JP2785430B2 - Quartz glass for optical transmission - Google Patents

Quartz glass for optical transmission

Info

Publication number
JP2785430B2
JP2785430B2 JP2079748A JP7974890A JP2785430B2 JP 2785430 B2 JP2785430 B2 JP 2785430B2 JP 2079748 A JP2079748 A JP 2079748A JP 7974890 A JP7974890 A JP 7974890A JP 2785430 B2 JP2785430 B2 JP 2785430B2
Authority
JP
Japan
Prior art keywords
quartz glass
chlorine
optical transmission
oxygen
silicon tetrachloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2079748A
Other languages
Japanese (ja)
Other versions
JPH03279238A (en
Inventor
正作 浜島
義行 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2079748A priority Critical patent/JP2785430B2/en
Publication of JPH03279238A publication Critical patent/JPH03279238A/en
Application granted granted Critical
Publication of JP2785430B2 publication Critical patent/JP2785430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/44Gas-phase processes using silicon halides as starting materials chlorine containing

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光伝送用石英ガラスおよびその製造方法に関
する。詳しくは、OH基を低減する一方で比較的多量の塩
素を含有させると共に製造時の加熱手段と酸素量を制御
することにより、可視および赤外領域における伝送損失
を大幅に低減した光伝送用石英ガラスに関するものであ
る。
The present invention relates to a quartz glass for optical transmission and a method for producing the same. Specifically, quartz for optical transmission has reduced transmission loss in the visible and infrared regions by reducing the OH group while containing a relatively large amount of chlorine and controlling the heating means and the amount of oxygen during production. It is about glass.

〔従来技術とその課題〕[Conventional technology and its problems]

光ファイバー通信に使用される光ファイバーのコア材
は光伝送損失を低減する研究が進むと共に、最近ではも
っぱら石英ガラスが用いられている。この光ファイバー
用の石英ガラスは高純度のものほど光の伝送損失が少な
いことが知られている。特にガラス中のOH基は赤外領域
に多くの吸収帯をもつため、このOH基の存在による光伝
送損失が大きい。そこで光伝送損失を少なくするために
OH基の少ない石英ガラスの研究がなされている。たとえ
ば特開昭62−176941号公報においては、コアの水酸基を
1ppm以下に抑えた石英ガラスからなる光ファイバーが公
開されている。このように従来からOH基を出来るだけ排
除する試みがなされている。ところが製造工程から混入
する水分を完全に除去することができず、OH基を1ppm以
下にするのは困難な現状にある。一方、塩素は高純度石
英ガラスの一般的な原料である四塩化ケイ素に含まれて
おり、またCVD法を用いる場合にはスート状シリカの脱
水剤として塩素を使用することもある。したがって石英
ガラス中に微量の塩素が含まれることがあるが、この微
量の塩素の光伝送損失に及ぼす影響については未だ十分
に解明されるに至っていない。そこで、従来の不純物を
出来るだけ排除して光伝送特性を高める一般的な考えに
基づいて、石英ガラス中の塩素量を500ppm以下に抑えて
いる。
As a core material of an optical fiber used for optical fiber communication, research for reducing optical transmission loss has been progressed, and recently, quartz glass has been exclusively used. It is known that the higher the purity of the quartz glass for the optical fiber, the smaller the light transmission loss. In particular, since OH groups in glass have many absorption bands in the infrared region, optical transmission loss due to the presence of the OH groups is large. Therefore, to reduce optical transmission loss
Research on quartz glass with few OH groups has been made. For example, in Japanese Patent Application Laid-Open No. Sho 62-176941, the hydroxyl group of
An optical fiber made of quartz glass suppressed to 1 ppm or less has been disclosed. As described above, attempts have been made to eliminate OH groups as much as possible. However, it is difficult to completely remove water mixed in from the manufacturing process, and it is difficult to reduce the OH group to 1 ppm or less. On the other hand, chlorine is contained in silicon tetrachloride, which is a general raw material of high-purity quartz glass, and when CVD is used, chlorine may be used as a dehydrating agent for soot-like silica. Therefore, a minute amount of chlorine may be contained in quartz glass, but the effect of this minute amount of chlorine on light transmission loss has not yet been sufficiently elucidated. Therefore, based on the conventional idea of improving the light transmission characteristics by eliminating the impurities as much as possible, the amount of chlorine in the quartz glass is suppressed to 500 ppm or less.

