JP3368932B2 - Transparent quartz glass and its manufacturing method - Google Patents

Transparent quartz glass and its manufacturing method

Info

Publication number
JP3368932B2
JP3368932B2 JP04225293A JP4225293A JP3368932B2 JP 3368932 B2 JP3368932 B2 JP 3368932B2 JP 04225293 A JP04225293 A JP 04225293A JP 4225293 A JP4225293 A JP 4225293A JP 3368932 B2 JP3368932 B2 JP 3368932B2
Authority
JP
Japan
Prior art keywords
quartz glass
transparent
transparent quartz
temperature
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04225293A
Other languages
Japanese (ja)
Other versions
JPH06227827A (en
Inventor
進 八馬
信也 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27291136&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3368932(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP04225293A priority Critical patent/JP3368932B2/en
Publication of JPH06227827A publication Critical patent/JPH06227827A/en
Application granted granted Critical
Publication of JP3368932B2 publication Critical patent/JP3368932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明石英ガラス、特に
エキシマレーザー耐性を有する透明石英ガラスとその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent quartz glass, particularly a transparent quartz glass having excimer laser resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】石英ガラスは、近赤外から真空紫外域に
わたる広範囲の波長域において透明な材料であること、
並びに熱膨張係数がきわめて小さく寸法安定性に優れて
いること、さらに化学的耐久性に優れていることのため
に、LSI製造の際のリソグラフィー工程のフォトマス
ク用基板材料として広く用いられている。
2. Description of the Related Art Quartz glass is a transparent material in a wide wavelength range from near infrared to vacuum ultraviolet.
In addition, it has a very small coefficient of thermal expansion, excellent dimensional stability, and excellent chemical durability, and is therefore widely used as a substrate material for a photomask in a lithography process in manufacturing an LSI.

【0003】しかしながら、従来の石英ガラスは、フォ
トマスク製造工程中のプラズマエッチングやエキシマレ
ーザー等の高エネルギーの紫外線にさらされると構造欠
陥が誘起され、紫外域の光の透過率低下や蛍光発光中心
を生成する等の問題があり、特にArFエキシマレーザ
ーやKrFエキシマレーザーを露光光源とした超LSI
のリソグラフィー工程に用いられるフォトマスク用基
板、さらにはArFエキシマレーザーやKrFエキシマ
レーザーを光源とした光学系を構築する際の光学部材と
しては問題があった。
However, the conventional quartz glass is induced with structural defects when exposed to high-energy ultraviolet rays such as plasma etching and excimer laser during the photomask manufacturing process, resulting in a decrease in light transmittance in the ultraviolet region and fluorescence emission center. There is a problem such as the generation of light, especially, the VLSI using the ArF excimer laser or the KrF excimer laser as the exposure light source.
There is a problem as a substrate for a photomask used in the lithography process, and as an optical member when constructing an optical system using an ArF excimer laser or a KrF excimer laser as a light source.

【0004】これらの問題を解決するための方法とし
て、種々の検討がなされており、石英ガラス中に水素分
子を何らかの形で含有させればよいことが知られてい
る。しかしながら、水素を含有させるべき石英ガラスを
特定しなければ、必ずしも完全な効果は期待できない。
例えば、特開平1−201664号公報では、石英ガラ
スを水素を含有する雰囲気で熱処理する方法が開示され
ている。しかしながら、同公報に開示されている方法で
は、ガラス形成原料を火炎加水分解して得られる多孔質
石英ガラス体を透明ガラス化した石英ガラスにKrFエ
キシマレーザーを照射した際に形成される260nm近
傍の吸収帯と650nm近傍の蛍光発光を完全に抑止す
ることは不可能である。
Various investigations have been made as methods for solving these problems, and it is known that hydrogen molecules may be contained in quartz glass in some form. However, the complete effect cannot be expected without specifying the quartz glass that should contain hydrogen.
For example, JP-A-1-201664 discloses a method of heat-treating quartz glass in an atmosphere containing hydrogen. However, according to the method disclosed in the publication, a quartz glass obtained by subjecting a porous quartz glass body obtained by flame hydrolysis of a glass forming raw material to transparent vitrification is irradiated with a KrF excimer laser to form a glass having a wavelength of around 260 nm. It is impossible to completely suppress the absorption band and fluorescence emission near 650 nm.

【0005】一方、石英ガラスにエキシマレーザー耐性
を付与するために、石英ガラス中に水素分子を溶解させ
る方法が、特開平3−88742号公報に開示されてい
る。しかしながら同公報に開示されている石英ガラスで
は、多量の水素分子を溶解させる必要があり、そのため
に石英ガラスを爆発の危険性を有する水素雰囲気下でし
かも加圧下で熱処理する必要があり、設備が大がかりに
なる問題がある。
On the other hand, JP-A-3-88742 discloses a method of dissolving hydrogen molecules in quartz glass in order to impart excimer laser resistance to the quartz glass. However, in the quartz glass disclosed in the publication, it is necessary to dissolve a large amount of hydrogen molecules, and therefore it is necessary to heat the quartz glass in a hydrogen atmosphere that has a risk of explosion and under pressure, and the equipment is There is a big problem.

【0006】また、ガラス形成原料を火炎加水分解して
得られる多孔質石英ガラス体をハロゲン雰囲気で熱処理
してOHを全く含有しない石英ガラスを製造する方法
は、例えば、低損失な石英ガラスファイバーの製造法で
あるVAD法多孔質石英ガラスの透明ガラス化法として
公知である。しかしながら、かかる方法で透明ガラス化
された石英ガラスは、250nm近傍に強大な吸収帯を
有しており、KrFエキシマレーザーを用いたリソグラ
フィー工程のフォトマスク用基板としては使用できな
い。さらにKrFエキシマレーザーを照射すると、28
5nm、390nm、460nm近傍に強い蛍光発光が
認められ、目視で青色に見える。特に285nmに蛍光
発光を有すると、KrFエキシマレーザーを露光光源と
したリソグラフィー工程においては、285nmの蛍光
発光によりレジストが感光するためにフォトマスク用基
板としては使用できない。
Further, a method for producing a quartz glass containing no OH by heat-treating a porous quartz glass body obtained by flame hydrolysis of a glass forming raw material in a halogen atmosphere is, for example, a method of producing a low loss quartz glass fiber. It is known as a transparent vitrification method of VAD method porous quartz glass which is a manufacturing method. However, the quartz glass transparentized by such a method has a strong absorption band in the vicinity of 250 nm and cannot be used as a photomask substrate in a lithography process using a KrF excimer laser. Further irradiation with KrF excimer laser gives 28
Strong fluorescence emission was observed in the vicinity of 5 nm, 390 nm, and 460 nm, and it appeared to be blue visually. In particular, when it has fluorescence emission at 285 nm, it cannot be used as a substrate for a photomask in a lithography process using a KrF excimer laser as an exposure light source because the resist is exposed by fluorescence emission at 285 nm.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述の問題
を解決するためになされたものであり、エキシマレーザ
ーの照射に対しても構造欠陥による吸収帯または蛍光発
光の少ない、エキシマレーザー耐性を有する透明石英ガ
ラスとその製造方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and excimer laser resistance, which has a small absorption band or fluorescence emission due to structural defects even when irradiated with an excimer laser, is provided. A transparent quartz glass having the same and a method for producing the same are provided.

【0008】[0008]

【課題を解決するための手段】本発明は、透明石英ガラ
ス中のOH含有量が10ppm以下であって、フッ素
400ppm以上含有し、かつ水素を含有し、KrFエ
キシマレーザーを200mJ/cm/pulse、2
00Hzの条件で80分間照射した場合に波長650n
mの蛍光強度が実質的に変化しない透明石英ガラスを提
供する。前記透明石英ガラスは、ガラス形成原料を火炎
加水分解させて得られる石英ガラス微粒子を基材に堆積
・成長させて形成された多孔質石英ガラス体を加熱して
得られる透明石英ガラスであることが好ましい。
According to the present invention, the transparent silica glass has an OH content of 10 ppm or less, a fluorine content of 400 ppm or more, a hydrogen content, and a KrF excimer laser of 200 mJ / cm 2 /. pulse, 2
Wavelength 650n when irradiated for 80 minutes under the condition of 00Hz
Provided is a transparent quartz glass in which the fluorescence intensity of m is substantially unchanged. The transparent quartz glass is a transparent quartz glass obtained by heating a porous quartz glass body formed by depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material on a substrate. preferable.

【0009】また本発明者は、上述の従来の問題点に鑑
み、ガラス形成原料を火炎加水分解して得られる多孔質
石英ガラス体を透明ガラス化して得られる透明石英ガラ
スにエキシマレーザー耐性を付与するために、多孔質石
英ガラス体が透明ガラス化する温度よりも低い温度域に
おいて後述する脱水処理を行った後、透明ガラス化を行
い、さらに所望の形状に成形した後、水素雰囲気で処理
することによって、容易にエキシマレーザー耐性を有す
る透明石英ガラスが製造できることを見いだした。本発
明は、 (1)ガラス形成原料を火炎加水分解して形成される石
英ガラス微粒子を基材に堆積・成長させて多孔質石英ガ
ラス体を形成する工程、 (2)該多孔質石英ガラス体を透明ガラス化温度以下の
温度域で保持し、多孔質石英ガラス体の脱水を行う工
程、 (3)透明ガラス化温度以下の温度域で保持して脱水し
た多孔質石英ガラス体を、透明ガラス化温度まで昇温・
透明ガラス化して透明石英ガラス体を得る工程、 (4)該透明石英ガラス体を軟化点以上の温度に加熱し
て所望の形状に成形し、成形石英ガラス体とする工程、
および (5)該成形石英ガラス体に水素を含有する雰囲気で熱
処理を施し透明石英ガラスを得る工程、とからなる工程
で製造されることを特徴とする、透明石英ガラス中のO
H含有量が10ppm以下であって、ハロゲンを400
ppm以上含有し、かつ水素を含有し、KrFエキシマ
レーザーを200mJ/cm /pulse、200H
zの条件で80分間照射した場合に波長650nmの蛍
光強度が実質的に変化しないように水素を含有させた透
明石英ガラスの製造方法を提供する。
Further, in view of the above-mentioned conventional problems, the present inventor imparts excimer laser resistance to a transparent quartz glass obtained by transparentizing a porous quartz glass body obtained by flame hydrolysis of a glass forming raw material. In order to do so, after performing the dehydration treatment described below in a temperature range lower than the temperature at which the porous quartz glass body becomes transparent vitrified, it is transparent vitrified, further molded into a desired shape, and then treated in a hydrogen atmosphere. By doing so, it was found that a transparent quartz glass having excimer laser resistance can be easily manufactured. The present invention includes (1) a step of depositing and growing quartz glass fine particles formed by flame hydrolysis of a glass forming raw material on a substrate to form a porous quartz glass body, (2) the porous quartz glass body Is carried out in the temperature range below the transparent vitrification temperature to dehydrate the porous quartz glass body, (3) The porous quartz glass body held in the temperature range below the transparent vitrification temperature is dehydrated Temperature rise to
A step of obtaining a transparent quartz glass body by subjecting it to a transparent vitrification, (4) a step of heating the transparent quartz glass body to a temperature equal to or higher than a softening point and shaping it into a desired shape to obtain a shaped quartz glass body,
And (5) a step of subjecting the formed quartz glass body to a heat treatment in an atmosphere containing hydrogen to obtain transparent quartz glass, O in the transparent quartz glass,
If the H content is 10 ppm or less and the halogen content is 400
KrF excimer containing more than ppm and containing hydrogen
Laser 200 mJ / cm 2 / pulse, 200H
When irradiated for 80 minutes under the condition of z,
Provided is a method for producing transparent quartz glass containing hydrogen so that the light intensity does not substantially change .

