると、透明ガラス体の上部で徐々に損失が上昇し、最も
上部では損失が0.42dB/km(波長1.3μm
帯)、1.2dB/km(波長1.38μm帯)とな
り、脱水処理が母材中央部に比べて十分に行なわれてい
ないことが窺われ、伝送特性が悪いことが分かる。
On the other hand, for reference, the conventional pseudo-porous glass body 7 and the heat treatment apparatus not provided with the heat insulating material 81 and the reflecting material 82 for covering the furnace tube 2 are used to prepare the porous glass body 5 I tried dehydration and transparent vitrification. In this case, the unsintered part is about 150 m above the porous glass body.
When the loss was measured for the optical fiber produced by spinning the remaining transparent glass body, the data shown by the dotted lines in FIGS. 2 and 3 were obtained. 2 and 3
Indicates the loss in the wavelength band of 1.3 μm and the loss in the wavelength band of 1.38 μm, respectively. According to this, when the conventional heat treatment device is used, the loss gradually increases at the upper part of the transparent glass body, and the loss becomes 0.42 dB / km (wavelength 1.3 μm at the uppermost part).
Band), 1.2 dB / km (wavelength 1.38 μm band), which indicates that the dehydration treatment is not performed sufficiently compared to the central part of the base material, and it is understood that the transmission characteristics are poor.

【0019】また、脱水、透明ガラス化処理のためのヒ
ーター3による加熱用電力量は、従来の疑似多孔質ガラ
ス体7や炉心管2を覆う断熱材81、反射材82がない
加熱処理装置では、母材中央部に比較して母材上部で約
25%増加させる必要があったが、上記の例では疑似多
孔質ガラス体7及び炉心管2を覆う断熱材81、反射材
82によって母材上部での熱損失を抑えることができた
ため、約5%しか増加させずに済んだ。さらに、透明ガ
ラス化されずに残った多孔質ガラス体5の量も約20%
ほど減少させることができ、脱水、透明ガラス化処理を
より効率的に行なうことができた。
Further, the amount of electric power for heating by the heater 3 for dehydration and transparent vitrification treatment is the same as that of the conventional heat treatment apparatus without the heat insulating material 81 covering the pseudo porous glass body 7 and the furnace tube 2 and the reflecting material 82. It was necessary to increase about 25% in the upper part of the base material compared to the central part of the base material, but in the above example, the base material is covered by the heat insulating material 81 and the reflecting material 82 that cover the pseudo porous glass body 7 and the furnace core tube 2. Since we were able to suppress the heat loss in the upper part, we only needed to increase it by about 5%. Furthermore, the amount of the porous glass body 5 that remains without being made into transparent glass is also about 20%.
Therefore, the dehydration and transparent vitrification treatment could be performed more efficiently.

【0020】[0020]

【発明の効果】以上、実施例について説明したように、
この発明のガラス母材の加熱処理装置によれば、多孔質
ガラス体の上部がヒートゾーンに移動してきた場合で
も、加熱温度に対する経験的な補正量を少ないものとし
ながら、炉内の温度変動を最小限に抑えて、脱水、透明
ガラス化等の処理を安定に行なうことができる。これに
より母材の全長にわたって熱履歴が均一で、且つ特性が
安定した透明ガラスの光ファイバ母材を作製することが
できる。また、ガラス母材の外径等の寸法をその長さ方
向に安定させることができる。
As described above with reference to the embodiments,
According to the glass base material heat treatment apparatus of the present invention, even when the upper part of the porous glass body has moved to the heat zone, the empirical correction amount for the heating temperature is made small while the temperature fluctuation in the furnace is suppressed. It is possible to stably carry out treatments such as dehydration and transparent vitrification while minimizing the amount. This makes it possible to manufacture a transparent glass optical fiber preform having a uniform heat history and stable characteristics over the entire length of the preform. In addition, dimensions such as the outer diameter of the glass base material can be stabilized in the length direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の模式図。FIG. 1 is a schematic view of an embodiment of the present invention.

【図2】波長1.3μm帯における母材長さ方向での損
失を示すグラフ。
FIG. 2 is a graph showing a loss in a length direction of a base material in a wavelength band of 1.3 μm.

【図3】波長1.38μm帯における母材長さ方向での
損失を示すグラフ。
FIG. 3 is a graph showing a loss in a length direction of a base material in a wavelength band of 1.38 μm.