〔課題の解決手段:発明の構成〕[Means for Solving the Problems: Structure of the Invention]

本発明は、石英ガラス中に含有される塩素量および製
造時における加熱手段と酸素量が光伝送損失に及ぼす影
響について追求し、光伝送用石英ガラスにおいて、塩素
含有率を増加させる一方でOH基および酸素量を所定範囲
に減少させることにより光伝送損失を大幅に低減できる
ことを明らかにしたものである。
The present invention pursues the effect of the amount of chlorine contained in quartz glass and the amount of heating means and oxygen at the time of production on optical transmission loss.In quartz glass for optical transmission, the chlorine content is increased while the OH group is increased. It is also clarified that the optical transmission loss can be significantly reduced by reducing the amount of oxygen to a predetermined range.

すなわち本発明は、(1)アルゴンプラズマ中に高純
度四塩化ケイ素および酸素を導入してガラス状の溶融酸
化ケイ素を生成させて得られる石英ガラスであり、四塩
化ケイ素に対する酸素のモル比が0.6〜1.2であって、OH
基含有率0.2ppm以下、塩素含有率0.15〜2.0重量%の低
光伝送損失の光伝送用石英ガラスに関する。
That is, the present invention relates to (1) quartz glass obtained by introducing high-purity silicon tetrachloride and oxygen into an argon plasma to produce a glassy molten silicon oxide, wherein the molar ratio of oxygen to silicon tetrachloride is 0.6. ~ 1.2 and OH
The present invention relates to a quartz glass for optical transmission with a low optical transmission loss having a group content of 0.2 ppm or less and a chlorine content of 0.15 to 2.0% by weight.

本発明の上記石英ガラスは、その好適な態様として、
(2)水素含有率が50ppm以下の高純度四塩化ケイ素を
用い、アルゴンプラズマ中に四塩化ケイ素および酸素と
共に塩素を導入したものであり、830nmないし1300nmに
おける光伝送損失が1.3〜1.8dB/kmの光伝送用石英ガラ
スを含む。
The quartz glass of the present invention, as a preferred embodiment thereof,
(2) High purity silicon tetrachloride having a hydrogen content of 50 ppm or less and chlorine introduced together with silicon tetrachloride and oxygen in an argon plasma, and an optical transmission loss at 830 nm to 1300 nm of 1.3 to 1.8 dB / km. Of quartz glass for light transmission.

以下、本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically.

本発明の石英ガラスは、OH基生含有率が0.2ppm以下の
低OH基石英ガラスである。OH基は赤外領域に多くの吸収
帯を有するため、伝送損失の原因となり、これを多量に
含むものは光伝送用ファイバー材料として好ましくな
い。OH基を0.2ppm以下に抑制した石英ガラスは、OH基に
よる赤外領域の吸収が小さいため、この領域における光
の伝送損失が極めて小さくなり、光通信用フアイバーと
して好適である。
The quartz glass of the present invention is a low OH-based quartz glass having an OH-based raw content of 0.2 ppm or less. OH groups have a large number of absorption bands in the infrared region, causing transmission loss, and those containing a large amount thereof are not preferred as fiber materials for optical transmission. Quartz glass in which the OH group is suppressed to 0.2 ppm or less has a small absorption in the infrared region due to the OH group, so that the light transmission loss in this region is extremely small, and is suitable as a fiber for optical communication.