【0010】本発明におけるOH含有量は、透明石英ガ
ラスの赤外分光スペクトルにおいて、2.7μm付近に
認められる透明石英ガラス中のSi−OHの伸縮振動に
基づく吸収から求めたものである(J.P.Willi
ams他:J.Am.Ceram.Soc.,vol.
55,524〜527頁)。
The OH content in the present invention is obtained from the absorption based on the stretching vibration of Si-OH in transparent quartz glass found in the vicinity of 2.7 μm in the infrared spectroscopic spectrum of transparent quartz glass (J P. Willi
ams et al .: J. Am. Am. Ceram. Soc. , Vol.
55, 524-527).

【0011】以下、本発明の内容を順を追って説明す
る。まず、ガラス形成原料を火炎加水分解して得られる
石英ガラス微粒子を基材に堆積・成長させて形成された
多孔質石英ガラス体を脱水処理した後、透明ガラス化し
て透明石英ガラス体とする製造方法で、OH濃度の異な
る透明石英ガラス体を製造した。
The contents of the present invention will be described below step by step. First, a porous quartz glass body formed by depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material on a substrate is dehydrated, and then transparentized into a transparent quartz glass body. By the method, transparent quartz glass bodies having different OH concentrations were manufactured.

【0012】さらに、該透明石英ガラス体中に水素分子
を含有させた後、透明石英ガラス中のOH濃度とエキシ
マレーザー照射によって誘起される構造欠陥に基づく6
50nm蛍光発光強度の関係を検討した結果、本発明者
らは、図1に示すように、650nm蛍光強度(大塚電
子株式会社製MPCD−1000により測定)が透明石
英ガラス中のOH含有量に強く依存することを初めて見
いだした。すなわち、650nm蛍光強度は透明石英ガ
ラス中のOH含有量に比例し、OH含有量を40ppm
程度まで減少させれば、650nm蛍光発光強度はごく
微弱となりフォトマスク等の光学部材として実質的に問
題がないレベルとなり、さらにOH含有量が10ppm
以下であれば、650nm蛍光発光を完全に抑制するこ
とが可能で、より好ましいことを見いだした。
Furthermore, after the hydrogen molecule is contained in the transparent quartz glass body, the OH concentration in the transparent quartz glass and the structural defect induced by the excimer laser irradiation are caused.
As a result of examining the relationship of 50 nm fluorescence emission intensity, the present inventors found that the 650 nm fluorescence intensity (measured by MPCD-1000 manufactured by Otsuka Electronics Co., Ltd.) was strong against the OH content in the transparent quartz glass as shown in FIG. It was the first time I found dependence. That is, the 650 nm fluorescence intensity is proportional to the OH content in the transparent quartz glass, and the OH content is 40 ppm.
If it is reduced to a certain level, the fluorescence emission intensity at 650 nm becomes extremely weak to a level at which there is practically no problem as an optical member such as a photomask, and the OH content is 10 ppm.
It has been found that it is possible to completely suppress 650 nm fluorescence emission and it is more preferable if it is below.

【0013】透明石英ガラス中のOH含有量をさらに低
減するために、透明ガラス化温度以下の温度でハロゲン
元素含有ガスを含む雰囲気において脱水処理した後、透
明ガラス化した。得られた透明石英ガラス体にKrFエ
キシマレーザーを照射したところ、285nm、390
nm、460nmに強い蛍光発光を有していることが判
明した。本発明者らは、ハロゲンガスにより脱水した透
明石英ガラス体をさらに水素雰囲気下で熱処理を施し水
素を含有させる処理を行い、透明石英ガラスを得た後、
エキシマレーザー耐性を評価した。この結果、該透明石
英ガラス中に含有されるハロゲンの濃度に依存して各蛍
光発光の抑止の割合が異なることを見いだした。すなわ
ち該透明石英ガラス中のハロゲン濃度が400ppm以
上では、285nm、390nm、460nmの蛍光発
光が水素分子を含有させることによってほぼ抑止され、
さらに好ましくはハロゲン濃度が500ppm以上であ
れば、各蛍光発光は完全に抑止されることを見いだし
た。またハロゲン濃度が400ppmより少ないと39
0nm蛍光発光の抑止が不完全となり好ましくない。
In order to further reduce the OH content in the transparent quartz glass, it was dehydrated in an atmosphere containing a halogen element-containing gas at a temperature not higher than the transparent vitrification temperature and then converted into a transparent vitrification. When the obtained transparent quartz glass body was irradiated with a KrF excimer laser, 285 nm, 390
It was found to have strong fluorescence emission at nm and 460 nm. The present inventors further heat-treated the transparent quartz glass body dehydrated with a halogen gas in a hydrogen atmosphere to make it contain hydrogen, and after obtaining the transparent quartz glass,
Excimer laser resistance was evaluated. As a result, it was found that the inhibition ratio of each fluorescence emission differs depending on the concentration of halogen contained in the transparent quartz glass. That is, when the halogen concentration in the transparent quartz glass is 400 ppm or more, the fluorescence emission of 285 nm, 390 nm and 460 nm is almost suppressed by the inclusion of hydrogen molecules,
It was further found that each fluorescence emission is completely suppressed when the halogen concentration is 500 ppm or more. If the halogen concentration is less than 400 ppm, it will be 39
Inhibition of 0 nm fluorescence emission is incomplete, which is not preferable.

【0014】透明石英ガラス中に含まれるハロゲンの存
在状態は明らかではないが、400ppm以上のハロゲ
ンが透明石英ガラス中に存在することによって、OH含
有量の低減をもたらし、かつ水素を含有する場合には、
KrFエキシマレーザーの照射に対して650nm蛍光
発光、並びに285nm、390nm、460nmの各
蛍光発光も実質的に問題とならない程度に抑止されるこ
とを見いだした。
The state of the halogen contained in the transparent quartz glass is not clear, but the presence of 400 ppm or more of halogen in the transparent quartz glass brings about a reduction in the OH content, and in the case of containing hydrogen. Is
It was found that the fluorescence emission at 650 nm and the fluorescence emission at 285 nm, 390 nm, and 460 nm were suppressed to the extent that there was no substantial problem with the irradiation of the KrF excimer laser.

【0015】また、透明石英ガラス中の水素分子の影響
を検討するために、水素含有量の異なる透明石英ガラス
を作成し、ラマン分光法(日本分光工業株式会社製R−
800による)で測定した溶存水素量と、KrFエキシ
マレーザーを照射した際の蛍光発光の関係を検討した。
OH含有量が10ppmで溶存水素量が4.4×1017
分子/cm3 の透明石英ガラスでは、KrFエキシマレ
ーザー照射時に390nmの蛍光発光が認められた。一
方、ラマン散乱ピークが認められず溶存水素量がラマン
法の検出限界以下である1×1017分子/cm3 以下
で、かつOH含有量が10ppm以下の透明石英ガラス
は390nmの蛍光発光を生じず、しかも650nm蛍
光発光も実質的に抑制されていることを見いだした。
Further, in order to study the influence of hydrogen molecules in the transparent quartz glass, transparent quartz glass having different hydrogen contents was prepared and subjected to Raman spectroscopy (R-manufactured by JASCO Corporation).
The relationship between the amount of dissolved hydrogen measured in (according to 800) and the fluorescence emission upon irradiation with KrF excimer laser was examined.
OH content is 10ppm and dissolved hydrogen amount is 4.4 × 10 17
With the transparent quartz glass having a molecule / cm 3 , fluorescence emission of 390 nm was observed upon irradiation with KrF excimer laser. On the other hand, no transparent Raman scattering peak was observed and the amount of dissolved hydrogen was 1 × 10 17 molecules / cm 3 or less, which is less than the detection limit of the Raman method, and the transparent quartz glass having an OH content of 10 ppm or less generated fluorescence emission of 390 nm. Moreover, it was found that 650 nm fluorescence emission was also substantially suppressed.

【0016】そこで、透明石英ガラスを真空中1000
℃で加熱したときに放出される水素量を評価したとこ
ろ、前記エキシマレーザー耐性を有する透明石英ガラス
の表面積あたりの水素分子放出量は0.9×1020分子
/m2 であった。また水素分子放出量が1.5×1020
分子/m2 の透明石英ガラスでは390nm蛍光発光の
抑止が不充分であった。一方、水素分子放出量が5×1
17分子/m2 程度の水素分子含有量の少ない透明石英
ガラスでは285mm、460nmの蛍光発光が認めら
れ、さらにエキシマレーザー照射にしたがって650n
m蛍光強度の増大が認められた。本発明においては、真
空中1000℃に昇温したときの水素分子放出量が、1
×1018〜1×1020分子/m2 の範囲であることが重
要である。
Therefore, the transparent quartz glass is vacuumed to 1000
When the amount of hydrogen released when heated at 0 ° C. was evaluated, the amount of released hydrogen molecules per surface area of the transparent quartz glass having excimer laser resistance was 0.9 × 10 20 molecules / m 2 . Also, the amount of released hydrogen molecules is 1.5 × 10 20.
In the case of transparent quartz glass having a molecule / m 2 , suppression of fluorescence emission at 390 nm was insufficient. On the other hand, the amount of released hydrogen molecules is 5 × 1
Fluorescence emission of 285 mm and 460 nm was observed in the transparent quartz glass having a low hydrogen molecule content of about 0 17 molecule / m 2 , and further 650 n was obtained according to the excimer laser irradiation.
An increase in m fluorescence intensity was observed. In the present invention, the amount of released hydrogen molecules when the temperature is raised to 1000 ° C. in vacuum is 1
It is important that it is in the range of × 10 18 to 1 × 10 20 molecule / m 2 .

