JPS632900B2 - - Google Patents

Info

Publication number
JPS632900B2
JPS632900B2 JP59092931A JP9293184A JPS632900B2 JP S632900 B2 JPS632900 B2 JP S632900B2 JP 59092931 A JP59092931 A JP 59092931A JP 9293184 A JP9293184 A JP 9293184A JP S632900 B2 JPS632900 B2 JP S632900B2
Authority
JP
Japan
Prior art keywords
glass
quartz
pipe
rod
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59092931A
Other languages
Japanese (ja)
Other versions
JPS60239334A (en
Inventor
Hiroo Kanamori
Gotaro Tanaka
Naoki Yoshioka
Futoshi Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9293184A priority Critical patent/JPS60239334A/en
Publication of JPS60239334A publication Critical patent/JPS60239334A/en
Publication of JPS632900B2 publication Critical patent/JPS632900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光フアイバ用母材の製造方法に関
し、特にすぐれた光透過特性を持つ、コアが純粋
石英ガラス、クラツドが弗素と石英を成分とする
ガラスからなる光フアイバ用母材の製造方法に関
する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing an optical fiber base material, which has particularly excellent light transmission properties, in which the core is made of pure silica glass and the cladding is made of fluorine and quartz. The present invention relates to a method for manufacturing an optical fiber base material made of glass.

(従来の技術) 石英系光フアイバにおいて、コア部の屈折率を
クラツド部の屈折率より高くするために、コア部
に酸化ゲルマニウムなどを含む石英ガラスを用い
る場合と、コア部は純粋石英ガラスであり、クラ
ツド部に、純粋石英より屈折率の低い石英と弗素
などからなる石英ガラスを用いる場合とがある。
前者に比べ後者は、光が主に伝搬するコア部が純
粋石英からなることから光の透過率を低下させる
原因の1つであるレイリー散乱の影響を小さくす
ることができ、光の透過率に秀れた光フアイバを
得ることができる。この場合、クラツド部の屈折
率を下げるためにクラツド部が酸化ホウ素と石英
からなるガラスを用いることも考えられるが酸化
ホウ素は光通信にしばしば用いられる波長帯に近
い1.5μm付近に吸収帯を持つため、光の透過率を
良くするには使用波長帯近辺で吸収を持たないフ
ツ素と石英からなるガラスをクラツドに用いるこ
とが望ましい。
(Prior art) In order to make the refractive index of the core part higher than the refractive index of the cladding part, in a silica-based optical fiber, there are cases in which the core part is made of silica glass containing germanium oxide, and in other cases, the core part is made of pure silica glass. There are cases where quartz glass, which is made of quartz, which has a lower refractive index than pure quartz, and fluorine, is used for the cladding part.
Compared to the former, the latter has a core made of pure quartz through which light mainly propagates, so it can reduce the influence of Rayleigh scattering, which is one of the causes of decreasing light transmittance, and improves light transmittance. Excellent optical fiber can be obtained. In this case, in order to lower the refractive index of the cladding part, it may be possible to use glass made of boron oxide and quartz, but boron oxide has an absorption band around 1.5 μm, which is close to the wavelength band often used for optical communications. Therefore, in order to improve the light transmittance, it is desirable to use glass made of fluorine and quartz, which has no absorption near the wavelength band used, for the cladding.

一方、光フアイバ用母材の製造方法の中で生産
性に秀れ経済的な方法として、火炎加水分解反応
を用いて多孔質ガラス体を合成する、VAD法或
いはOVPO法などが知られている。このように
火炎加水分解反応を用いて多孔質ガラス体を合成
する方法を用い、かつフツ素と石英を主成分とす
るガラス構成要素とする光フアイバ用母材を製造
する方法としては、特開昭55−67533号公報に記
載されたように、多孔質ガラス体を弗素を含む雰
囲気の中で加熱処理する方法がある。しかしなが
らこの方法では、多孔質ガラス体全領域に、フツ
素がほぼ均一に取り入れられる場合が多く、クラ
ツドとコアの間の屈折率差をつけることが難し
い。
On the other hand, among the manufacturing methods for optical fiber base materials, the VAD method and OVPO method, which synthesize porous glass bodies using flame hydrolysis reactions, are known as highly productive and economical methods. . A method for producing an optical fiber base material using a method of synthesizing a porous glass body using a flame hydrolysis reaction and having glass components mainly composed of fluorine and quartz is disclosed in Japanese Patent Application Publication No. As described in Japanese Patent No. 55-67533, there is a method in which a porous glass body is heat-treated in an atmosphere containing fluorine. However, with this method, fluorine is often incorporated almost uniformly into the entire region of the porous glass body, making it difficult to create a difference in refractive index between the cladding and the core.