【図4】従来例の模式図。FIG. 4 is a schematic diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 炉心管 3 ヒーター 31 ヒートゾーン 4 出発部材 5 多孔質ガラス体 6 透明ガラス体 7 疑似多孔質ガラス体 71、81 断熱材 72、82 反射材 DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Core tube 3 Heater 31 Heat zone 4 Starting member 5 Porous glass body 6 Transparent glass body 7 Pseudo porous glass body 71, 81 Insulation material 72, 82 Reflective material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔質ガラス体が挿入される炉心管と、
該炉心管の周囲に配置されて該炉心管を加熱するヒータ
ーと、このヒーターにより加熱される部分以外の部分に
おいて上記炉心管の周囲を覆うように設けられた熱反射
材及び断熱材と、上記多孔質ガラス体とともに上記炉心
管内で移動するよう該炉心管内に配置された、熱反射材
及び断熱材よりなる疑似多孔質ガラス体とを有すること
を特徴とするガラス母材の加熱処理装置。
1. A furnace core tube into which a porous glass body is inserted,
A heater disposed around the core tube to heat the core tube; a heat reflecting material and a heat insulating material provided so as to cover the periphery of the core tube in a portion other than a portion heated by the heater; A heat treatment device for a glass preform, comprising: a pseudo-porous glass body composed of a heat reflecting material and a heat insulating material, which is arranged in the furnace core tube so as to move together with the porous glass body.
JP17467792A 1992-06-08 1992-06-08 Heating device for glass preform Pending JPH05339024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17467792A JPH05339024A (en) 1992-06-08 1992-06-08 Heating device for glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17467792A JPH05339024A (en) 1992-06-08 1992-06-08 Heating device for glass preform

Publications (1)

Publication Number Publication Date
JPH05339024A true JPH05339024A (en) 1993-12-21

Family

ID=15982769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17467792A Pending JPH05339024A (en) 1992-06-08 1992-06-08 Heating device for glass preform

Country Status (1)

Country Link
JP (1) JPH05339024A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290935A (en) * 1995-04-14 1996-11-05 Corning Inc Highly purified molten silica glass member with resistance to optical damage and its preparation
WO2003020653A1 (en) * 2001-08-28 2003-03-13 Corning Incorporated Furnace assembly for heating an optical waveguide preform
JP2007145671A (en) * 2005-11-29 2007-06-14 Sumitomo Electric Ind Ltd Heating furnace, method for heating glass and method for maintaining heating furnace
JP2008189547A (en) * 2008-04-10 2008-08-21 Asahi Glass Co Ltd Synthetic quartz glass and its production method
JP2013151394A (en) * 2012-01-26 2013-08-08 Sumitomo Electric Ind Ltd Heating furnace and heating method for glass preform, and optical fiber drawing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290935A (en) * 1995-04-14 1996-11-05 Corning Inc Highly purified molten silica glass member with resistance to optical damage and its preparation
WO2003020653A1 (en) * 2001-08-28 2003-03-13 Corning Incorporated Furnace assembly for heating an optical waveguide preform
JP2007145671A (en) * 2005-11-29 2007-06-14 Sumitomo Electric Ind Ltd Heating furnace, method for heating glass and method for maintaining heating furnace
JP2008189547A (en) * 2008-04-10 2008-08-21 Asahi Glass Co Ltd Synthetic quartz glass and its production method
JP2013151394A (en) * 2012-01-26 2013-08-08 Sumitomo Electric Ind Ltd Heating furnace and heating method for glass preform, and optical fiber drawing method

Similar Documents

Publication Publication Date Title
US3540870A (en) Apparatus for drawing and coating quartz glass fibers
US6105396A (en) Method of making a large MCVD single mode fiber preform by varying internal pressure to control preform straightness
US4082420A (en) An optical transmission fiber containing fluorine
JPS60161347A (en) Preparation of parent material for optical fiber glass
JPH03338B2 (en)
US3932160A (en) Method for forming low loss optical waveguide fibers
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
US4165152A (en) Process for producing optical transmission fiber
JP5459977B2 (en) Apparatus for performing plasma enhanced chemical vapor deposition and method for producing optical preforms
JPH05339024A (en) Heating device for glass preform
US4289516A (en) Low loss optical fibers
JPH05350B2 (en)
US4276072A (en) Optical fiber fabrication
US5979190A (en) Method for manufacturing an article comprising a refractory a dielectric body
GB1559768A (en) Optical fibre preform manufacture
JPH04280830A (en) Heat-treating furnace of glass preform
US5861047A (en) Method for manufacturing an article comprising a refractory dielectric body
JP2003081657A (en) Vitrification method and vitrification apparatus for porous soot body of optical fiber preform
JPS60251142A (en) Manufacture of base material for optical fiber
JPH01286932A (en) Production of optical fiber preform
US20220081345A1 (en) Manufacturing method of glass base material for optical fiber
US6279352B1 (en) Long hot zone furnace element and optical fiber drawing method practiced therewith
JP2003321235A (en) Method for dehydrating and sintering porous preform for optical fiber
JPS6046938A (en) Manufacture of optical fiber preform
JPS62283838A (en) Production of optical fiber