【0017】本発明において、好ましい実施態様の一つ
としては、予めガラス形成原料を酸水素炎中で火炎加水
分解して得られる石英ガラス微粉末を基材に堆積・成長
させた多孔質石英ガラス体を透明ガラス化する温度以下
の温度域で、ハロゲン元素含有ガスを含む雰囲気で脱水
処理を行う。前記脱水処理を行った後、引き続き透明ガ
ラス化温度まで昇温加熱して透明石英ガラス体とする。
さらに軟化点以上の温度に加熱して所望の形状に成形し
た後、水素雰囲気で熱処理して、エキシマレーザー耐性
に優れる透明石英ガラスを得る。上記基材として石英ガ
ラス製の種棒(例えば特公昭63−24973号公報)
を用いることができる。また石英ガラス製に限らず板状
の基材を用いてもよい。
In a preferred embodiment of the present invention, a porous quartz glass is prepared by depositing and growing fine quartz glass powder obtained by flame hydrolysis of a glass forming raw material in an oxyhydrogen flame on a substrate in advance. Dehydration treatment is performed in a temperature range below the temperature at which the body becomes vitrified, in an atmosphere containing a gas containing a halogen element. After the dehydration treatment, the transparent quartz glass body is heated by raising the temperature to the transparent vitrification temperature.
Further, after being heated to a temperature equal to or higher than the softening point to be formed into a desired shape, it is heat-treated in a hydrogen atmosphere to obtain a transparent quartz glass having excellent excimer laser resistance. A seed rod made of quartz glass as the base material (for example, Japanese Patent Publication No. 63-24973).
Can be used. Further, not only quartz glass but also a plate-shaped substrate may be used.

【0018】用いられるガラス形成原料としては、ガス
化可能な原料であれば特に制限されず、SCl4 、S
iHCl3 、SiH2 Cl2 、CH3 SiCl3 等の塩
化物、SiF4 、SiHF3 、SiH22 等のフッ化
物、SiBr4 、SiHBr3 等の臭化物、SiI4
の沃化物等のハロゲン化珪素化合物が作業性やコストの
面から好ましい。多孔質石英ガラス体は、これらガラス
形成原料を通常の酸水素火炎中で加水分解し、基材上に
堆積させて形成される。
[0018] As the glass-forming raw material to be used is not particularly limited as long as materials capable of being gasified, S i Cl 4, S
iHCl 3, SiH 2 Cl 2, CH 3 SiCl 3 chlorides such as, SiF 4, SiHF 3, SiH 2 F 2 , etc. fluorides, SiBr 4, SiHBr 3 and the like bromides, halogen iodide such as SiI 4 A silicon compound is preferable in terms of workability and cost. The porous quartz glass body is formed by hydrolyzing these glass forming raw materials in an ordinary oxyhydrogen flame and depositing them on a substrate.

【0019】このようにして得られた多孔質石英ガラス
体は、好ましくは、ついでハロゲン元素含有ガスを含む
雰囲気内で一定時間加熱保持された後、透明ガラス化ま
で昇温されて透明ガラス化して透明石英ガラス体とな
る。すなわち、例えば、多孔質石英ガラス体は雰囲気制
御可能な電気炉内に予め装着された後、一定の昇温速度
で加熱される。ついで所定の温度に到達の後、ハロゲン
元素含有ガスを容積で0.01〜5%含むガスを導入
し、ハロゲン元素含有ガスを含む雰囲気(例えば塩素雰
囲気やフッ素雰囲気)とする。
The thus obtained porous quartz glass body is preferably heated and held in an atmosphere containing a halogen element-containing gas for a certain period of time and then heated to transparent vitrification to be transparent vitrified. It becomes a transparent quartz glass body. That is, for example, the porous quartz glass body is preliminarily mounted in an electric furnace whose atmosphere can be controlled, and then heated at a constant temperature rising rate. Then, after reaching a predetermined temperature, a gas containing 0.01 to 5% by volume of the halogen element-containing gas is introduced to make an atmosphere (for example, a chlorine atmosphere or a fluorine atmosphere) containing the halogen element-containing gas.

【0020】ハロゲンの種類としては、沃素、臭素、塩
素、フッ素のうちから適宜選択できるが、取扱い性の面
から、塩素またはフッ素が好ましい。特に炉材等の耐食
性の点から、塩素が好ましい。またハロゲンの供給源と
して、塩素ガス、フッ素ガスの一部または全部を、塩素
の場合には、CCl4 、CHCl3 、SiCl4 等に変
更して使用してもよく、フッ素の場合には、SF6 、C
HF3 、SiF4 等のハロゲン化物に変更して使用して
もよい。
The type of halogen can be appropriately selected from iodine, bromine, chlorine and fluorine, but chlorine or fluorine is preferable from the viewpoint of handleability. Particularly, chlorine is preferable from the viewpoint of corrosion resistance of furnace materials and the like. As a halogen source, a part or all of chlorine gas and fluorine gas may be changed to CCl 4 , CHCl 3 , SiCl 4 or the like in the case of chlorine, and in the case of fluorine, SF 6 , C
Halides such as HF 3 and SiF 4 may be used instead.

【0021】またハロゲン元素含有ガスの濃度として
は、容積で0.01〜5%の範囲であることが好まし
い。ハロゲン元素含有ガスの濃度が5%を超えると、引
き続き透明ガラス化するために昇温した際に、多孔質石
英ガラス体中に含有されたハロゲンが遊離し透明ガラス
化しないため好ましくなく、また濃度が0.01%未満
の場合には、ハロゲン処理の効果が認められないため好
ましくない。
The concentration of the halogen-containing gas is preferably in the range of 0.01 to 5% by volume. If the concentration of the halogen-containing gas exceeds 5%, it is not preferable because the halogen contained in the porous quartz glass body is liberated and does not become vitrified when the temperature is raised for subsequent vitrification. Is less than 0.01%, the effect of halogen treatment is not recognized, which is not preferable.

【0022】次に、脱水処理する際の温度域としては、
800〜1250℃の範囲であることが好ましく、これ
より低い温度では乾燥ガス、またはハロゲンによる脱水
効果が認められず、これより高い温度では多孔質石英ガ
ラス体の表面で透明ガラス化が進行してしまい、多孔質
石英ガラス体の脱水が効率よく行われないために好まし
くない。
Next, as the temperature range for the dehydration treatment,
The temperature is preferably in the range of 800 to 1250 ° C., and the dehydration effect by the dry gas or halogen is not recognized at a temperature lower than this, and the transparent vitrification proceeds on the surface of the porous quartz glass body at a temperature higher than this. It is not preferable because the porous quartz glass body is not efficiently dehydrated.

【0023】さらに脱水処理する際の温度域で保持する
時間としては、処理する温度、ハロゲン元素含有ガスの
濃度、多孔質石英ガラス体の体積等に依存するため一概
に規定することは困難であるが、1〜30時間の範囲で
あることが好ましい。透明石英ガラス中のOH含有量
は、FTIR分光法によりSi−OHによる3680c
-1の吸収で定量することができ、ハロゲン元素含有ガ
スで脱水された透明石英ガラス中のOH含有量は10p
pm以下となる。
Further, the time for holding in the temperature range during the dehydration treatment depends on the treatment temperature, the concentration of the halogen-containing gas, the volume of the porous quartz glass body, etc., and is therefore difficult to unconditionally define. Is preferably in the range of 1 to 30 hours. The OH content in the transparent quartz glass is 3680c by Si-OH by FTIR spectroscopy.
It can be quantified by the absorption of m −1 , and the OH content in the transparent quartz glass dehydrated with the halogen-containing gas is 10 p.
It becomes pm or less.

【0024】このようにしてハロゲン含有ガスにより脱
水された多孔質石英ガラス体は、引き続き透明ガラス化
温度まで昇温・加熱されて透明ガラス化される。透明ガ
ラス化温度は、1350〜1500℃の範囲であること
が好ましい。透明ガラス化された透明石英ガラス体は、
通常、基材から取り除かれ、次工程へ移される。
The porous quartz glass body dehydrated by the halogen-containing gas in this manner is subsequently heated to a transparent vitrification temperature and heated to be vitrified. The transparent vitrification temperature is preferably in the range of 1350 to 1500 ° C. The transparent vitrified transparent quartz glass body,
Usually, it is removed from the substrate and transferred to the next step.

【0025】こうして得られた透明石英ガラス体を所望
の形状に成形するには、透明石英ガラス体を軟化点以上
の温度域に加熱する。このときの温度域としては、16
00〜1800℃の範囲であることが好ましい。160
0℃より低い温度では、透明石英ガラス体の粘度が高い
ため成形が事実上困難であるとともに、結晶化による失
透が生じるため好ましくなく、1800℃より高い温度
では、透明石英ガラス体の昇華が生じるため好ましくな
い。
In order to mold the transparent quartz glass body thus obtained into a desired shape, the transparent quartz glass body is heated to a temperature range above the softening point. The temperature range at this time is 16
It is preferably in the range of 00 to 1800 ° C. 160
If the temperature is lower than 0 ° C, the viscosity of the transparent quartz glass body is high, so that the molding is practically difficult and devitrification occurs due to crystallization, which is not preferable. It is not preferable because it occurs.

【0026】所望の形状に成形された透明石英ガラス体
は、引き続き水素分子を含有させるために、雰囲気制御
可能な電気炉内に装着され、処理温度まで昇温される。
処理温度に到達した後、水素を含有する雰囲気ガスを導
入し炉内雰囲気を水素雰囲気とする。水素濃度として
は、30%以上であることが好ましい。これより低い濃
度では、必要な水素量の導入が不可能であるため好まし
くない。さらに好ましくは90%以上の水素濃度とす
る。
The transparent quartz glass body molded into a desired shape is placed in an electric furnace capable of controlling the atmosphere and subsequently heated to the treatment temperature in order to contain hydrogen molecules.
After reaching the processing temperature, an atmosphere gas containing hydrogen is introduced to make the atmosphere in the furnace a hydrogen atmosphere. The hydrogen concentration is preferably 30% or more. If the concentration is lower than this, it is not preferable because the required amount of hydrogen cannot be introduced. More preferably, the hydrogen concentration is 90% or more.