また、特開昭55−15682号公報に記載されたよ
うに、多孔質ガラス体を火炎加水分解反応を用い
て形成する際に、原料にフツ素化合物を混合さ
せ、フツ素を含む多孔質ガラス体を形成し、しか
るのちに、該多孔質ガラス体を高温炉内で透明ガ
ラス化する方法もある。しかしながら、この方法
ではガラス中に存在するフツ素の量を十分多くす
ることが難しく、フツ素によつてつけられた屈折
率差として高々0.2%位しかとれないので、実用
に耐えない。
Furthermore, as described in JP-A No. 55-15682, when a porous glass body is formed using a flame hydrolysis reaction, a fluorine compound is mixed with the raw material to form a porous glass containing fluorine. There is also a method of forming a porous glass body and then converting the porous glass body into transparent vitrification in a high temperature furnace. However, with this method, it is difficult to sufficiently increase the amount of fluorine present in the glass, and the refractive index difference caused by fluorine can only be about 0.2% at most, making it impractical.

(発明が解決しようとする問題点) 本発明の目的は、上記した従来法の問題点を解
決し、クラツド部に十分に弗素が含有され、かつ
光通信用伝送路として実用上問題のない程度に形
成された屈折率分布を有する光フアイバ用母材
を、生産性に秀れた火炎加水分解反応を用いて製
造する方法を提供するところにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the above-mentioned problems of the conventional method, and to ensure that the cladding portion contains sufficient fluorine and that there is no problem in practical use as a transmission line for optical communication. An object of the present invention is to provide a method for manufacturing an optical fiber base material having a refractive index distribution formed by using a highly productive flame hydrolysis reaction.

(問題点を解決する手段) 本発明方法は、夫々別個に製造した、充分に弗
素を含有した石英を主成分としクラツド部に相当
するガラスパイプと、石英を主成分としコア部に
相当する多孔質ガラスロツドとを組合せた後に、
加熱透明化することで、従来法の問題点を解決
し、クラツドに充分弗素を含有し、コア・クラツ
ド間の屈折率差が満足できる大きさを有する光フ
アイバ用母材を得るものである。
(Means for Solving the Problems) The method of the present invention consists of a glass pipe made of quartz containing sufficient fluorine and corresponding to the clad part, which is manufactured separately, and a glass pipe made of quartz made of quartz and made of porous pipe corresponding to the core part. After combining with quality glass rod,
By heating and making it transparent, the problems of the conventional method can be solved, and an optical fiber base material can be obtained which contains sufficient fluorine in the cladding and has a satisfactory refractive index difference between the core and the cladding.

すなわち本発明は、石英を主成分とするガラス
パイプ内に石英を主成分とする多孔質ガラスロツ
ドを挿入し、該ガラスパイプを外部から加熱する
ことにより、該多孔質ガラスロツドを透明化する
とともに、該ガラスパイプと該ガラスロツドとを
一体化することを特徴とする光フアイバ用母材の
製造方法に関する。
That is, the present invention inserts a porous glass rod whose main component is quartz into a glass pipe whose main component is quartz, and heats the glass pipe from the outside to make the porous glass rod transparent. The present invention relates to a method for manufacturing an optical fiber base material, which comprises integrating a glass pipe and the glass rod.

また本発明は、上記においてガラスパイプが弗
素と石英からなり、多孔質ロツドが純粋石英から
なる光フアイバ用母材の製造方法に関する。
The present invention also relates to a method for manufacturing an optical fiber base material in which the glass pipe is made of fluorine and quartz and the porous rod is made of pure quartz.

さらに本発明は、上記製造方法において、ガラ
スパイプと多孔質ガラスロツドの間隙に塩素を含
むガスを流す光フアイバ用母材の製造方法に関す
る。
Furthermore, the present invention relates to a method for manufacturing an optical fiber base material, in which a gas containing chlorine is flowed into the gap between the glass pipe and the porous glass rod.

以下に具体的に説明する。 This will be explained in detail below.