さらに本発明の石英ガラスは、塩素含有率が0.15〜2.
0重量%であり、従来の石英ガラスに比べて塩素量が格
段に大きい。従来の石英カラスの塩素含有率は50〜500p
pm程度である。なお、クラッドの塩素濃度を0.01〜1重
量%にした光ファイバーが従来知られているが、これは
引張強度を高めて破断を防止したものであり、塩素濃度
によって伝送損失を低減させたものではない。また、一
般に光伝送用石英ガラスは四塩化ケイ素を原料として製
造されるため微量の塩素が不可避的に混入するが、本発
明においてはこのような不可避的に混入する塩素とは異
なり、格段に多量の塩素、即ち0.15〜2.0重量(1500〜2
0000ppm)の塩素を石英ガラス中に積極的に混入するこ
とにより、光伝送損失を大幅に低減させたものである。
塩素量が0.15重量%より少ないと光伝送損失を減少する
効果が小さく、また塩素量を2.0重量%より多くしても
光伝送損失をさらに低減する効果は少なく、むしろ製造
が困難になる。
Furthermore, the quartz glass of the present invention has a chlorine content of 0.15 to 2.
It is 0% by weight, and the chlorine content is much larger than that of conventional quartz glass. Conventional quartz crow has chlorine content of 50-500p
pm. An optical fiber in which the clad has a chlorine concentration of 0.01 to 1% by weight is conventionally known, but this is one in which the tensile strength is increased to prevent breakage, and the transmission loss is not reduced by the chlorine concentration. . In addition, since quartz glass for optical transmission is generally produced from silicon tetrachloride as a raw material, a very small amount of chlorine is inevitably mixed therein. Chlorine, that is, 0.15 to 2.0 weight (1500 to 2
(0000 ppm) chlorine is positively mixed into quartz glass to significantly reduce optical transmission loss.
If the amount of chlorine is less than 0.15% by weight, the effect of reducing the optical transmission loss is small, and if the amount of chlorine is more than 2.0% by weight, the effect of further reducing the optical transmission loss is small, and production becomes more difficult.

また本発明の石英ガラスは、アルゴンプラズマ中で四
塩化ケイ素を分解してガラス状の溶解酸化ケイ素を生成
させる方法であって、かつ四塩化ケイ素に対する酸素の
モル比を0.6〜1.2に制限することにより、通常の石英ガ
ラスよりも酸素が少ない状態で生成した石英ガラスであ
る。後述の実施例および比較例に示すように、四塩化ケ
イ素に対する酸素のモル比が高いものや、酸素プラズマ
法によるものは伝送損失を所望の程度まで低減すること
はできない。
The quartz glass of the present invention is a method for decomposing silicon tetrachloride in an argon plasma to produce a glassy dissolved silicon oxide, and limiting the molar ratio of oxygen to silicon tetrachloride to 0.6 to 1.2. Is a quartz glass produced in a state where oxygen is lower than that of a normal quartz glass. As shown in Examples and Comparative Examples described later, those having a high molar ratio of oxygen to silicon tetrachloride or those obtained by the oxygen plasma method cannot reduce the transmission loss to a desired level.

以上の条件下に得られる本発明の石英ガラスは光伝送
損失が低く、具体的な例として、後述の実施例に示すよ
うに、830nmないし1300nmにおける光伝送損失が1.3〜1.
8dB/kmのものである。
The quartz glass of the present invention obtained under the above conditions has a low optical transmission loss, and as a specific example, the optical transmission loss at 830 nm to 1300 nm is 1.3 to 1.
8 dB / km.

次に、本発明に係る石英ガラスの製造方法について説
明する。
Next, a method for producing quartz glass according to the present invention will be described.

本発明の石英ガラスはアルゴンプラズマ法によって好
適に製造することができる。具体的には原料の四塩化ケ
イ素ガスをアルゴンガスおよび微量の酸素ガスと共にプ
ラズマトーチに送り、必要に応じて塩素ガスを供給し、
アルゴンプラズマ中で四塩化ケイ素を酸化分解してガラ
ス状の溶融酸化ケイ素を基板に堆積させ固化させる。吹
き混む塩素量は石英ガラス中の含有塩素量に応じて調整
される。なお、塩素ガスを必要以上に過剰に供給して
も、石英ガラス中の塩素量は2.0重量%以上には増加し
難く、塩素の損失量が増加する。また塩素の供給量が余
り多過ぎるとアルゴンプラズマの温度が低下してシリカ
の生成効率が低下する。従って、実用上、塩素の供給量
はアルゴンプラズマの温度が低下しない量、例えば、四
塩化ケイ素の供給量が4g/min、アルゴンガスの供給量が
60/minのとき塩素ガス供給量は1/min以下が好まし
い。
The quartz glass of the present invention can be suitably manufactured by an argon plasma method. Specifically, the raw material silicon tetrachloride gas is sent to a plasma torch together with argon gas and a trace amount of oxygen gas, and chlorine gas is supplied as necessary,
The silicon tetrachloride is oxidized and decomposed in an argon plasma to deposit glassy molten silicon oxide on the substrate and solidify it. The amount of chlorine blown in is adjusted according to the amount of chlorine contained in the quartz glass. Even if chlorine gas is excessively supplied, chlorine content in quartz glass hardly increases to 2.0% by weight or more, and the amount of chlorine loss increases. On the other hand, if the supply amount of chlorine is too large, the temperature of the argon plasma decreases, and the efficiency of producing silica decreases. Therefore, in practice, the supply amount of chlorine is such that the temperature of the argon plasma does not decrease, for example, the supply amount of silicon tetrachloride is 4 g / min, and the supply amount of argon gas is
At 60 / min, the chlorine gas supply rate is preferably 1 / min or less.