【0027】また処理温度は、500〜1100℃の範
囲であることが好ましい。これより低い温度では、水素
分子の拡散係数が小さく必要な水素量を含有させるため
に必要な時間がきわめて長時間となり好ましくない。ま
た1100℃を超えると水素分子との反応により390
nm蛍光発光中心が形成されるため好ましくない。透明
石英ガラス中に溶解する水素量は、温度の上昇にしたが
って減少するため、さらに好ましくは800〜1000
℃の範囲である。
The processing temperature is preferably in the range of 500 to 1100 ° C. At a temperature lower than this, the diffusion coefficient of hydrogen molecules is small and the time required to contain the required amount of hydrogen is extremely long, which is not preferable. If the temperature exceeds 1100 ° C, the reaction with hydrogen molecules causes 390
nm fluorescent emission centers are formed, which is not preferable. Since the amount of hydrogen dissolved in the transparent quartz glass decreases as the temperature rises, it is more preferably 800 to 1000.
It is in the range of ° C.

【0028】以上のような工程を経て製造される透明石
英ガラスはOH含有量が10ppm以下でかつハロゲン
含有量が400ppm以上となる。
The transparent quartz glass manufactured through the above steps has an OH content of 10 ppm or less and a halogen content of 400 ppm or more.

【0029】さらに該透明石英ガラスは、水素分子含有
量がラマン法による検出限界以下となり、表面積あたり
の水素分子放出量が1×1020分子/m2 以下であっ
て、KrFエキシマレーザーの照射に対して、吸収帯の
生成や蛍光発光中心のないエキシマレーザー耐性を有す
る透明石英ガラスである。また、本発明により製造され
る透明石英ガラスは、ガラス形成原料として高純度な合
成原料が使用できること、溶融工程を経ないためにルツ
ボ等からの不純物の混入がないこと等から、鉄、ニッケ
ル等の重金属元素やナトリウム、カリウム等のアルカリ
金属元素の不純物総量が1ppm以下ときわめて高純度
である。
Further, the transparent quartz glass has a hydrogen molecule content below the detection limit by the Raman method and a hydrogen molecule emission amount per surface area of 1 × 10 20 molecules / m 2 or less, and is suitable for irradiation with a KrF excimer laser. On the other hand, it is a transparent quartz glass that has excimer laser resistance without the generation of absorption bands and fluorescence emission centers. Further, the transparent quartz glass produced according to the present invention can use a high-purity synthetic raw material as a glass-forming raw material, and since it does not undergo a melting step, it does not contain impurities such as crucibles. The total amount of impurities of the heavy metal elements and alkali metal elements such as sodium and potassium is 1 ppm or less, which is extremely high purity.

【0030】[0030]

【作用】透明石英ガラスにエキシマレーザーのような高
エネルギーの紫外線を照射した際に、650nm蛍光発
光中心が生成し、赤色を呈する機構は必ずしも明確では
ないが、透明石英ガラス中の非架橋酸素ラジカルが原因
であるといわれている。そして、非架橋酸素ラジカル
は、石英ガラス中に含有される溶存酸素分子、酸素過剰
型欠陥(Si−O−O−Si)等にエキシマレーザーを
照射することによって形成されることが知られている。
本発明者は、エキシマレーザー照射時にOH基が非架橋
酸素ラジカルになることを初めて見いだした。したがっ
て、非架橋酸素ラジカルの前駆体となりうる溶存酸素分
子、酸素過剰型欠陥、OH含有量を減少させることがエ
キシマレーザー耐性の上で重要な因子となる。
When the transparent quartz glass is irradiated with high-energy ultraviolet rays such as an excimer laser, a 650 nm fluorescence emission center is generated and the mechanism of exhibiting a red color is not always clear, but the non-crosslinked oxygen radicals in the transparent quartz glass are not clear. Is said to be the cause. It is known that non-crosslinked oxygen radicals are formed by irradiating a dissolved oxygen molecule, oxygen excess type defects (Si-O-O-Si), etc. contained in quartz glass with an excimer laser. .
The present inventor found for the first time that an OH group becomes a non-crosslinked oxygen radical upon irradiation with an excimer laser. Therefore, reducing dissolved oxygen molecules, oxygen-excessive defects, and OH content that can be precursors of non-crosslinked oxygen radicals are important factors for excimer laser resistance.

【0031】非架橋酸素ラジカルの前駆体の一つである
OH含有量を10ppm以下に低減することによって、
エキシマレーザー照射時に650nm蛍光発光とその励
起波長である260nm近傍の吸収帯を低減させる作用
を有する。また水素を含有することは、酸素過剰型欠陥
並びに溶存酸素分子を除去することになり、エキシマレ
ーザー照射に対する耐性を改善する作用を有する。
By reducing the OH content, which is one of the precursors of non-crosslinked oxygen radicals, to 10 ppm or less,
It has the function of reducing the emission of fluorescence at 650 nm and the absorption band near its excitation wavelength of 260 nm upon irradiation with an excimer laser. The inclusion of hydrogen also removes oxygen excess defects and dissolved oxygen molecules, and has the effect of improving the resistance to excimer laser irradiation.

【0032】さらにハロゲンによる脱水操作によりOH
基を除去した透明石英ガラス体に適当量の水素を含有さ
せることは、ハロゲン脱水操作によっても除去できなか
った酸素過剰型欠陥並びに溶存酸素を除去し、さらにハ
ロゲン脱水操作によって新たに生成する285nm、3
90nm、460nm蛍光発光中心を除去し、エキシマ
レーザー耐性を完全なものとする作用を有する。
Further, by dehydration operation with halogen, OH
The inclusion of an appropriate amount of hydrogen in the transparent quartz glass body from which the group has been removed removes oxygen-excessive defects and dissolved oxygen that could not be removed even by the halogen dehydration operation, and further generates 285 nm by the halogen dehydration operation. Three
90 nm, 460 nm fluorescence emission center is removed, excimer
It has the effect of perfecting laser resistance.

【0033】以下、本発明の詳細についてさらに実施例
により説明するが、本発明はこれら実施例により限定さ
れない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0034】[0034]

【実施例】[実施例1] 公知の方法により、SiCl4 を酸水素火炎中で加水分
解させて形成させた微粒子を種棒に堆積させて形成させ
た直径9cm、長さ10cmの多孔質石英ガラス体を常
圧かつ室温で黒鉛製発熱体を有する雰囲気制御可能な電
気炉内に設置した。ついで500℃/hrの昇温速度で
1200℃まで昇温した後、2容積%の塩素ガスを含有
させた窒素ガスを導入し、炉内雰囲気を塩素ガスを含有
する雰囲気とした後、1250℃に4時間保持した。塩
素ガスを含有する雰囲気内での脱水処理を行った後、H
e100%のガスを導入して、雰囲気をHe雰囲気とし
た後、多孔質石英ガラス体を500℃/hrの昇温速度
で1500℃まで昇温し、1500℃で3時間保持して
透明ガラス化を行った。
EXAMPLES Example 1 Porous quartz having a diameter of 9 cm and a length of 10 cm formed by depositing fine particles formed by hydrolyzing SiCl 4 in an oxyhydrogen flame on a seed rod by a known method. The glass body was placed in an electric furnace having a graphite heating element at atmospheric pressure and room temperature and capable of controlling the atmosphere. Then, the temperature was raised to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 2% by volume of chlorine gas was introduced, and the atmosphere in the furnace was changed to an atmosphere containing chlorine gas. Hold for 4 hours. After performing dehydration treatment in an atmosphere containing chlorine gas, H
After introducing a 100% gas and making the atmosphere He atmosphere, the temperature of the porous quartz glass body was raised to 1500 ° C. at a temperature rising rate of 500 ° C./hr, and the temperature was kept at 1500 ° C. for 3 hours to form a transparent glass. I went.

【0035】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、3×3×4cmの
ブロック形状に成形した。引き続き、電気炉内に成形ブ
ロックを設置したまま電気炉の温度を1200℃まで降
温させ、以後30℃/hrの冷却速度で徐冷を行い、炉
内温度が1000℃になったところで給電を停止し炉内
放冷した。
The transparent quartz glass body thus obtained was heated in an electric furnace having a carbon heating element to a temperature above the softening point of 17
It was heated to 50 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0036】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で100%水素ガスを導入し炉内雰
囲気を水素雰囲気とし、その温度で7時間保持して透明
石英ガラスブロック中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours to contain hydrogen molecules in the transparent quartz glass block.

【0037】得られた透明石英ガラス中のOH含有量は
1ppmであった。一方、透明石英ガラス中に含有され
る塩素(Cl原子)濃度は1000ppmであった。ま
た真空中で1000℃に昇温した際の水素分子放出量は
0.9×1020分子/m2 であった。この透明石英ガラ
スにKrFエキシマレーザーを200mJ/cm2 /p
ulse、200Hzの条件で照射しながら、蛍光発光
強度を測定した。図1に示すように、この透明石英ガラ
スは、KrFエキシマレーザーを照射しても650nm
蛍光発光を生じず、したがって260nm近傍の吸収帯
も生じないことが明らかとなった。それゆえ、KrFエ
キシマレーザーを光源とする工程に用いるフォトマスク
用基板または光学部材に最も適切な透明石英ガラスであ
った。
The OH content in the obtained transparent quartz glass was 1 ppm. On the other hand, the chlorine (Cl atom) concentration contained in the transparent quartz glass was 1000 ppm. Further, the amount of released hydrogen molecules when heated to 1000 ° C. in vacuum was 0.9 × 10 20 molecule / m 2 . KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm 2 / p.
The fluorescence emission intensity was measured while irradiating under the condition of ulse and 200 Hz. As shown in FIG. 1, this transparent quartz glass has a wavelength of 650 nm even when irradiated with a KrF excimer laser.
It became clear that no fluorescence was emitted and therefore no absorption band near 260 nm was produced. Therefore, the transparent quartz glass was most suitable for the photomask substrate or the optical member used in the step of using the KrF excimer laser as the light source.

【0038】[比較例1] 実施例1と同様の方法で形成させた直径35cm、長さ
100cmの多孔質石英ガラス体を常圧かつ室温で雰囲
気制御可能な電気炉内に設置した。ついで水蒸気分圧が
0.002mmHgの窒素ガスで電気炉内雰囲気を置換
した後、水蒸気分圧が0.002mmHgの窒素ガスを
流しながら500℃/hrの昇温速度で1000℃まで
昇温した。引き続き、50℃/hrの昇温速度で125
0℃まで昇温して、その温度で5時間保持して脱水処理
を行った。
Comparative Example 1 A porous quartz glass body having a diameter of 35 cm and a length of 100 cm formed by the same method as in Example 1 was placed in an electric furnace capable of atmospheric control at normal pressure and room temperature. Then, after replacing the atmosphere in the electric furnace with nitrogen gas having a steam partial pressure of 0.002 mmHg, the temperature was raised to 1000 ° C. at a heating rate of 500 ° C./hr while flowing a nitrogen gas having a steam partial pressure of 0.002 mmHg. Then, at a heating rate of 50 ° C / hr, 125
The temperature was raised to 0 ° C. and the temperature was maintained for 5 hours for dehydration treatment.