クラツド部に相当する石英を主成分としたガラ
スパイプ内に、コア部に相当する石英を主成分と
した多孔質ガラスロツドを挿入し、該ガラスパイ
プを外部から加熱するとガラスパイプは収縮し始
める。この工程ではガラスパイプからロツドへの
Fの揮散はない。一方、該ガラスパイプ内に挿入
された多孔質ガラスロツドは透明ガラス化してゆ
く。さらに加熱を続けると多孔質ガラスロツドが
透明ガラス化するとともに透明化したガラスロツ
ドとガラスパイプは一体化し光フアイバ用母材と
することができる。
A porous glass rod containing quartz as a main component corresponding to a core portion is inserted into a glass pipe containing quartz as a main component corresponding to a clad portion, and when the glass pipe is heated from the outside, the glass pipe begins to contract. In this process, no F is volatilized from the glass pipe to the rod. Meanwhile, the porous glass rod inserted into the glass pipe becomes transparent vitrified. If the heating is continued, the porous glass rod becomes transparent vitrified, and the transparent glass rod and glass pipe are integrated to form an optical fiber base material.

この時、十分に弗素を含んだ石英ガラスパイプ
と純粋石英からなる多孔質ガラスロツドを用いる
ことにより、クラツド部が弗素と石英、コア部が
純粋石英からなる光フアイバ用母材を作製するこ
とができる。
At this time, by using a quartz glass pipe containing sufficient fluorine and a porous glass rod made of pure quartz, it is possible to produce an optical fiber base material whose cladding part is made of fluorine and quartz and whose core part is made of pure quartz. .

本発明方法における弗素を充分含有した石英を
主成分とするクラツド相当のガラスパイプの作製
方法は例えば次のように行う。第1図はパイプ状
多孔質ガラス体の製造装置の1実施態様を説明す
る図であつて、回転引上装置2に装着され、先端
がパイプ状に加工された支持棒3の端に、表面の
滑らかな出発材1を装着しておく。該支持棒3上
から、通常のVAD法と同じように酸水素バーナ
ー4により、ガラス微粒子を堆積させていき、該
支持棒3を回転させながら引上げていくことによ
り徐々に、出発材上へもガラス微粒子を堆積させ
ていく。このようにして、出発材1の外周上に多
孔質ガラス体5を軸方向に成長させたのち出発材
1を引き抜くことにより、パイプ状の多孔質ガラ
ス体5を得ることができる。該パイプ状の多孔質
ガラス体5を、弗素を含む雰囲気中で加熱透明化
することにより、弗素を充分に含むガラスパイプ
を得ることができる。たとえば第2図に示した装
置において、雰囲気ガスとしてSF6100c.c./分、
He5/分を送り込みつつ、支持棒3にとりつけ
たパイプ状の多孔質ガラス体5を下方に移動して
いき、カーボン抵抗炉6の近傍の高温部(〜1650
℃)を通過させていくことにより、屈折率の低下
値が0.3%である弗素を含むガラスパイプを得る
ことができる。
The method of the present invention for producing a glass pipe equivalent to a cladding whose main component is quartz containing sufficient fluorine is carried out, for example, as follows. FIG. 1 is a diagram illustrating one embodiment of the apparatus for manufacturing a pipe-shaped porous glass body, in which a support rod 3, which is attached to a rotary pulling device 2 and whose tip is processed into a pipe shape, has a surface A smooth starting material 1 is attached. Fine glass particles are deposited on the support rod 3 using an oxyhydrogen burner 4 in the same way as in the normal VAD method, and by pulling up the support rod 3 while rotating, they are gradually deposited onto the starting material. Glass particles are deposited. In this way, by growing the porous glass body 5 in the axial direction on the outer periphery of the starting material 1 and then pulling out the starting material 1, a pipe-shaped porous glass body 5 can be obtained. By heating and making the pipe-shaped porous glass body 5 transparent in an atmosphere containing fluorine, a glass pipe containing sufficient fluorine can be obtained. For example, in the apparatus shown in Fig. 2, SF 6 100c.c./min is used as the atmospheric gas,
While feeding He5/min, the pipe-shaped porous glass body 5 attached to the support rod 3 is moved downward, and the high temperature area near the carbon resistance furnace 6 (~1650
℃), a glass pipe containing fluorine with a refractive index decrease of 0.3% can be obtained.

ところで、石英系光フアイバ中にOH基が多量
に含まれると、伝搬する光の吸収損失が増加し、
長距離の光通信に支障をきたす。
By the way, when a large amount of OH groups are contained in a silica-based optical fiber, the absorption loss of propagating light increases.
This will disrupt long-distance optical communications.