一方、アルゴンプラズマ法によれば、四塩化ケイ素を
原料とする場合、塩素ガスを供給しなくとも原料に由来
する塩素が石英ガラス中に混入され、0.15〜0.5重量%
程度の塩素を含有する石英ガラスを得ることができる。
On the other hand, according to the argon plasma method, when silicon tetrachloride is used as a raw material, chlorine derived from the raw material is mixed into quartz glass without supplying chlorine gas, and 0.15 to 0.5% by weight.
Quartz glass containing about chlorine can be obtained.

四塩化ケイ素ガスと共に供給される酸素ガスの量は、
四塩化ケイ素の供給量に対して化学当量で0.6〜1.2倍の
範囲が好ましい。
The amount of oxygen gas supplied with silicon tetrachloride gas is
The chemical equivalent is preferably in the range of 0.6 to 1.2 times the supply amount of silicon tetrachloride.

酸素量が四塩化ケイ素の1.2倍以上になると、生成す
る石英ガラス中の酸素原子が過剰になり易い。この過剰
の酸素は、反応条件により≡Si−O−O−Si≡のような
パーオキシリンケージや酸素分子の形で石英ガラスのネ
ットワーク中に存在し、ネットワークを不均一にして特
に紫外領域に吸収帯を生じ、いわゆる酸素過剰欠陥が増
大して光伝送損失増加の原因となるので好ましくない。
また酸素が四塩化ケイ素に対して0.6倍以下ではケイ素
収率が低下し、また石英ガラスが酸素原子不足となり、
いわゆる酸素空孔による欠陥を生じ、矢張り紫外領域に
吸収が起って光伝送損失が生ずるため好ましくない。
When the amount of oxygen is 1.2 times or more as large as that of silicon tetrachloride, oxygen atoms in the produced quartz glass tend to be excessive. This excess oxygen exists in the network of quartz glass in the form of peroxylinkage or oxygen molecules such as {Si-OO-Si} depending on the reaction conditions, making the network non-uniform and absorbing particularly in the ultraviolet region. Bands are generated, and so-called oxygen excess defects increase, which causes an increase in optical transmission loss, which is not preferable.
Also, if the oxygen is 0.6 times or less of silicon tetrachloride, the silicon yield decreases, and the quartz glass becomes short of oxygen atoms,
This is not preferable because defects due to so-called oxygen vacancies occur, and absorption occurs in the ultraviolet region of the arrow, causing optical transmission loss.

原料の四塩化ケイ素は他の金属等を含まない水素の含
有率が50ppm以下の高純度のものが用いられる。水素の
含有率が50ppmより多くなると、得られる石英ガラス中
にOH基が増加し、OH基の含有率0.2ppm以下の石英ガラス
を得ることができない。因に、高純度の石英ガラスの製
造方法としては、前記アルゴンプラズマ法の他に酸素プ
ラズマ法、CVD(スート法)等があるが、これらの方法
で塩素吹込みもしくは塩素雰囲気下でガラス化を行なっ
ても、得られる石英ガラス中の塩素含有率は1000〜1300
ppm(0.1〜0.13%)程度であり、本発明の石英ガラスを
得ることはできない。
As the raw material, silicon tetrachloride having a high purity of 50 ppm or less containing no other metals or the like is used. When the content of hydrogen is more than 50 ppm, OH groups increase in the obtained quartz glass, and it is impossible to obtain quartz glass having an OH group content of 0.2 ppm or less. Incidentally, as a method for producing high-purity quartz glass, there are an oxygen plasma method, a CVD (soot method) and the like in addition to the argon plasma method, and by these methods, chlorine is blown or vitrified in a chlorine atmosphere. Even if performed, the chlorine content in the resulting quartz glass is 1000-1300
ppm (0.1 to 0.13%), and the quartz glass of the present invention cannot be obtained.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明に係る石英ガラスは、アルゴン
プラズマ中で高純度四塩化ケイ素、酸素、および必要に
応じて塩素を導入し、四塩化ケイ素に対する酸素のモル
比を0.6〜1.2として生成した石英ガラスであって、OH基
含有率0.2ppm以下、塩素含有率0.15〜2.0重量%であ
り、具体的な例として、830nmないし1300nmにおける光
伝送損失が1.3〜1.8dB/kmと低く、この石英ガラスをコ
アとした光ファイバーは可視および赤外領域の吸収帯が
極めて小さく、光伝送損失が大幅に低い。また、本発明
の石英ガラスは、アルゴンプラズマ法を用いる本発明の
方法によって容易に高収率で製造することができる。
As described above, the quartz glass according to the present invention was produced by introducing high-purity silicon tetrachloride, oxygen, and chlorine if necessary in an argon plasma, and setting the molar ratio of oxygen to silicon tetrachloride to 0.6 to 1.2. Quartz glass having an OH group content of 0.2 ppm or less and a chlorine content of 0.15 to 2.0% by weight. As a specific example, the optical transmission loss at 830 nm to 1300 nm is as low as 1.3 to 1.8 dB / km. An optical fiber having a glass core has extremely small absorption bands in the visible and infrared regions, and has a significantly low optical transmission loss. Further, the quartz glass of the present invention can be easily produced at a high yield by the method of the present invention using an argon plasma method.

〔実施例及び比較例〕(Examples and Comparative Examples)

本発明の実施例を比較例と共に以下に示す。 Examples of the present invention are shown below together with comparative examples.

実施例1 10ppmの水素を含有する四塩化ケイ素を、モル比でO2:
SiCl4=0.8:1になるように調整した酸素と共にアルゴン
プラズマ中に導入して、生成するガラス状の溶融酸化ケ
イ素を石英基板上に堆積し、固化させて石英ガラスを製
造した。
Example 1 Silicon tetrachloride containing 10 ppm of hydrogen was mixed with O 2 :
The resulting glassy molten silicon oxide was introduced into an argon plasma together with oxygen adjusted so that SiCl 4 = 0.8: 1 was deposited on a quartz substrate and solidified to produce quartz glass.

得られた石英ガラス中にはOH基0.2ppm、Cl0.15(重量
%)が含有されていた。さらにこの石英ガラスをロッド
に成形した後、延伸して10μm径のファイバーとし、こ
れをコアとしてドープ剤を添加した石英ガラスのクラッ
ドで被覆して125μmの径の光ファイバーを製造し、830
nmおよび1,300nmにおける吸収を測定して光伝送損失を
求め、それぞれ1.8および1.5dB/kmの値を得た。
The obtained quartz glass contained 0.2 ppm of OH groups and 0.15 (% by weight) of Cl. Further, after forming this quartz glass into a rod, it is drawn into a fiber having a diameter of 10 μm, which is covered with a cladding of silica glass doped with a doping agent as a core to produce an optical fiber having a diameter of 125 μm.
The optical transmission loss was determined by measuring the absorption at 1300 nm and 1,300 nm, giving values of 1.8 and 1.5 dB / km, respectively.

実施例2、3 塩素ガスを導入した以外は実施例1と同様にして石英
ガラスを製造し、さらに実施例1と同様にして製造した
光ファイバーについて光伝送損失を求めた。それぞれの
条件および結果を第1表にまとめて示した。
Examples 2 and 3 Quartz glass was produced in the same manner as in Example 1 except that chlorine gas was introduced, and the optical transmission loss of the optical fiber produced in the same manner as in Example 1 was determined. Table 1 summarizes the conditions and results.

比較例1 実施例1と同様にして石英ガラスを製造し、さらに光
ファイバーにして光伝送損失を求めた。但し、水素含有
率50ppmの四塩化ケイ素を使用した。その他の条件およ
び結果を第1表に示した。
Comparative Example 1 A quartz glass was manufactured in the same manner as in Example 1, and an optical fiber was used to determine the optical transmission loss. However, silicon tetrachloride having a hydrogen content of 50 ppm was used. Other conditions and results are shown in Table 1.

比較例2 酸素プラズマ法を用いて四塩化ケイ素を酸化分解して
石英ガラスを製造した後、実施例1と同様にして光ファ
イバーとし、光伝送損失を測定した。条件および結果を
第1表に示した。
Comparative Example 2 After oxidizing and decomposing silicon tetrachloride using an oxygen plasma method to produce quartz glass, an optical fiber was formed in the same manner as in Example 1, and the optical transmission loss was measured. The conditions and results are shown in Table 1.

この例においては、酸素プラズマ中に吹込む四塩化ケ
イ素量を増加させると共に、得られる石英ガラス中の塩
素含有率は増加するが、四塩化ケイ素が酸素に対しモル
比で1/15以上になるとプラズマ温度が低下して石英ガラ
ス中にシリカ粉や気泡等が発生し、それ以上四塩化ケイ
素を吹込み量を増加させることができなかった。その場
合の石英ガラス中の塩素は0.13%(1300ppm)であっ
た。また前記酸素プラズマ中に塩素ガスを一緒に吹込ん
でも石英ガラス中の塩素含有率の有意な増加は認められ
なかった。
In this example, while increasing the amount of silicon tetrachloride blown into the oxygen plasma, the chlorine content in the obtained quartz glass increases, but when the silicon tetrachloride becomes a 1/15 or more molar ratio with respect to oxygen. The plasma temperature was lowered, and silica powder and bubbles were generated in the quartz glass, and it was not possible to further increase the amount of silicon tetrachloride to be blown. In that case, the chlorine in the quartz glass was 0.13% (1300 ppm). Further, even if chlorine gas was blown into the oxygen plasma together, no significant increase in the chlorine content in the quartz glass was observed.

比較例3 石英ガラスをスート法(CVD)によって製造した。す
なわち、水素20ppmを含有する四塩化ケイ素を酸素およ
び水素と共にバーナーに吹込み、四塩化ケイ素を酸化分
解してスート状シリカ体をつくった後、アルゴン+塩素
雰囲気中で加熱してガラス化した。ガラス化の条件によ
り塩素含有率100〜1000ppmの石英ガラスが得られたが、
塩素含有率が1000ppmをこえるガラスは得ることができ
なかった。塩素含有率1000ppmの石英ガラスを用いて実
施例に準じて光ファイバーをつくり、光伝送損失を測定
した。条件および結果を第1表に示した。
Comparative Example 3 Quartz glass was manufactured by a soot method (CVD). That is, silicon tetrachloride containing 20 ppm of hydrogen was blown into a burner together with oxygen and hydrogen to oxidize and decompose silicon tetrachloride to form a soot-like silica body, and then heated in an argon + chlorine atmosphere to vitrify. Quartz glass with a chlorine content of 100 to 1000 ppm was obtained depending on the vitrification conditions,
Glasses with a chlorine content exceeding 1000 ppm could not be obtained. An optical fiber was made using quartz glass having a chlorine content of 1000 ppm according to the example, and the optical transmission loss was measured. The conditions and results are shown in Table 1.

比較例1〜3で得られた石英ガラス中にはOH基の含有
量が多く、かつ塩素含有量が少なく、光伝送損失が実施
例の場合に較べて大きい。
The quartz glass obtained in each of Comparative Examples 1 to 3 has a large OH group content and a small chlorine content, and the optical transmission loss is larger than that in the examples.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C03C 13/04 C03B 20/00 C03B 8/04──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C03C 13/04 C03B 20/00 C03B 8/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルゴンプラズマ中に高純度四塩化ケイ素
および酸素を導入してガラス状の溶融酸化ケイ素を生成
させて得られる石英ガラスであり、四塩化ケイ素に対す
る酸素のモル比が0.6〜1.2であって、OH基含有率0.2ppm
以下、塩素含有率0.15〜2.0重量%の低光伝送損失の光
伝送用石英ガラス。
1. A quartz glass obtained by introducing high-purity silicon tetrachloride and oxygen into an argon plasma to produce a glassy molten silicon oxide, wherein the molar ratio of oxygen to silicon tetrachloride is 0.6 to 1.2. OH group content 0.2ppm
The following is a quartz glass for optical transmission with a low optical transmission loss having a chlorine content of 0.15 to 2.0% by weight.
【請求項2】水素含有率が50ppm以下の高純度四塩化ケ
イ素を用い、アルゴンプラズマ中に四塩化ケイ素および
酸素と共に塩素を導入したものであり、830nmないし130
0nmにおける光伝送損失が1.3〜1.8dB/kmの請求項1に記
載の光伝送用石英ガラス。
2. A high-purity silicon tetrachloride having a hydrogen content of 50 ppm or less, wherein chlorine is introduced together with silicon tetrachloride and oxygen into an argon plasma.
The quartz glass for optical transmission according to claim 1, wherein the optical transmission loss at 0 nm is 1.3 to 1.8 dB / km.
JP2079748A 1990-03-28 1990-03-28 Quartz glass for optical transmission Expired - Lifetime JP2785430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2079748A JP2785430B2 (en) 1990-03-28 1990-03-28 Quartz glass for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2079748A JP2785430B2 (en) 1990-03-28 1990-03-28 Quartz glass for optical transmission

Publications (2)

Publication Number Publication Date
JPH03279238A JPH03279238A (en) 1991-12-10
JP2785430B2 true JP2785430B2 (en) 1998-08-13

Family

ID=13698847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2079748A Expired - Lifetime JP2785430B2 (en) 1990-03-28 1990-03-28 Quartz glass for optical transmission

Country Status (1)

Country Link
JP (1) JP2785430B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10261242B2 (en) * 2014-05-29 2019-04-16 Fibercore Limited Optical fiber and method of producing an optical fiber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3368932B2 (en) * 1992-02-07 2003-01-20 旭硝子株式会社 Transparent quartz glass and its manufacturing method
JP2006344383A (en) * 2003-06-24 2006-12-21 Matsushita Electric Ind Co Ltd Light irradiation device
JP2007026675A (en) * 2003-06-24 2007-02-01 Matsushita Electric Ind Co Ltd Light irradiation device, lamp for it, and light irradiation method
US7166963B2 (en) * 2004-09-10 2007-01-23 Axcelis Technologies, Inc. Electrodeless lamp for emitting ultraviolet and/or vacuum ultraviolet radiation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924097B2 (en) * 1976-02-20 1984-06-07 住友電気工業株式会社 Glass body manufacturing method
JPS60153004A (en) * 1984-01-20 1985-08-12 Furukawa Electric Co Ltd:The Single-mode optical fiber
JPS61174146A (en) * 1985-01-25 1986-08-05 Sumitomo Electric Ind Ltd Optical fiber and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10261242B2 (en) * 2014-05-29 2019-04-16 Fibercore Limited Optical fiber and method of producing an optical fiber

Also Published As

Publication number Publication date
JPH03279238A (en) 1991-12-10

Similar Documents

Publication Publication Date Title
KR900008503B1 (en) Manufacture of preform for glass fibres
EP0139532A2 (en) Method for the production of glass preform for optical fibers
JPS61247633A (en) Production of glass base material for optical fiber
JPS60260434A (en) Manufacture of anhydrous glass preform for optical transmission
KR890001125B1 (en) Optical fifer
KR890001123B1 (en) Method for crystalization of glass preform
JP2785430B2 (en) Quartz glass for optical transmission
EP0164103B1 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JP4165397B2 (en) Manufacturing method of glass base material and glass base material
JPS6289B2 (en)
JP2612871B2 (en) Method of manufacturing graded-in-desk type optical fiber preform
JPS6090843A (en) Manufacture of glass base material for optical fiber
JPH06263468A (en) Production of glass base material
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JPH089487B2 (en) Method for producing glass base material for optical fiber
JPH0463365B2 (en)
JPS632900B2 (en)
JPH0776092B2 (en) Glass manufacturing method
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JP2898705B2 (en) Manufacturing method of optical fiber preform
JPS6144725A (en) Method of treating quartz porous glass layer
JPS6183639A (en) Production of quartz pipe of high purity
JP2540056B2 (en) Method for manufacturing fluorine-containing clad optical fiber foam
JPH0524093B2 (en)
JPH0660029B2 (en) Method for manufacturing base material for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

EXPY Cancellation because of completion of term