【0039】こうして得られた熱処理済みの多孔質石英
ガラス体を透明ガラス化のための炉内最高温度が145
0℃に制御された電気炉内上部に設置し、炉内を水蒸気
分圧が0.002mmHgのヘリウムガスで置換した
後、80mm/hrの速度で下降させながら最高温度域
を通過させて透明ガラス化を行った。
The heat-treated porous quartz glass body thus obtained has a maximum temperature of 145 in the furnace for transparent vitrification.
It is installed in the upper part of the electric furnace controlled at 0 ° C, the inside of the furnace is replaced with helium gas with a steam partial pressure of 0.002 mmHg, and then it is passed through the maximum temperature range while descending at a speed of 80 mm / hr to clear glass. Was made.

【0040】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、16×16×30
cmのブロック形状に成形した。引き続き、電気炉内に
成形ブロックを設置したまま電気炉の温度を1200℃
まで降温させ、以後30℃/hrの冷却速度で徐冷を行
い、炉内温度が1000℃になったところで給電を停止
し炉内放冷した。
The transparent quartz glass body thus obtained was placed in an electric furnace having a heating element made of carbon and was heated to a softening point of 17 or higher.
16 × 16 × 30
It was molded into a cm-shaped block. Continuously, with the forming block installed in the electric furnace, the temperature of the electric furnace is 1200 ° C.
After that, the temperature was gradually reduced to 30 ° C./hr, and then gradually cooled, and when the temperature in the furnace reached 1000 ° C., the power supply was stopped and the furnace was allowed to cool.

【0041】こうして得られた透明石英ガラスブロック
から16×16×2cmの透明石英ガラス体を切り出し
た後、雰囲気制御可能な電気炉内に挿入し、1000℃
まで300℃/hrの昇温速度で昇温した。1000℃
に到達した後、大気圧下で100%水素ガスを導入し炉
内雰囲気を水素雰囲気とし、その温度で15時間保持し
て透明石英ガラス体中に水素を含有させた。
A transparent quartz glass block of 16 × 16 × 2 cm was cut out from the transparent quartz glass block thus obtained, and then the transparent quartz glass block was inserted into an electric furnace capable of controlling the atmosphere to 1000 ° C.
Up to 300 ° C./hr. 1000 ° C
After the temperature reached 1, the atmosphere in the furnace was changed to a hydrogen atmosphere by introducing 100% hydrogen gas under atmospheric pressure, and the temperature was maintained for 15 hours to contain hydrogen in the transparent quartz glass body.

【0042】得られた透明石英ガラス中のOH含有量は
40ppmであった。また、ラマン分光法から求められ
る溶存水素量は1×1017分子/cm3 以下であった。
さらに、真空中での1000℃における水素分子放出量
は0.3×1020分子/m2であった。この透明石英ガ
ラスにKrFエキシマレーザーを200mJ/cm2
pulse、200Hzの条件で照射しながら、蛍光発
光強度を測定した。図1に示すように、この透明石英ガ
ラスは、KrFエキシマレーザーの照射に対して、フォ
トマスク等の光学部材としては実質的には問題を生じな
い程度ではあるが、ごく微弱な650nm蛍光発光が認
められた。
The OH content in the obtained transparent quartz glass was 40 ppm. Further, the amount of dissolved hydrogen determined by Raman spectroscopy was 1 × 10 17 molecule / cm 3 or less.
Further, the amount of released hydrogen molecules at 1000 ° C. in vacuum was 0.3 × 10 20 molecule / m 2 . KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm 2 /
The fluorescence emission intensity was measured while irradiating under the conditions of pulse and 200 Hz. As shown in FIG. 1, this transparent quartz glass emits a very faint 650 nm fluorescence emission to the extent that it does not substantially cause any problem as an optical member such as a photomask against the irradiation of KrF excimer laser. Admitted.

【0043】[比較例2] 実施例1と同様の方法で形成させた直径35cm、長さ
100cmの多孔質石英ガラス体を常圧かつ室温で雰囲
気制御可能な電気炉内に設置した。ここで脱水処理を行
わないで、多孔質石英ガラス体を透明ガラス化のための
炉内最高温度が1450℃に制御された電気炉内上部に
設置し、炉内を水蒸気分圧が0.002mmHgのヘリ
ウムガスで置換した後、80mm/hrの速度で下降さ
せながら最高温度域を通過させて透明ガラス化を行っ
た。
Comparative Example 2 A porous quartz glass body having a diameter of 35 cm and a length of 100 cm formed by the same method as in Example 1 was placed in an electric furnace capable of controlling the atmosphere at normal pressure and room temperature. Here, without dehydration treatment, the porous quartz glass body was installed in the upper part of the electric furnace where the maximum temperature in the furnace for transparent vitrification was controlled to 1450 ° C, and the steam partial pressure in the furnace was 0.002 mmHg. After substituting it with the helium gas of No. 1, the glass was passed through the maximum temperature range while descending at a speed of 80 mm / hr to carry out transparent vitrification.

【0044】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、18×18×24
cmのブロック形状に成形した。引き続き、電気炉内に
成形ブロックを設置したまま電気炉の温度を1200℃
まで降温させ、以後30℃/hrの冷却速度で徐冷を行
い、炉内温度が1000℃になったところで給電を停止
し炉内放冷した。
The transparent quartz glass body thus obtained was placed in an electric furnace having a heating element made of carbon and was heated to a softening point of 17 or higher.
18 × 18 × 24
It was molded into a cm-shaped block. Continuously, with the forming block installed in the electric furnace, the temperature of the electric furnace is 1200 ° C.
After that, the temperature was gradually reduced to 30 ° C./hr, and then gradually cooled, and when the temperature in the furnace reached 1000 ° C., the power supply was stopped and the furnace was allowed to cool.

【0045】こうして得られた透明石英ガラスブロック
から18×18×1cmの透明石英ガラス体を切り出し
た後、雰囲気制御可能な電気炉内に挿入し、1000℃
まで300℃/hrの昇温速度で昇温した。1000℃
に到達した後、大気圧下で100%水素ガスを導入し炉
内雰囲気を水素雰囲気とし、その温度で7時間保持して
透明石英ガラス体中に水素分子を含有させた。
After cutting out a transparent quartz glass body of 18 × 18 × 1 cm from the transparent quartz glass block thus obtained, it was inserted into an electric furnace capable of controlling the atmosphere and 1000 ° C.
Up to 300 ° C./hr. 1000 ° C
Then, 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours to contain hydrogen molecules in the transparent quartz glass body.

【0046】得られた透明石英ガラス中のOH含有量は
200ppmであった。また、ラマン分光法から求めら
れる溶存水素量は1×1017分子/cm3 以下であっ
た。さらに、真空中での1000℃における水素分子放
出量は0.5×1020分子/m2 であった。この透明石
英ガラスにKrFエキシマレーザーを200mJ/cm
2 /pulse、200Hzの条件で照射しながら、蛍
光発光強度を測定した。図1に示すように、この透明石
英ガラスは、KrFエキシマレーザーを照射するにした
がって、650nm蛍光発光が生じ、したがって260
nm近傍の吸収帯も生じることが明らかとなった。それ
ゆえ、KrFエキシマレーザーを光源とする工程に用い
るフォトマスク用基板または光学部材に適切ではなかっ
た。
The OH content in the obtained transparent quartz glass was 200 ppm. Further, the amount of dissolved hydrogen determined by Raman spectroscopy was 1 × 10 17 molecule / cm 3 or less. Further, the amount of released hydrogen molecules at 1000 ° C. in vacuum was 0.5 × 10 20 molecule / m 2 . A KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm.
The fluorescence emission intensity was measured while irradiating under the condition of 2 / pulse, 200 Hz. As shown in FIG. 1, this transparent quartz glass emits 650 nm fluorescence as it is irradiated with a KrF excimer laser, and therefore 260
It became clear that an absorption band near nm was also generated. Therefore, it was not suitable for a photomask substrate or an optical member used in the step of using a KrF excimer laser as a light source.

【0047】[比較例3] 実施例1と同様の方法で形成させた直径8cm、長さ1
0cmの多孔質石英ガラス体を常圧かつ室温で雰囲気制
御可能な電気炉内に設置した。ついで、純水を80℃に
加熱したバブラーを通過させたHeガスを3リットル/
minの条件で導入し、水蒸気を含有した雰囲気とし
た。前記雰囲気中で多孔質石英ガラス体を500℃/h
rの昇温速度で1500℃まで昇温し、1500℃で3
時間保持して透明ガラス化を行った。
Comparative Example 3 A diameter of 8 cm and a length of 1 formed by the same method as in Example 1
A 0 cm porous quartz glass body was placed in an electric furnace capable of atmospheric control at normal pressure and room temperature. Then, 3 liters of He gas was passed through a bubbler in which pure water was heated to 80 ° C.
It was introduced under the condition of min and made an atmosphere containing water vapor. The porous quartz glass body is heated to 500 ° C./h in the above atmosphere.
The temperature is raised to 1500 ° C. at a heating rate of r, and at 1500 ° C., 3
It was kept for a period of time to carry out transparent vitrification.

【0048】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、3×3×4cmの
ブロック形状に成形した。引き続き、電気炉内に成形ブ
ロックを設置したまま電気炉の温度を1200℃まで降
温させ、以後30℃/hrの冷却速度で徐冷を行い、炉
内温度が1000℃になったところで給電を停止し炉内
放冷した。
The transparent quartz glass body thus obtained was placed in an electric furnace having a heating element made of carbon and had a softening point of 17 or higher.
It was heated to 50 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0049】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で100%水素ガスを導入し炉内雰
囲気を水素雰囲気とし、その温度で7時間保持して透明
石英ガラス体中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours to contain hydrogen molecules in the transparent quartz glass body.

【0050】得られた透明石英ガラス中のOH含有量は
1100ppmであった。また、ラマン分光法から求め
られる溶存水素量は1×1017分子/cm3 以下であっ
た。さらに、真空中での1000℃における水素分子放
出量は0.9×1020分子/m2 であった。この透明石
英ガラスにKrFエキシマレーザーを200mJ/cm
2 /pulse、200Hzの条件で照射しながら、蛍
光発光強度を測定した。
The OH content in the obtained transparent quartz glass was 1100 ppm. Further, the amount of dissolved hydrogen determined by Raman spectroscopy was 1 × 10 17 molecule / cm 3 or less. Further, the amount of released hydrogen molecules at 1000 ° C. in vacuum was 0.9 × 10 20 molecule / m 2 . A KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm.
The fluorescence emission intensity was measured while irradiating under the condition of 2 / pulse, 200 Hz.