そこで、光フアイバ母材中のOH基は十分に低
減しておくことが必要である。本発明により作製
した光フアイバ母材中にOH基が混入しないよう
にするためには、ガラスパイプを外部から加熱す
る際、ガラスパイプ内に脱水作用のある塩素系の
ガス、たとえばCl4あるいはSOCl2などを流すこ
とが有効である。このようにすることにより、ガ
ラスパイプ内の雰囲気中に含まれる水分に由来す
る、母材内のOH基を取り除くことができる。さ
らに、多孔質ガラスロツド中に含まれるOH基或
いは水分も取り除くことができる。
Therefore, it is necessary to sufficiently reduce the OH groups in the optical fiber base material. In order to prevent OH groups from being mixed into the optical fiber base material produced in accordance with the present invention, when heating the glass pipe from the outside, it is necessary to prevent chlorine-based gases that have a dehydrating effect, such as Cl 4 or SOCl, from entering the glass pipe. 2 etc. is effective. By doing so, it is possible to remove OH groups in the base material that are derived from moisture contained in the atmosphere inside the glass pipe. Furthermore, OH groups or water contained in the porous glass rod can also be removed.

もちろん、使用する多孔質ガラスロツドに脱水
処理を充分施しておくこと、また、OH基含有量
の十分に低いガラスパイプを用いることにより、
さらに、母材中のOH基の低減が容易になること
は言うまでもない。
Of course, by thoroughly dehydrating the porous glass rod used and by using a glass pipe with a sufficiently low OH group content,
Furthermore, it goes without saying that the OH groups in the base material can be easily reduced.

ところで、クラツド部に相当する石英を主成分
としたガラスパイプ内に、コア部に相当する石英
を主成分としたガラスロツドを挿入し、両者を加
熱一体化する方法は、ロツドインチユーブ法とし
てよく知られている。この従来法に比して本発明
の多孔質ガラスロツドを用いる方法の利点は次の
とおりである。第1に、従来のロツドインチユー
ブ法では、パイプ内面やガラスロツド表面が完全
に平滑でないため、一体化後のパイプ、ロツド界
面に気泡、或いは完全に密着していない部分が残
り易いが、本発明の多孔質ガラスロツドでは、透
明化時の変形量が大きく、パイプ内面の凹凸を埋
めていくことができるので、界面の不完全性を低
減できる点である。第2には、従来のロツドイン
チユーブ法では、ガラスロツド表面に付着した汚
染物特にOH基を除去することが難しい点であ
る。これは、一体化のための加熱時にOH基等汚
染物の一部は蒸発揮散するが、一部はロツド内部
へ拡散浸入してしまうためであり、この残留不純
物の悪影響により、光フアイバとしての特性、特
に伝送損失特性が劣化してしまう。これに対し、
本発明の多孔質ガラスロツドでは、ロツドとパイ
プの間隔をCl2ガスなどの脱水剤を含む雰囲気に
することにより、多孔質ガラスロツド中央部まで
の不純物除去が可能である。
By the way, a method of inserting a glass rod whose main component is quartz, which corresponds to the core section, into a glass pipe whose main component is quartz, which corresponds to the clad section, and heating and integrating the two, is often called the rod inch tube method. Are known. The advantages of the method using the porous glass rod of the present invention over this conventional method are as follows. First, in the conventional rod inch tube method, the inner surface of the pipe and the surface of the glass rod are not completely smooth, so air bubbles or areas that are not completely adhered tend to remain at the pipe and rod interface after integration. The porous glass rod of the invention has a large amount of deformation when it becomes transparent, and can fill in the irregularities on the inner surface of the pipe, thereby reducing imperfections at the interface. Second, in the conventional rod incubation method, it is difficult to remove contaminants, especially OH groups, adhering to the surface of the glass rod. This is because some of the contaminants such as OH groups evaporate and diffuse during heating for integration, but some of them diffuse into the rod, and the negative effects of these residual impurities make it difficult to use as an optical fiber. Characteristics, especially transmission loss characteristics, deteriorate. In contrast,
In the porous glass rod of the present invention, impurities can be removed up to the center of the porous glass rod by creating an atmosphere containing a dehydrating agent such as Cl 2 gas between the rod and the pipe.