【0051】図1に示すように、この透明石英ガラス
は、KrFエキシマレーザーを照射するにしたがって、
650nm蛍光発光が最も生じやすく、したがって26
0nm近傍の吸収帯も生じやすいことが明らかとなっ
た。それゆえ、KrFエキシマレーザーを光源とする工
程に用いるフォトマスク用基板または光学部材に不適切
な透明石英ガラスであった。
As shown in FIG. 1, this transparent quartz glass was irradiated with a KrF excimer laser,
650 nm fluorescence emission is most likely to occur, thus 26
It became clear that an absorption band near 0 nm is also likely to occur. Therefore, the transparent quartz glass is unsuitable for the photomask substrate or the optical member used in the step of using the KrF excimer laser as the light source.

【0052】[実施例2] 実施例1と同様の方法で形成させた直径9cm、長さ1
0cmの多孔質石英ガラス体を常圧かつ室温で黒鉛製発
熱体を有する雰囲気制御可能な電気炉内に設置した。つ
いで500℃/hrの昇温速度で1200℃まで昇温し
た後、1容積%の塩素ガスを含有させた窒素ガスを導入
し、炉内雰囲気を塩素ガスを含有する雰囲気とした後、
1250℃に4時間保持した。塩素ガスを含有する雰囲
気内での脱水処理を行った後、さらに窒素雰囲気中で4
時間保持した。ついでHe100%のガスを導入して、
雰囲気をHe雰囲気とした後、多孔質石英ガラス体を5
00℃/hrの昇温速度で1500℃まで昇温し、15
00℃で3時間保持して透明ガラス化を行った。
[Example 2] A diameter of 9 cm and a length of 1 formed by the same method as in Example 1
A 0 cm porous quartz glass body was placed in an electric furnace having a graphite heating element at atmospheric pressure and a controllable atmosphere. Then, after heating up to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 1% by volume of chlorine gas was introduced, and the atmosphere in the furnace was changed to an atmosphere containing chlorine gas,
Hold at 1250 ° C for 4 hours. After performing dehydration treatment in an atmosphere containing chlorine gas, 4
Held for hours. Then introduce He100% gas,
After setting the atmosphere to He atmosphere, the porous quartz glass body is set to 5
The temperature is raised to 1500 ° C. at a heating rate of 00 ° C./hr for 15
It was kept at 00 ° C. for 3 hours for transparent vitrification.

【0053】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、3×3×4cmの
ブロック形状に成形した。引き続き、電気炉内に成形ブ
ロックを設置したまま電気炉の温度を1200℃まで降
温させ、以後30℃/hrの冷却速度で徐冷を行い、炉
内温度が1000℃になったところで給電を停止し炉内
放冷した。
The transparent quartz glass body thus obtained was placed in an electric furnace having a heating element made of carbon, and was heated to a softening point of 17 or higher.
It was heated to 50 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0054】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、900℃まで3
00℃/hrの昇温速度で昇温した。900℃に到達し
た後、大気圧下で100%水素ガスを導入し炉内雰囲気
を水素雰囲気とし、その温度で7時間保持して透明石英
ガラスブロック中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere, and kept at 900 ° C. for 3 hours.
The temperature was raised at a heating rate of 00 ° C./hr. After reaching 900 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the furnace atmosphere a hydrogen atmosphere, and the temperature was maintained for 7 hours to contain hydrogen molecules in the transparent quartz glass block.

【0055】得られた透明石英ガラス中のOH含有量は
3ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は440ppmであった。また真空中で10
00℃に昇温した際の水素分子放出量は0.3×1020
分子/m2 であった。この透明石英ガラスにKrFエキ
シマレーザーを200mJ/cm2 /pulse、20
0Hzの条件で照射しながら、蛍光発光強度を測定し
た。この透明石英ガラスは、KrFエキシマレーザーを
照射しても650nm蛍光発光を生じないことが判明し
たが、微弱な390nm蛍光発光が認められた。390
nm蛍光強度は比較例1の650nm蛍光強度に比較す
ると弱く、この透明石英ガラスをKrFエキシマレーザ
ーを光源とする工程に用いるフォトマスク用基板または
光学部材として用いてもなんら問題のないことが明らか
となった。
The OH content in the obtained transparent quartz glass was 3 ppm. On the other hand, the concentration of chlorine contained in the transparent quartz glass was 440 ppm. Also in vacuum 10
The amount of released hydrogen molecules when heated to 00 ° C is 0.3 × 10 20.
The molecule / m 2 . KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm 2 / pulse, 20
The fluorescence emission intensity was measured while irradiating under the condition of 0 Hz. This transparent quartz glass was found not to emit 650 nm fluorescence even when irradiated with a KrF excimer laser, but a weak 390 nm fluorescence was observed. 390
The nm fluorescence intensity is weaker than the 650 nm fluorescence intensity of Comparative Example 1, and it is clear that there is no problem even if this transparent quartz glass is used as a photomask substrate or an optical member used in the step of using a KrF excimer laser as a light source. became.

【0056】[比較例4] 実施例1と同様の方法で形成させた直径9cm、長さ1
0cmの多孔質石英ガラス体を常圧かつ室温で黒鉛製発
熱体を有する雰囲気制御可能な電気炉内に設置した。つ
いで500℃/hrの昇温速度で1200℃まで昇温し
た後、1容積%の塩素ガスを含有させた窒素ガスを導入
し、炉内雰囲気を塩素ガスを含有する雰囲気とした後、
1250℃に4時間保持した。塩素ガスを含有する雰囲
気内での脱水処理を行った後、さらに窒素雰囲気中で8
時間保持した。ついでHe100%のガスを導入して、
雰囲気をHe雰囲気とした後、多孔質石英ガラス体を5
00℃/hrの昇温速度で1500℃まで昇温し、15
00℃で3時間保持して透明ガラス化を行った。
Comparative Example 4 Diameter 9 cm and length 1 formed by the same method as in Example 1
A 0 cm porous quartz glass body was placed in an electric furnace having a graphite heating element at atmospheric pressure and a controllable atmosphere. Then, after heating up to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 1% by volume of chlorine gas was introduced, and the atmosphere in the furnace was changed to an atmosphere containing chlorine gas,
Hold at 1250 ° C for 4 hours. After performing dehydration treatment in an atmosphere containing chlorine gas, further 8 in a nitrogen atmosphere.
Held for hours. Then introduce He100% gas,
After setting the atmosphere to He atmosphere, the porous quartz glass body is set to 5
The temperature is raised to 1500 ° C. at a heating rate of 00 ° C./hr for 15
It was kept at 00 ° C. for 3 hours for transparent vitrification.

【0057】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、3×3×4cmの
ブロック形状に成形した。引き続き、電気炉内に成形ブ
ロックを設置したまま電気炉の温度を1200℃まで降
温させ、以後30℃/hrの冷却速度で徐冷を行い、炉
内温度が1000℃になったところで給電を停止し炉内
放冷した。
The transparent quartz glass body thus obtained was placed in an electric furnace having a heating element made of carbon and had a softening point of 17 or higher.
It was heated to 50 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0058】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で100%水素ガスを導入し炉内雰
囲気を水素雰囲気とし、その温度で7時間保持して透明
石英ガラスブロック中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours to contain hydrogen molecules in the transparent quartz glass block.

【0059】得られた透明石英ガラス中のOH含有量は
3ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は360ppmであった。また真空中で10
00℃に昇温した際の水素分子放出量は0.4×1020
分子/m2 であった。この透明石英ガラスにKrFエキ
シマレーザーを200mJ/cm2 /pulse、20
0Hzの条件で照射しながら、蛍光発光強度を測定し
た。この透明石英ガラスは、KrFエキシマレーザーを
照射しても650nm蛍光発光を生じなかったが、強大
な390nm蛍光発光が認められた。390nm蛍光強
度は実施例2の390nm蛍光強度に比較すると約2桁
大きく、この透明石英ガラスをKrFエキシマレーザー
を光源とする工程に用いるフォトマスク用基板または光
学部材として使用できないことが明らかとなった。
The OH content in the obtained transparent quartz glass was 3 ppm. On the other hand, the concentration of chlorine contained in the transparent quartz glass was 360 ppm. Also in vacuum 10
The amount of released hydrogen molecules when heated to 00 ° C is 0.4 × 10 20.
The molecule / m 2 . KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm 2 / pulse, 20
The fluorescence emission intensity was measured while irradiating under the condition of 0 Hz. This transparent quartz glass did not generate 650 nm fluorescence emission even when irradiated with KrF excimer laser, but a strong 390 nm fluorescence emission was observed. The 390 nm fluorescence intensity was about two orders of magnitude higher than the 390 nm fluorescence intensity of Example 2, and it became clear that this transparent quartz glass cannot be used as a photomask substrate or an optical member used in the step of using a KrF excimer laser as a light source. .

【0060】[実施例3] 実施例1と同様の方法で形成させた直径9cm、長さ1
0cmの多孔質石英ガラス体を常圧かつ室温で黒鉛製発
熱体を有する雰囲気制御可能な電気炉内に設置した。つ
いで500℃/hrの昇温速度で1200℃まで昇温し
た後、1.5容積%のCHF3 ガスを含有させた窒素ガ
スを導入し、炉内雰囲気をCHF3 ガスを含有する雰囲
気とした後、1250℃で4時間保持した。CHF3
スを含有する雰囲気内での脱水処理を行った後、He1
00%のガスを導入して、雰囲気をHe雰囲気とした
後、多孔質石英ガラス体を500℃/hrの昇温速度で
1500℃まで昇温し、1500℃で3時間保持して透
明ガラス化を行った。
[Embodiment 3] Diameter of 9 cm and length of 1 formed by the same method as in Embodiment 1.
A 0 cm porous quartz glass body was placed in an electric furnace having a graphite heating element at atmospheric pressure and a controllable atmosphere. Then, after the temperature was raised to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 1.5% by volume of CHF 3 gas was introduced, and the furnace atmosphere was changed to an atmosphere containing CHF 3 gas. Then, the temperature was maintained at 1250 ° C. for 4 hours. After performing dehydration treatment in an atmosphere containing CHF 3 gas, He1
After introducing a gas of 00% and making the atmosphere He atmosphere, the temperature of the porous quartz glass body was raised to 1500 ° C. at a temperature rising rate of 500 ° C./hr, and the temperature was kept at 1500 ° C. for 3 hours to obtain transparent vitrification. I went.

【0061】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、3×3×4cmの
ブロック形状に成形した。引き続き、電気炉内に成形ブ
ロックを設置したまま電気炉の温度を1200℃まで降
温させ、以後30℃/hrの冷却速度で徐冷を行い、炉
内温度が1000℃になったところで給電を停止し炉内
放冷した。
The transparent quartz glass body thus obtained was placed in an electric furnace having a heating element made of carbon and had a softening point of 17 or higher.
It was heated to 50 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0062】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で100%水素ガスを導入し炉内雰
囲気を水素雰囲気とし、その温度で7時間保持して透明
石英ガラスブロック中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours to contain hydrogen molecules in the transparent quartz glass block.

【0063】得られた透明石英ガラス中のOH含有量は
5ppmであった。一方、透明石英ガラス中に含有され
るフッ素(F原子)濃度は2500ppmであった。ま
た、ラマン分光法から求められる溶存水素量は、1×1
17分子/cm3 以下であった。さらに、真空中での1
000℃における水素分子放出量は0.4×1020分子
/m2 であった。この透明石英ガラスにKrFエキシマ
レーザーを200mJ/cm2 /pulse、200H
zの条件で照射しながら、蛍光発光強度を測定した。こ
の透明石英ガラスは、KrFエキシマレーザーを照射し
ても650nm蛍光発光を生じず、したがって260n
m近傍の吸収帯も生じないことが明らかとなった。それ
ゆえ、KrFエキシマレーザーを光源とする工程に用い
るフォトマスク用基板または光学部材に最も適切な透明
石英ガラスであった。
The OH content in the obtained transparent quartz glass was 5 ppm. On the other hand, the concentration of fluorine (F atom) contained in the transparent quartz glass was 2500 ppm. The amount of dissolved hydrogen obtained from Raman spectroscopy is 1 × 1.
It was 0 17 molecule / cm 3 or less. Furthermore, 1 in vacuum
The amount of released hydrogen molecules at 000 ° C. was 0.4 × 10 20 molecule / m 2 . KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm 2 / pulse, 200H.
The fluorescence emission intensity was measured while irradiating under the condition of z. This transparent quartz glass does not emit fluorescence at 650 nm even when irradiated with a KrF excimer laser, and therefore 260n
It became clear that there was no absorption band near m. Therefore, the transparent quartz glass was most suitable for the photomask substrate or the optical member used in the step of using the KrF excimer laser as the light source.

【0064】[実施例4] 実施例1と同様の方法で形成させた直径9cm、長さ1
0cmの多孔質石英ガラス体を常圧かつ室温で黒鉛製発
熱体を有する雰囲気制御可能な電気炉内に設置した。つ
いで500℃/hrの昇温速度で1200℃まで昇温し
た後、2容積%の塩素ガスを含有させた窒素ガスを導入
し、炉内雰囲気を塩素ガスを含有する雰囲気とした後、
1250℃に5時間保持した。塩素ガスを含有する雰囲
気内での脱水処理を行った後、He100%のガスを導
入して、雰囲気をHe雰囲気とした後、多孔質石英ガラ
ス体を500℃/hrの昇温速度で1500℃まで昇温
し、1500℃で3時間保持して透明ガラス化を行っ
た。
Example 4 A diameter of 9 cm and a length of 1 formed by the same method as in Example 1
A 0 cm porous quartz glass body was placed in an electric furnace having a graphite heating element at atmospheric pressure and a controllable atmosphere. Then, the temperature was raised to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 2% by volume of chlorine gas was introduced, and the furnace atmosphere was changed to an atmosphere containing chlorine gas.
Hold at 1250 ° C for 5 hours. After dehydration treatment in an atmosphere containing chlorine gas, 100% He gas was introduced to make the atmosphere He atmosphere, and then the porous quartz glass body was heated to 1500 ° C. at a heating rate of 500 ° C./hr. The temperature was raised to 1,500 ° C., and the temperature was maintained at 1500 ° C. for 3 hours to carry out transparent vitrification.

【0065】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、3×3×4cmの
ブロック形状に成形した。引き続き、電気炉内に成形ブ
ロックを設置したまま電気炉の温度を1200℃まで降
温させ、以後30℃/hrの冷却速度で徐冷を行い、炉
内温度が1000℃になったところで給電を停止し炉内
放冷した。
The transparent quartz glass body thus obtained was heated in an electric furnace having a heating element made of carbon to a temperature above the softening point of 17
It was heated to 50 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0066】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で30%水素ガスを導入し炉内雰囲
気を水素雰囲気とし、その温度で7時間保持して透明石
英ガラスブロック中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere, and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 30% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours so that hydrogen molecules were contained in the transparent quartz glass block.

【0067】得られた透明石英ガラス中のOH含有量は
1ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は1500ppmであった。また真空中で1
000℃に昇温した際の水素分子放出量は2×1018
子/m2 であった。この石英ガラスにKrFエキシマレ
ーザーを200mJ/cm2 /pulse、200Hz
の条件で照射しながら、蛍光発光強度を測定した。この
透明石英ガラスは、KrFエキシマレーザーを照射して
も650nm蛍光発光を生じず、したがって260nm
近傍の吸収帯も生じないことが明らかとなった。それゆ
え、KrFエキシマレーザーを光源とする工程に用いる
フォトマスク用基板または光学部材に最も適切な透明石
英ガラスであった。
The OH content in the obtained transparent quartz glass was 1 ppm. On the other hand, the concentration of chlorine contained in the transparent quartz glass was 1500 ppm. Also in vacuum 1
The amount of released hydrogen molecules when heated to 000 ° C. was 2 × 10 18 molecules / m 2 . KrF excimer laser is applied to this quartz glass at 200 mJ / cm 2 / pulse, 200 Hz.
The fluorescence emission intensity was measured while irradiating under the conditions. This transparent quartz glass does not emit fluorescence at 650 nm even when irradiated with a KrF excimer laser, and therefore 260 nm.
It became clear that there was no absorption band in the vicinity. Therefore, the transparent quartz glass was most suitable for the photomask substrate or the optical member used in the step of using the KrF excimer laser as the light source.

【0068】[比較例5] 実施例1と同様の方法で形成させた直径9cm、長さ1
0cmの多孔質石英ガラス体を常圧かつ室温で黒鉛製発
熱体を有する雰囲気制御可能な電気炉内に設置した。つ
いで500℃/hrの昇温速度で1200℃まで昇温し
た後、1.5容積%の塩素ガスを含有させた窒素ガスを
導入し、炉内雰囲気を塩素ガスを含有する雰囲気とした
後、1250℃に5時間保持した。塩素ガスを含有する
雰囲気内での脱水処理を行った後、He100%のガス
を導入して、雰囲気をHe雰囲気とした後、多孔質石英
ガラス体を500℃/hrの昇温速度で1500℃まで
昇温し、1500℃で3時間保持して透明ガラス化を行
った。
[Comparative Example 5] A diameter of 9 cm and a length of 1 formed by the same method as in Example 1
A 0 cm porous quartz glass body was placed in an electric furnace having a graphite heating element at atmospheric pressure and a controllable atmosphere. Then, after heating up to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 1.5 volume% of chlorine gas was introduced, and the atmosphere in the furnace was changed to an atmosphere containing chlorine gas, Hold at 1250 ° C for 5 hours. After dehydration treatment in an atmosphere containing chlorine gas, 100% He gas was introduced to make the atmosphere He atmosphere, and then the porous quartz glass body was heated to 1500 ° C. at a heating rate of 500 ° C./hr. The temperature was raised to 1,500 ° C., and the temperature was maintained at 1500 ° C. for 3 hours to carry out transparent vitrification.

【0069】こうして得られた透明石英ガラス体を、カ
ーボン製発熱体を有する電気炉内で、軟化点以上の17
50℃に加熱して自重変形を行わせ、3×3×4cmの
ブロック形状に成形した。引き続き、電気炉内に成形ブ
ロックを設置したまま電気炉の温度を1200℃まで降
温させ、以後30℃/hrの冷却速度で徐冷を行い、炉
内温度が1000℃になったところで給電を停止し炉内
放冷した。
The transparent quartz glass body thus obtained was placed in an electric furnace having a heating element made of carbon and was heated to a softening point of 17 or higher.
It was heated to 50 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0070】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で10%水素ガスを導入し炉内雰囲
気を水素雰囲気とし、その温度で7時間保持して透明石
英ガラスブロック中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 10% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours to contain hydrogen molecules in the transparent quartz glass block.

【0071】得られた透明石英ガラス中のOH含有量は
2ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は900ppmであった。また真空中で10
00℃に昇温した際の水素分子放出量は5×1017分子
/m2 であった。この石英ガラスにKrFエキシマレー
ザーを200mJ/cm2 /pulse、200Hzの
条件で照射しながら、蛍光発光強度を測定した。この透
明石英ガラスは、KrFエキシマレーザーを照射すると
285nmと460nmに蛍光発光が認められた。さら
に照射を続けると、650nm蛍光発光が認められるよ
うになり、照射にしたがって強度が増大し、したがって
260nm近傍の吸収帯も生じることが明らかとなっ
た。それゆえ、KrFエキシマレーザーを光源とするフ
ォトマスク用基板または光学部材には使用できない透明
石英ガラスであった。
The OH content in the obtained transparent quartz glass was 2 ppm. On the other hand, the concentration of chlorine contained in the transparent quartz glass was 900 ppm. Also in vacuum 10
The amount of released hydrogen molecules when the temperature was raised to 00 ° C. was 5 × 10 17 molecules / m 2 . The fluorescence emission intensity was measured while irradiating this quartz glass with a KrF excimer laser under the conditions of 200 mJ / cm 2 / pulse and 200 Hz. When this transparent quartz glass was irradiated with a KrF excimer laser, fluorescence emission was observed at 285 nm and 460 nm. When irradiation was further continued, it became clear that fluorescence emission of 650 nm was observed, the intensity increased with irradiation, and therefore an absorption band near 260 nm was also generated. Therefore, the transparent quartz glass cannot be used as a photomask substrate or an optical member using a KrF excimer laser as a light source.

【0072】[0072]

【発明の効果】本発明の透明石英ガラスは、エキシマレ
ーザーの照射に対しても構造欠陥による吸収帯または蛍
光発光が少なく、優れたエキシマレーザー耐性を有す
る。
EFFECTS OF THE INVENTION The transparent quartz glass of the present invention has a small absorption band or fluorescence emission due to structural defects even when irradiated with an excimer laser, and has excellent excimer laser resistance.