(発明の効果) 従来法ではすでに述べたように、コアが純石英
でクラツドが弗素を含む石英を主成分とするもの
で、弗素による充分な屈折率差を有し実用に耐え
る屈折率分布構造を有するガラス母材の製造は不
可能であつたが、本発明方法は、これを可能と
し、クラツド部には十分に弗素が含有され、かつ
光通信用伝送路として実用上十分に使用できる屈
折率分布構造を有し、かつ伝送損失特性もすぐれ
たガラス母材を、生産性に秀れる火炎加水分解反
応を用いて製造できる。
(Effects of the invention) As already mentioned, in the conventional method, the core is pure quartz and the cladding is mainly composed of quartz containing fluorine, and has a refractive index distribution structure that has a sufficient refractive index difference due to fluorine and is suitable for practical use. However, the method of the present invention makes it possible to produce a glass base material having a refractive index in which the cladding portion contains sufficient fluorine and can be used practically as a transmission line for optical communications. A glass base material having a rate distribution structure and excellent transmission loss characteristics can be manufactured using a highly productive flame hydrolysis reaction.

(実施例) 実施例 1 フツ素を約1重量%含む石英ガラスパイプ(外
径41mm、内径9mm、長さ150mm)中に、多孔質石
英ガラスロツド(カサ密度0.55g/cm3、外径8mm
φ、長さ150mm)を挿入し、石英パイプを外部か
らカーボン炉を用いて加熱一体化することによ
り、第3図に示すような断面構造及び屈折率分布
を持つ光フアイバ用母材を得た。さらに本母材を
延伸したのち市販の石英パイプ中に挿入一体化
し、シングルモード光フアイバ用母材を作製し
た。
(Example) Example 1 A porous quartz glass rod (bulk density 0.55 g/cm 3 , outer diameter 8 mm) is placed in a quartz glass pipe (outer diameter 41 mm, inner diameter 9 mm, length 150 mm) containing approximately 1% by weight of fluorine.
By inserting a quartz pipe (φ, length 150 mm) and heating it from the outside using a carbon furnace, an optical fiber base material with a cross-sectional structure and refractive index distribution as shown in Figure 3 was obtained. . Furthermore, after stretching this base material, it was inserted into a commercially available quartz pipe and integrated to produce a base material for a single mode optical fiber.

尚、フツ素を1重量%含む石英ガラスパイプ
は、パイプ状の多孔質石英ガラス体を作製したの
ち、これをFを含む雰囲気下で焼結して得たもの
である。また、多孔質石英ロツドは、VAD法に
より作製したものである。
The quartz glass pipe containing 1% by weight of fluorine is obtained by producing a pipe-shaped porous quartz glass body and then sintering it in an atmosphere containing F. Moreover, the porous quartz rod was produced by the VAD method.

本母材を線引して得られた単長5Kmのシングル
モード光フアイバの伝送損失特性を第4図に示
す。第4図では0.95μm、1.24μm、1.39μm帯に
各々、OH基に由来する吸収損失が現れている。
このOH基による吸収は石英パイプと多孔質ガラ
スロツドを一体化する際、石英ガラスパイプ内の
雰囲気中に存在した水分が作製した母材内に混入
したことによると考えられる。
Figure 4 shows the transmission loss characteristics of a single mode optical fiber with a length of 5 km obtained by drawing this base material. In FIG. 4, absorption loss due to OH groups appears in the 0.95 μm, 1.24 μm, and 1.39 μm bands, respectively.
This absorption by OH groups is thought to be due to moisture present in the atmosphere inside the quartz glass pipe getting mixed into the fabricated base material when the quartz pipe and porous glass rod were integrated.

実施例 2 実施例1の方法に於いて、さらに、石英ガラス
パイプ内を塩素ガスを50c.c./分、ヘリウムガスを
5/分の割合で供給しつつ石英ガラスと多孔質
ガラスロツドの一体化を行つた。本方法によつて
得られたシングルモード光フアイバの伝送損失特
性を第5図に示す。OH基による吸収は実用上問
題のない程度に低減できている。
Example 2 In the method of Example 1, the quartz glass and porous glass rod were further integrated while supplying chlorine gas at a rate of 50 c.c./min and helium gas at a rate of 5/min inside the quartz glass pipe. I went there. FIG. 5 shows the transmission loss characteristics of the single mode optical fiber obtained by this method. Absorption due to OH groups has been reduced to a level that poses no problem for practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:本発明方法に用いるパイプ状多孔質ガ
ラス体の製造装置の実施態様を説明する図。第2
図:本発明方法にて用いる、パイプ状多孔質ガラ
ス体に弗素を添加し、かつ透明ガラス化する装置
の実施態様を説明する図。第3図:実施例1にお
いて得られた母材の屈折率分率、第4図:実施例
1において得られたフアイバの伝送損失特性、第
5図:実施例2において得られたフアイバの伝送
損失特性。
FIG. 1: A diagram illustrating an embodiment of an apparatus for manufacturing a pipe-shaped porous glass body used in the method of the present invention. Second
Figure: A diagram illustrating an embodiment of an apparatus for adding fluorine to a pipe-shaped porous glass body and making it transparent vitrified, which is used in the method of the present invention. Figure 3: Refractive index fraction of the base material obtained in Example 1, Figure 4: Transmission loss characteristics of the fiber obtained in Example 1, Figure 5: Transmission of the fiber obtained in Example 2 Loss characteristics.

Claims (1)

【特許請求の範囲】 1 石英を主成分とするガラスパイプ内に石英を
主成分とする多孔質ガラスロツドを挿入し、該ガ
ラスパイプを外部から加熱することにより、該多
孔質ガラスロツドを透明化するとともに、該ガラ
スパイプと該ガラスロツドとを一体化することを
特徴とする光フアイバ用母材の製造方法。 2 ガラスパイプが弗素と石英からなり、多孔質
ガラスロツドが純粋石英からなる特許請求範囲第
1項記載の光フアイバ用母材の製造方法。 3 ガラスパイプと多孔質ガラスロツドの間隙に
塩素を含むガスを流す特許請求の範囲第1項又は
第2項に記載される光フアイバ用母材の製造方
法。
[Claims] 1. A porous glass rod mainly composed of quartz is inserted into a glass pipe mainly composed of quartz, and the porous glass rod is made transparent by heating the glass pipe from the outside. . A method for manufacturing an optical fiber base material, characterized in that the glass pipe and the glass rod are integrated. 2. The method for manufacturing an optical fiber base material according to claim 1, wherein the glass pipe is made of fluorine and quartz, and the porous glass rod is made of pure quartz. 3. A method for manufacturing an optical fiber base material as set forth in claim 1 or 2, which comprises flowing a gas containing chlorine into the gap between the glass pipe and the porous glass rod.
JP9293184A 1984-05-11 1984-05-11 Manufacture of base material for optical fiber Granted JPS60239334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9293184A JPS60239334A (en) 1984-05-11 1984-05-11 Manufacture of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9293184A JPS60239334A (en) 1984-05-11 1984-05-11 Manufacture of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60239334A JPS60239334A (en) 1985-11-28
JPS632900B2 true JPS632900B2 (en) 1988-01-21

Family

ID=14068236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9293184A Granted JPS60239334A (en) 1984-05-11 1984-05-11 Manufacture of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60239334A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176933A (en) * 1986-01-29 1987-08-03 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPS62176935A (en) * 1986-01-30 1987-08-03 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JP2645709B2 (en) * 1987-10-02 1997-08-25 住友電気工業株式会社 Preform for optical fiber and method of manufacturing the same
JP2645710B2 (en) * 1987-10-02 1997-08-25 住友電気工業株式会社 Preform for optical fiber and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914411A (en) * 1982-07-14 1984-01-25 Mitsubishi Electric Corp Numerical control unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914411A (en) * 1982-07-14 1984-01-25 Mitsubishi Electric Corp Numerical control unit

Also Published As

Publication number Publication date
JPS60239334A (en) 1985-11-28

Similar Documents

Publication Publication Date Title
KR890001121B1 (en) Method for producing glass preform for single mode optical
US6535679B2 (en) Optical fiber and method of manufacturing the same
JPS61155225A (en) Manufacture of optical wave guide tube
KR100426385B1 (en) Optical fiber and how to make it
US4978378A (en) Method for producing glass preform for optical fiber
US4880452A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JP3098828B2 (en) Dispersion shifted fiber and method of manufacturing the same
JPS632900B2 (en)
JPH051221B2 (en)
KR20030003018A (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
JPS63315530A (en) Production of optical fiber preform
JPS63139028A (en) Production of optical fiber glass base material
JPS6256093B2 (en)
KR910000731B1 (en) Process for production of optical fiber
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPH089487B2 (en) Method for producing glass base material for optical fiber
JPS6183639A (en) Production of quartz pipe of high purity
KR20000031179A (en) Preparation method of the preform for a low loss single mode optical fiber
JP3439258B2 (en) Method for producing glass preform for optical fiber
JPH0327491B2 (en)
JPH07157328A (en) Production of optical fiber
JPH04292433A (en) Production of optical fiber preform
JPS63285128A (en) Production of optical fiber preform
JPH0733460A (en) Optical fiber preform and its production
JPS63201030A (en) Production fluorine-added optical fiber