【0073】また本発明によれば、透明石英ガラス中に
含有されるOH量を低減しかつ水素を含有するようにし
たので、エキシマレーザーの照射に対して生成する65
0nm蛍光発光中心並びに260nm吸収帯の前駆帯で
あるOH基、酸素過剰型欠陥および溶存酸素分子の絶対
量を低減させることができ、エキシマレーザーの照射に
対して実質的に耐性を有する透明石英ガラスが得られ
る。
Further, according to the present invention, since the amount of OH contained in the transparent quartz glass is reduced and hydrogen is contained, it is generated by the irradiation of the excimer laser 65.
Transparent quartz glass capable of reducing the absolute amounts of OH groups, oxygen-excessive defects, and dissolved oxygen molecules, which are precursors of 0 nm fluorescence emission center and 260 nm absorption band, and are substantially resistant to excimer laser irradiation. Is obtained.

【0074】またハロゲンによる脱水操作を行った透明
石英ガラスに水素分子を含有させた場合には、ハロゲン
脱水によって生成する285nm、390nm、460
nm蛍光発光中心を除去する効果も有する。さらに、ハ
ロゲン脱水によって生成する、250nm、163nm
近傍の吸収帯も、水素分子を含有させることによって除
去されるという優れた効果も有する。
When hydrogen molecules are contained in transparent quartz glass which has been dehydrated by halogen, it is produced by halogen dehydration at 285 nm, 390 nm and 460.
It also has the effect of removing the nm fluorescence emission center. Furthermore, 250 nm and 163 nm generated by halogen dehydration
The absorption band in the vicinity also has an excellent effect of being removed by containing hydrogen molecules.

【図面の簡単な説明】[Brief description of drawings]

【図1】透明石英ガラスにKrFエキシマレーザーを照
射したときの照射時間と650nm蛍光強度の関係を示
すグラフ。
FIG. 1 is a graph showing the relationship between irradiation time and 650 nm fluorescence intensity when a transparent quartz glass is irradiated with a KrF excimer laser.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C03C 3/06 C03C 3/06 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI C03C 3/06 C03C 3/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透明石英ガラス中のOH含有量が10pp
m以下であって、フッ素を400ppm以上含有し、か
つ水素を含有し、KrFエキシマレーザーを200mJ
/cm/pulse、200Hzの条件で80分間照
射した場合に波長650nmの蛍光強度が実質的に変化
しない透明石英ガラス。
1. The transparent silica glass has an OH content of 10 pp.
m or less, 400 ppm or more of fluorine and hydrogen, and 200 mJ of a KrF excimer laser.
/ Cm 2 / pulse, a transparent quartz glass whose fluorescence intensity at a wavelength of 650 nm does not substantially change when irradiated for 80 minutes under the conditions of 200 Hz.
【請求項2】前記透明石英ガラスが、ガラス形成原料を
火炎加水分解させて得られる石英ガラス微粒子を基材に
堆積・成長させて形成された多孔質石英ガラス体を加熱
して得られる透明石英ガラスである請求項1に記載の透
明石英ガラス。
2. The transparent quartz glass obtained by heating a porous quartz glass body formed by depositing and growing fine quartz glass particles obtained by flame hydrolysis of a glass forming raw material on a substrate. The transparent quartz glass according to claim 1, which is glass.
【請求項3】(1)ガラス形成原料を火炎加水分解して
形成される石英ガラス微粒子を基材に堆積・成長させて
多孔質石英ガラス体を形成する工程、 (2)該多孔質石英ガラス体を透明ガラス化温度以下の
温度域で保持し、多孔質石英ガラス体の脱水を行う工
程、 (3)透明ガラス化温度以下の温度域で保持して脱水し
た多孔質石英ガラス体を、透明ガラス化温度まで昇温・
透明ガラス化して透明石英ガラス体を得る工程、 (4)該透明石英ガラス体を軟化点以上の温度に加熱し
て所望の形状に成形し、成形石英ガラス体とする工程、
および (5)該成形石英ガラス体に水素を含有する雰囲気で熱
処理を施し透明石英ガラスを得る工程、 とからなる工程で製造されることを特徴とする、透明石
英ガラス中のOH含有量が10ppm以下であって、ハ
ロゲンを400ppm以上含有し、かつ水素を含有し、
KrFエキシマレーザーを200mJ/cm/pul
se、200Hzの条件で80分間照射した場合に波長
650nmの蛍光強度が実質的に変化しないように水素
を含有させた透明石英ガラスの製造方法。
3. A step of (1) depositing and growing fine quartz glass particles formed by flame hydrolysis of a glass forming raw material on a substrate to form a porous quartz glass body, (2) the porous quartz glass. A step of dehydrating the porous quartz glass body by holding the body in a temperature range below the transparent vitrification temperature, (3) holding the body in the temperature range below the transparent vitrification temperature and dehydrating the transparent quartz glass body, Raise to vitrification temperature
A step of obtaining a transparent quartz glass body by subjecting it to a transparent vitrification, (4) a step of heating the transparent quartz glass body to a temperature equal to or higher than a softening point and shaping it into a desired shape to obtain a shaped quartz glass body,
And (5) a step of subjecting the molded quartz glass body to a heat treatment in an atmosphere containing hydrogen to obtain a transparent quartz glass, wherein the OH content in the transparent quartz glass is 10 ppm. The following content, containing 400 ppm or more of halogen, and containing hydrogen,
KrF excimer laser at 200 mJ / cm 2 / pul
A method for producing transparent quartz glass containing hydrogen such that the fluorescence intensity at a wavelength of 650 nm does not substantially change when irradiated for 80 minutes under the conditions of se and 200 Hz.
【請求項4】前記(2)の工程における雰囲気がハロゲ
ン元素含有ガスを含む雰囲気であって、該雰囲気中に含
まれるハロゲン元素含有ガスが容積で0.01〜5%で
ある請求項3に記載の透明石英ガラスの製造方法。
4. The atmosphere in the step (2) is an atmosphere containing a halogen element-containing gas, and the halogen element-containing gas contained in the atmosphere is 0.01 to 5% by volume. A method for producing the transparent quartz glass described above.
JP04225293A 1992-02-07 1993-02-05 Transparent quartz glass and its manufacturing method Expired - Fee Related JP3368932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04225293A JP3368932B2 (en) 1992-02-07 1993-02-05 Transparent quartz glass and its manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5677492 1992-02-07
JP35209592 1992-12-09
JP4-352095 1992-12-09
JP4-56774 1992-12-09
JP04225293A JP3368932B2 (en) 1992-02-07 1993-02-05 Transparent quartz glass and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11543599A Division JP3671732B2 (en) 1992-02-07 1999-04-22 ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate

Publications (2)

Publication Number Publication Date
JPH06227827A JPH06227827A (en) 1994-08-16
JP3368932B2 true JP3368932B2 (en) 2003-01-20

Family

ID=27291136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04225293A Expired - Fee Related JP3368932B2 (en) 1992-02-07 1993-02-05 Transparent quartz glass and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3368932B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031877A4 (en) * 1997-11-11 2001-05-09 Nikon Corp Photomask, aberration correcting plate, exposure device and method of producing microdevice
EP1043282A4 (en) 1998-10-28 2004-03-31 Asahi Glass Co Ltd Synthetic quartz glass and method for production thereof
JP3069562B1 (en) 1999-10-19 2000-07-24 信越石英株式会社 Silica glass optical material for excimer laser and excimer lamp and method for producing the same
JP3228732B2 (en) 1999-11-24 2001-11-12 信越石英株式会社 Method for producing silica glass optical material for projection lens used in vacuum ultraviolet lithography
JP4700787B2 (en) * 2000-06-27 2011-06-15 株式会社オハラ Synthetic quartz glass and manufacturing method thereof
JP2011063457A (en) * 2009-09-15 2011-03-31 Sumitomo Electric Ind Ltd Synthetic quartz glass and method for producing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191544A (en) * 1985-02-15 1986-08-26 Furukawa Electric Co Ltd:The Quartz base optical fiber
JPS6283333A (en) * 1985-10-03 1987-04-16 Fujikura Ltd Optical fiber
JPH0742131B2 (en) * 1986-12-01 1995-05-10 住友電気工業株式会社 Method for manufacturing glass base material for optical fiber
JPH0733259B2 (en) * 1988-08-30 1995-04-12 信越化学工業株式会社 Ultraviolet-resistant synthetic quartz glass and method for producing the same
JPH0627013B2 (en) * 1989-06-14 1994-04-13 信越石英株式会社 Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP2522830B2 (en) * 1989-06-30 1996-08-07 信越石英株式会社 Quartz glass material for semiconductor heat treatment and manufacturing method thereof
JP2785430B2 (en) * 1990-03-28 1998-08-13 三菱マテリアル株式会社 Quartz glass for optical transmission
JP3303918B2 (en) * 1990-05-14 2002-07-22 東ソー・クォーツ株式会社 Synthetic quartz glass and its manufacturing method
JP2782131B2 (en) * 1990-11-26 1998-07-30 信越石英株式会社 Optical member made of transparent synthetic silica glass, method for manufacturing the optical member, and apparatus using the optical member
JPH0742134B2 (en) * 1991-07-31 1995-05-10 信越石英株式会社 Optical member
JP3187510B2 (en) * 1992-03-12 2001-07-11 東芝セラミックス株式会社 Method of manufacturing member for heat treatment of semiconductor wafer
JP3188517B2 (en) * 1992-05-18 2001-07-16 東ソー株式会社 Manufacturing method of quartz glass
JP2879500B2 (en) * 1992-06-29 1999-04-05 信越石英株式会社 Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP2821074B2 (en) * 1992-11-30 1998-11-05 信越石英株式会社 Manufacturing method of optical member for UV resistant laser

Also Published As

Publication number Publication date
JPH06227827A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
US5326729A (en) Transparent quartz glass and process for its production
EP0546196B1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
EP1094040B1 (en) Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
US6499317B1 (en) Synthetic quartz glass and method for production thereof
TWI399347B (en) Quartz glass jig for processing semiconductor wafers and method for producing the jig
EP1695375B1 (en) Synthetic quartz glass for optical member and its production method
EP1125897B1 (en) Synthetic quartz glass and method for preparing the same
JP2001089170A (en) Optical silica glass member for f2 excimer laser transmission and method for producing the same
JP2001019450A (en) Synthetic quartz glass and its production
JP2005255423A (en) Synthetic quartz glass-made photomask substrate and photomask
KR101634394B1 (en) Method of producing synthetic quartz glass for excimer laser
US6807823B2 (en) Fluorine-containing glass
JP2003112933A (en) Optical body of synthetic quartz glass and method for producing the same
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP2001199735A (en) Quartz glass body for optical part and method for producing the same
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP2008189547A (en) Synthetic quartz glass and its production method
WO2000039038A1 (en) Method for producing optical quartz glass for excimer lasers
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JPH11302025A (en) Synthetic quartz glass optical member and its production
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees