JPS63139028A - Production of optical fiber glass base material - Google Patents

Production of optical fiber glass base material

Info

Publication number
JPS63139028A
JPS63139028A JP28439786A JP28439786A JPS63139028A JP S63139028 A JPS63139028 A JP S63139028A JP 28439786 A JP28439786 A JP 28439786A JP 28439786 A JP28439786 A JP 28439786A JP S63139028 A JPS63139028 A JP S63139028A
Authority
JP
Japan
Prior art keywords
glass
tube
sio2
fiber
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28439786A
Other languages
Japanese (ja)
Other versions
JPH0742131B2 (en
Inventor
Gotaro Tanaka
豪太郎 田中
Hiroo Kanamori
弘雄 金森
Hiroshi Suganuma
寛 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28439786A priority Critical patent/JPH0742131B2/en
Publication of JPS63139028A publication Critical patent/JPS63139028A/en
Publication of JPH0742131B2 publication Critical patent/JPH0742131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01466Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01884Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes
    • C03B37/01892Deposition substrates, e.g. tubes, mandrels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce the title base material having an excellent transmission characteristic by dehydrating the SiO2 glass particles synthesized by a vapor- phase reaction, adding fluorine to the particles, sintering the particles, forming the particles into a tube, etching the inside of the tube, and depositing a synthetic glass film on the inner wall. CONSTITUTION:The soot 5 synthesized from the glass material introduced into the flame of a burner 4 is deposited on a starting material 7 being pulled up while rotating to obtain a pure SiO2 soot body 6. The soot body is heated in a heating furnace in the atmosphere contg. gaseous F or a vaporized fluoride and He, dehydrated, added with F, and sintered to obtain an F-SiO2 transparent glass body having <=1ppm residual OH. The glass body is formed into a tube, a vaporized fluoride is supplied into the tube, hence the tube is etched in the vapor phase. The glass contg. at least the glass material and a vaporized oxidizing agent is introduced into the tube to deposit a synthetic glass on the inner wall of the tube, and the tube is then heated to a high temp. to form a massive solid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光7アイパ用ガラス母材の製造方法に関するも
ので、特に第1図にその屈折率分布を示すようなコア1
が純5102、クラッド2がF〜SiO2  からなる
光ファイバの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a glass base material for an optical 7-eyeper, and in particular, the present invention relates to a method for manufacturing a glass base material for an optical 7-eyeper.
The present invention relates to a method of manufacturing an optical fiber in which the cladding 2 is made of pure 5102 and the cladding 2 is made of F~SiO2.

〔従来の技術〕[Conventional technology]

従来、コアが純5102、クラッドがF−8工02であ
るファイバ構造は、コアにドーパンh’l含まないため
に、ト°−パント含有コアに固有の様々な欠点、例えば
散乱損失増加や放射線環境下での損失増加等が小さく抑
えられるので、特性の良好なファイバが得られる可能性
があり期待されている。
Conventionally, a fiber structure in which the core is pure 5102 and the cladding is F-8-02 does not contain dopant h'l in the core, so it suffers from various drawbacks inherent to dopant-containing cores, such as increased scattering loss and radiation radiation. Since the increase in loss in the environment can be suppressed to a small level, it is expected that a fiber with good characteristics can be obtained.

しかしながら、純5102コア/ F−5102クラン
ドファイバの製造は比較的困難であって、いわゆるVk
D法(気相軸付は法、例えば特公昭56−55327号
公報参照)やOVO法(外付は法、例えば米国特許第5
,775,075号明細書参照)等の火炎内での気相反
応によるガラス微粒子(スートと称する)の合成を利用
した方法単独では、弗素の拡散速度が大きく、このため
所定の弗素濃度分布の形成が難かしい。また、コア/ク
ランド界面の脱水が難かしいこともあって、特性の良好
な当該構造のファイバ、特にシングルモードファイバの
作成は容易ではない。
However, manufacturing pure 5102 core/F-5102 cland fiber is relatively difficult, and the so-called Vk
D method (vapor phase shaft attachment method, see for example Japanese Patent Publication No. 56-55327), OVO method (external attachment method, for example U.S. Patent No. 5
, 775,075), etc.) alone, the diffusion rate of fluorine is high, and therefore the predetermined fluorine concentration distribution is Difficult to form. In addition, it is difficult to dehydrate the core/cland interface, so it is not easy to produce a fiber having this structure with good characteristics, especially a single mode fiber.

一方、いわゆるMCVD法(肉付は法)を用いて当該構
造のファイバを作成した例としては、出発材料として石
英ガラス管を用い、該管内に5IC1!4,02及び弗
素の原料であるSF6.OF4,5xF4等の弗化物を
流し、外部から加熱することによりF −S 102 
 ガラス膜を該管内壁に厚く形成した後、さらにコア用
のSiO2  贋金堆積する方法がある〔文献二R,セ
ンシンソ他、イン テクニカル ダイジェスト、コンフ
エレンス オンオプティカル ファイバー コミユニケ
イジョン(オプティカル ソサエティ オン アメリカ
)、1984年2月、1)、TUI3〕。
On the other hand, as an example of creating a fiber with this structure using the so-called MCVD method (the thickening method), a quartz glass tube is used as the starting material, and 5IC1!4,02 and SF6. By flowing a fluoride such as OF4, 5xF4 and heating from the outside, F -S 102
After forming a thick glass film on the inner wall of the tube, there is a method of further depositing SiO2 for the core [References 2R, Senshinso et al., In Technical Digest, Conference on Optical Fiber Communication (Optical Society of America), February 1984, 1), TUI3].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、ucvo法を用いて第1図の構造の光ファイバを
作製する場合、原料に気相弗化物を用いると堆積収率が
低下し、これによりガラス膜の堆積速度が遅くなるとい
う問題があった。
Conventionally, when producing an optical fiber having the structure shown in Fig. 1 using the UCVO method, there was a problem in that when vapor phase fluoride was used as a raw material, the deposition yield decreased, which slowed down the deposition rate of the glass film. Ta.

又、出発ガラス管として石英ガラスを用いているため、
得られるファイバの屈折率分布形状は、第6図に示すよ
うないわゆるデイプレヌト型構造となシ、この場合クラ
ッド部2をコア部IK比して相当大きくとらないと、曲
げ損失の影響を受けやすくなるという問題もあった。図
中1は純3102コア、2はF−SiO□クラツド、3
は5102石英管部分である。1.3μm波長用のシン
グルモードファイバの場合には、通常、このクラッド層
の径はコアの径の11倍以上とすることが必要とされて
いる。
In addition, since quartz glass is used as the starting glass tube,
The refractive index distribution shape of the resulting fiber will have a so-called diplenite structure as shown in Figure 6. In this case, unless the cladding part 2 is made considerably larger than the core part IK, it will be susceptible to bending loss. There was also the problem of becoming. In the figure, 1 is pure 3102 core, 2 is F-SiO□clad, 3
is the 5102 quartz tube part. In the case of a single mode fiber for a wavelength of 1.3 μm, the diameter of this cladding layer is usually required to be at least 11 times the diameter of the core.

したがって、純5102コア/ F−3102クラツド
構造のファイバをMOVD法で作製する場合、合成速度
の低い状態で、合成ガラス層、特にクラッド層を非常に
厚く形成する必要があった。
Therefore, when producing a fiber with a pure 5102 core/F-3102 clad structure by the MOVD method, it was necessary to form a synthetic glass layer, especially a cladding layer, very thick at a low synthesis rate.

また、合成ガラス層を所定の厚さ形成した後、更に高温
に加熱して、ガラスの表面張力を利用して中空部をつぶ
しくコラップスと称ス)、ガラスロッドとするが、出発
石英管の粘性が高いため、このコラップス操作に多大の
エネルギー及び時間を費していた。
In addition, after forming a synthetic glass layer to a predetermined thickness, it is further heated to a high temperature to collapse the hollow part using the surface tension of the glass (referred to as "collapse") to form a glass rod. Due to its high viscosity, this collapse operation requires a great deal of energy and time.

また、第6図に示し友構造のファイバは、最外層のSi
O2  ガラスの膨張係数がその内部の?−SiO2ガ
ラスのそれより大きいため、この母材の線引過程で、フ
ァイバ外周部に引張方向の残留応力がかかる。これによ
りファイバはキズに対し弱くなり、強度劣化が生じ易く
なるという問題もあった。
In addition, the fiber of the friend structure shown in FIG. 6 has an outermost layer of Si.
What is the expansion coefficient of O2 glass? -Since it is larger than that of SiO2 glass, residual stress in the tensile direction is applied to the outer peripheral portion of the fiber during the drawing process of this base material. This causes the problem that the fiber becomes vulnerable to scratches and strength deterioration is more likely to occur.

本発明はこのような現状に鑑みて、F−SiO2クラン
ドの構造の例えば第1図のような屈折率分布の元ファイ
バ用のガラス母材全容易に効率良く製造できる方法全提
供せんとしてなされたものである。
In view of the current situation, the present invention was made with the aim of providing a method for easily and efficiently manufacturing a glass base material for an original fiber having a refractive index distribution as shown in FIG. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は気相反応により合成した5102  ガラス微
粒子体全加熱炉内で弗素ガスもしくは気相弗化物とHe
  とを含む雰囲気下で加熱し、脱水及び弗素添加焼結
を行い、これにより得られる残留OHtが1 ppm以
下のF−8zO2透明ガラス体を管状に加工し、線管を
管外部から加熱しながら、該管内面全気相エツチング処
理し、引き続いて少なくともガラス原料及び気相酸化剤
を含有するガラスを該管内に導入して該管内壁に合成ガ
ラス膜を堆積し、しかる後に線管をさらに高温に加熱し
て中実化することを特徴とする元ファイバ用ガラス母材
の製造方法である。
In the present invention, 5102 glass particles synthesized by a gas phase reaction are combined with fluorine gas or gas phase fluoride in a total heating furnace.
Heating in an atmosphere containing , the entire inner surface of the tube is subjected to vapor phase etching treatment, then glass containing at least a glass raw material and a vapor phase oxidizing agent is introduced into the tube to deposit a synthetic glass film on the inner wall of the tube, and then the tube is further heated to a high temperature. This is a method for manufacturing a glass base material for a fiber, which is characterized by heating to solidify the base material.

本発明の特VC好ましい実施態様としては合成ガラス膜
が純5102  ガラスからなる上記方法が挙げられる
A preferred embodiment of the special VC of the present invention includes the above method in which the synthetic glass film is made of pure 5102 glass.

以下に、まず、本発明者らが実験、研究途上で見出した
諸知見と、これを基として本発明に到達した経緯から始
めて、本発明を具体的に説明する。
The present invention will be specifically described below, starting with various findings discovered by the present inventors during experiments and research, and how the present invention was arrived at based on these findings.

本発明者らは、VAD法もしくはOVO法等のような気
相合成で得られる5lo2  ガラス微粒子体(スート
体)を更に焼結して透明ガラス化する際に、例えばF2
ガスもしくはSF6・CF4・5IF4等の気相弗化物
iHeと同時に加熱雰囲気内のスート体に導入すれば、
石英ガラスに比べその比屈折率がO〜0.5%低く、か
つ一様な屈折率値金持つ弗素添加された5102  の
溶融ガラス体を容易に炸裂できることを見出した。
The present inventors have discovered that when further sintering 5lo2 glass fine particles (soot body) obtained by vapor phase synthesis such as VAD method or OVO method to make transparent glass, for example, F2
If gas or gas phase fluoride iHe such as SF6, CF4, 5IF4 etc. is introduced into the soot body in a heated atmosphere,
It has been found that the relative refractive index is 0 to 0.5% lower than that of quartz glass, and that a fluorine-doped molten glass body of 5102 having a uniform refractive index value can be easily exploded.

またこのようにしてF−3IO2溶融ガラスを得れば残
留不純物を少くでき、ガラス中の残留OH基も+ pp
m以下という高品質なものを得ることができることを見
出した。
In addition, by obtaining F-3IO2 molten glass in this way, residual impurities can be reduced, and residual OH groups in the glass can also be +pp
It has been found that it is possible to obtain high quality products with a diameter of less than m.

さらに該F−SiO2溶融ガラスの粘性は、石英ガラス
に比べ相当小さくなっていることも見出した。
Furthermore, it has been found that the viscosity of the F--SiO2 molten glass is considerably lower than that of quartz glass.

本発明は上記の高純度で低OH基濃度であシ石英ガラス
より粘性の小さいF−S x O2溶融ガラス管を前述
したいわゆるMOVD法の出発石英管として採用し、こ
れをクランドとし、該管内壁にSiO2  コア層のみ
を堆積し、その後コラップスして中実化したガラス母材
全書る方法である。
The present invention employs the F-S x O2 molten glass tube with high purity, low OH group concentration, and lower viscosity than quartz glass as the starting quartz tube for the above-mentioned so-called MOVD method, and uses this as a clamp to form a tube inside the tube. This is a method in which only the SiO2 core layer is deposited on the wall, and then the entire glass base material is collapsed and solidified.

本発明においては、高純度のF−3zO2ガラスは予め
気相合成法によりSiO2  スート体として合成して
おき、これfF2ガスもしくはSF6.IcF4゜5I
F4等の気相弗化物とHeとを含む雰囲気内にて高温に
加熱することにより、弗素添加焼結して得る。この方法
によればSiO2  スート体の堆積速度は弗素添加の
制限全骨けないし、Ha  と弗素もしくは気相弗化物
との雰囲気での加熱により、石英ガラスに比し比屈折率
が〜0.5%低く、一様な屈折率値をもつF−SiO2
溶融ガラスが得られるので、非常に生産性が向上する。
In the present invention, high-purity F-3zO2 glass is synthesized in advance as a SiO2 soot body by a vapor phase synthesis method, and this is mixed with fF2 gas or SF6. IcF4゜5I
It is obtained by fluorine addition sintering by heating to a high temperature in an atmosphere containing a gas phase fluoride such as F4 and He. According to this method, the deposition rate of the SiO2 soot body is not limited by the addition of fluorine, and heating in an atmosphere of Ha and fluorine or vapor phase fluoride reduces the relative refractive index to ~0.5 compared to quartz glass. %F-SiO2 with low and uniform refractive index values
Since molten glass can be obtained, productivity is greatly improved.

さらに、このようにして得たF−310□ 溶融ガラス
は残留不純物が少なく、又、気相合成SiO2  スー
トは焼結時に容易に脱水させることができるので、残留
OH基も1 ppm以下と非常に高品質である。
Furthermore, the F-310□ molten glass obtained in this way has few residual impurities, and since the vapor-phase synthesized SiO2 soot can be easily dehydrated during sintering, the residual OH group is extremely low at 1 ppm or less. It is of high quality.

気相合成による純SiO2  スート体の作成は、第2
図に示すようないわゆるVNO法によって、バーナ4の
火炎中に導入したガラス原料からスート5を合成し、こ
れを回転しつつ上方に引き上げられる出発材Z上に堆積
することによる。
The production of pure SiO2 soot by vapor phase synthesis is the second step.
By the so-called VNO method as shown in the figure, soot 5 is synthesized from the glass raw material introduced into the flame of burner 4, and is deposited on starting material Z which is pulled upward while rotating.

また、第3図に示すように、回転するアルミナ・ジルコ
ニア等の耐火物出発材料8上に、この出発材料8と相対
的に移動するバーナ4を用いてスート5を堆積する方法
によってもよい。
Alternatively, as shown in FIG. 3, the soot 5 may be deposited on a rotating refractory starting material 8 such as alumina or zirconia using a burner 4 that moves relative to the starting material 8.

次に該F−SiO2溶融ガラスを、管状であればそのま
ま、ロンド状であれば、例えば超音波穴明機等を用いて
穴明けすることで管状とし、これをいわゆるMCVD法
の出発石英管として採用する。これにより従来法のよう
な多量のクラッド層合成過程は不要となり、該管内壁金
子め気相エツチングにより清浄化し、次いで該管内壁に
SiO2  コア層のみを堆積すればよい。従って、従
来のMC1VD法でF−3102クラッド層を作成した
場合の、合成速度が低く、かつ長時間合成せねばならな
いという問題点は解消し、薄いコア層のみ全合成すれば
良いので、合成膜形取ヲ極めて短時間の処理で完了でき
るので、この工程での生産性の低下は起らない。
Next, if the F-SiO2 molten glass is in a tubular shape, it is made as is, or if it is in a rond shape, it is made into a tubular shape by drilling a hole using an ultrasonic drilling machine, etc., and this is used as a starting quartz tube for the so-called MCVD method. adopt. This eliminates the need for a process of synthesizing a large amount of cladding layer as in the conventional method, and it is only necessary to clean the inner metal wall of the tube by vapor phase etching, and then deposit only the SiO2 core layer on the inner wall of the tube. Therefore, the problems of low synthesis speed and long synthesis required when creating the F-3102 cladding layer using the conventional MC1VD method are solved, and only the thin core layer needs to be completely synthesized, so the synthetic film Since the shaping process can be completed in an extremely short time, there is no reduction in productivity in this process.

また、F−SiO2溶融ガラス管内壁をエツチング処理
するので、コア/クラッド界百に不純物のない状態で母
材の合成が可能となる。
Furthermore, since the inner wall of the F--SiO2 molten glass tube is etched, it is possible to synthesize the base material without impurities in the core/cladding interface.

本発明において一般的な気相エツチングには、例えばF
2ガス及びSF6. HF 、 OF4. Co/2F
 2. CClF3゜C(j/、F、NF3.SOF2
.COF2.02F6  等の種々の気相弗化物ガスを
用いることができる。またこれ等のエツチング用のガス
にCI!2,02  等の他のガス全混合して用いても
良い。CI!2ガスを混入すると水分の混入防止或いは
ガラスを脱水しながらエツチングできる。02  ガス
を混入すると、C,S等の還元物質の堆積を防ぎながら
エツチングできる。
In the present invention, common gas phase etching includes, for example, F
2 gas and SF6. HF, OF4. Co/2F
2. CClF3゜C(j/, F, NF3.SOF2
.. Various gas phase fluoride gases can be used, such as COF2.02F6. CI is also used as an etching gas for these! It is also possible to use a mixture of other gases such as 2,02, etc. CI! By mixing two gases, it is possible to prevent moisture from entering the glass or to perform etching while dehydrating the glass. 02 By mixing gas, etching can be performed while preventing the accumulation of reducing substances such as C and S.

5102  コア層となる合成ガラス膜の作成は、ガラ
ス原料としては、H原子を含まないSl  化合物例え
ば5IC1!4,5IBr4.Si、Ci/6  等が
好ましく、特に蒸気圧の高いSiO/4が好ましい。又
、気相酸化剤としては例えばo2,03等が挙げられる
5102 The synthetic glass film serving as the core layer is prepared using Sl compounds that do not contain H atoms, such as 5IC1!4, 5IBr4. Si, Ci/6, etc. are preferred, and SiO/4, which has a high vapor pressure, is particularly preferred. Further, examples of the gas phase oxidizing agent include o2,03 and the like.

次に内部にコアlvを合成した管を更に高温に加熱処理
して中実化するが、コラップスするべき殆んどのガラス
が低粘性であるF−3102溶融ガラスであるためコラ
ッグス操作は非常に容易となり、この時に要する加熱エ
ネルギー及び時間を大幅に節約できる。本発明者らが外
径20n1内径5?IIIの各種石英管を、H2/10
2バーナを用いて加熱し中実化する比較実験を行い所要
時間の比を求めたところ、表1に示す様な結果であった
Next, the tube with the core lv synthesized inside is heated to a higher temperature to make it solid, but since most of the glass to be collapsed is F-3102 molten glass, which has a low viscosity, the collapsing operation is very easy. Therefore, the heating energy and time required at this time can be significantly saved. The inventors have an outer diameter of 20n1 and an inner diameter of 5? III various quartz tubes, H2/10
A comparative experiment was conducted to heat and solidify using two burners, and the ratio of the required time was determined, and the results were as shown in Table 1.

表  1 また、F−8xO2管に含有するOH濃度(ppm)を
変化させ、これらの管を用いてコア層を堆積し、これら
の母材全SiO2コア/F−s工02クラッドのシング
ルモードファイバとしたものについて、1.3μm 波
長における伝送損失値(ds/Km)全測定した結果全
第4図に示す。
Table 1 We also varied the OH concentration (ppm) contained in the F-8xO2 tubes, deposited core layers using these tubes, and fabricated single-mode fibers with these base material all-SiO2 cores/F-s process 02 cladding. The transmission loss value (ds/Km) at a wavelength of 1.3 .mu.m was measured and the results are shown in FIG. 4.

第4図から明らかなように、F−3102管に残存する
OH濃度を1 ppm以下とすることで、13μm[長
でのロスがt dB / Km以下のファイバが得られ
る。より好ましくは残存OH濃度to、s ppm以下
とすることであり、これによりファイバとして実用的な
ロスが0.5 clB / Km程度の特性のものを得
ることができる。
As is clear from FIG. 4, by controlling the OH concentration remaining in the F-3102 tube to 1 ppm or less, a fiber with a loss of t dB/Km or less over a length of 13 μm can be obtained. More preferably, the residual OH concentration to,s ppm or less is desired, and thereby a fiber with a practical loss of about 0.5 clB/Km can be obtained.

さらに本発明で得られるファイバの構造は、第6図の構
造のファイバとは逆に、コアイノく外周部に圧縮の残留
応力がかかる。これによりファイバはキズに対しより強
い状態で得られる。
Furthermore, in the structure of the fiber obtained according to the present invention, compressive residual stress is applied to the outer periphery of the core, contrary to the structure of the fiber shown in FIG. This makes the fiber more resistant to scratches.

本発明ではクラッドとして5102  よりも低屈折率
のF−SiO2ガラスを用いているので、レイリイ散乱
損失が少なく、耐放射線特性等の対環境特性においても
優れた純シリカコアファイバを得ることができる。
In the present invention, since F--SiO2 glass having a lower refractive index than 5102 is used as the cladding, a pure silica core fiber with low Rayleigh scattering loss and excellent environmental characteristics such as radiation resistance can be obtained.

以上の説明ではF −SiO2溶融ガラス管内に純51
02を堆積する例を述べたが、純5102にかえて、G
602.P2O5等の添加剤を含むガラス膜全堆積すれ
ば、コアが添加剤含有SiO2.クラッドがF−310
2ガラスという構造のファイバも同様に効率良くかつ高
品質に得ることができる。
In the above explanation, pure 51 is added to the F-SiO2 molten glass tube.
The example of depositing 02 was described, but instead of pure 5102, G
602. If the entire glass film containing additives such as P2O5 is deposited, the core becomes SiO2. The cladding is F-310
Fibers with a two-glass structure can similarly be obtained efficiently and with high quality.

さらにコア堆積時に例えばGoo/4.POO/3等の
屈折率ヲ上げる添加剤、又は5IF4.SF6 等の屈
折率ヲ下げる添加剤等の他の原料を、その比率を変えな
がら、多層の膜を合成すれば、第5図(IL)に示すよ
うな屈折率分布を持つファイバの製造も可能である。
Furthermore, during core deposition, for example, Goo/4. Additives that increase the refractive index such as POO/3, or 5IF4. By synthesizing a multilayer film by changing the ratio of other raw materials such as additives that lower the refractive index such as SF6, it is possible to manufacture a fiber with a refractive index distribution as shown in Figure 5 (IL). It is.

また、本発明の方法は、第5図(blに示すようなコア
部で複雑な形状の屈折率分布を持つ、コア/クランド間
の屈折率差の大きなファイバ、例えば分散シフトファイ
バ等の製造にも適している。
Furthermore, the method of the present invention is suitable for manufacturing fibers with a large refractive index difference between the core and the crand, such as dispersion-shifted fibers, which have a complicated refractive index distribution in the core portion as shown in FIG. is also suitable.

以上ハシングルモードファイバの場合金主にして述べた
が、本発明の方法によりマルチモードファイバも同様に
効率良く作製できる。この場合は、クラッドの屈折率値
がSiO2  のそれに比べ低いので、コア・クランド
の屈折率差の大きなファイバの母材製造に適している。
Although the above description has focused on single-mode fibers, multi-mode fibers can also be produced efficiently using the method of the present invention. In this case, since the refractive index value of the cladding is lower than that of SiO2, it is suitable for manufacturing a fiber base material with a large core-cland refractive index difference.

〔実施例〕〔Example〕

実施例1 第2図に概略の構成を示したようなVAD法により、バ
ーナーに表2の気相原料を導入して、純5102  ガ
ラス微粒子からなるスート体上作成した。
Example 1 A soot body made of pure 5102 glass particles was prepared by introducing the gas phase raw materials shown in Table 2 into a burner using the VAD method whose schematic configuration is shown in FIG.

表  2 得られたスート体を表3に示す雰囲気条件で管状炉内に
挿入、設置することにより、脱水(第1段目)、弗素添
加(第2段目)、透明化(第3段目)の各処理を行い、
透明ガラス体とした。このガラス微粒子のOH値を赤外
分光器で測定したところ、測定器の検出限界である0、
5 ppm以下であることが判った。
Table 2 By inserting and installing the obtained soot body in a tube furnace under the atmospheric conditions shown in Table 3, dehydration (first stage), fluoridation (second stage), and transparency (third stage) were carried out. ),
Made of transparent glass. When the OH value of these glass particles was measured using an infrared spectrometer, it was found to be 0, which is the detection limit of the measuring device.
It was found to be less than 5 ppm.

表  3 得られた外径58s+冨のロッドの外周を研削して外径
55F111とし、超音波穴明機により内径10酊の穴
を該ロッドの中心部にあけ管状とした。このパイプを純
水により超音波洗浄し、H2)02バーナにより外径2
2朋に延伸した。このF−8:IO2管をガラス施盤に
把持し、線管を外部からH2)02バーナにより約+ 
650Cに加熱しながら、該管内にSF  を300C
CZ分、O2を12/分の流量で流し、バーナを左右に
4回トラバースさせた。次で、SF6のみ止めた状態で
バーナを1往復させた後、該管内にs 1c/ 4を5
0cc/分、O2乞200CC/分の流量テ流し、温度
の高い箇所で管が透明となるように火炎を調整しながら
加熱し、バーナを1度移動させた。
Table 3 The outer periphery of the obtained rod with an outer diameter of 58s + 100mm was ground to an outer diameter of 55F111, and a hole with an inner diameter of 10mm was drilled in the center of the rod using an ultrasonic drilling machine to form a tubular shape. This pipe was ultrasonically cleaned with pure water, and the outside diameter was 2
It was extended to 2 hours. This F-8: Hold the IO2 tube on a glass platen, and heat the wire tube from the outside with a H2)02 burner to approximately +
While heating to 650C, SF was added to the tube at 300C.
CZ min, O2 was flowed at a flow rate of 12/min, and the burner was traversed from side to side four times. Next, after making the burner reciprocate once with only SF6 stopped, add 5 s 1c/4 into the pipe.
The tube was heated at a flow rate of 0 cc/min and O2 flow rate of 200 cc/min, and the flame was adjusted so that the tube became transparent at the high temperature point, and the burner was moved once.

この後更にバーナへのH2)02供給量全増すことによ
り、線管の温度を約+800C近くまで上げて加熱し、
管を中実化させた。この時のバーナの移動速度は4m/
分であり、1回のトラバースにより該青金完全にロンド
状とすることができた。
After this, by further increasing the amount of H2)02 supplied to the burner, the temperature of the wire tube was raised to approximately +800C and heated.
The tube was solidified. The moving speed of the burner at this time is 4 m/
minutes, and the blue gold could be completely shaped into a rondo with one traverse.

得られた母材を外径125μm に線引することでファ
イバー化し、その伝送特性を評価したところ、1.3μ
m 波長での伝送損失が0.38dB / Km 、 
 158 μm  波長ではs ds / xmという
優れた特性であった。
The obtained base material was drawn into a fiber with an outer diameter of 125 μm, and its transmission characteristics were evaluated, and it was found to be 1.3 μm.
The transmission loss at m wavelength is 0.38 dB/Km,
At a wavelength of 158 μm, it had excellent characteristics of s ds / xm.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明の元ファイバ用ガラス母材製造
方法は、気相合成した5102  スート体について脱
水、弗素添加及び焼結を行って得た残留不純物及び残留
0H3lのごく少ないF−SiO2溶融ガラスからなる
管をクランド層とし、これを出発管として管内を気相エ
ツチング後MCVD法を用いてコア層のみ全形成するの
で、時間、消費エネルギー共に低減し、しかも高品質で
伝送特性の良い母材を効率良く製造できる。
As explained above, the method for producing a glass base material for an original fiber of the present invention involves dehydrating, fluoridating, and sintering a 5102 soot body synthesized in a vapor phase, and then melting F-SiO2 with very little residual impurities and residual 0H3L. Using a tube made of glass as the crund layer, using this as the starting tube, the inside of the tube is vapor-phase etched, and then only the core layer is completely formed using the MCVD method, reducing both time and energy consumption, and creating a motherboard of high quality and good transmission characteristics. Materials can be manufactured efficiently.

またコア層形底径の中実化も、低粘性のF−SiO2ガ
ラス量が多いので、コランプス操作が容易でエネルギー
コストも低減できる。このように本発明によるファイバ
は、生産コストが安価で、かつ非常に良好な伝送特性を
示すに加え、クランドがF−SIO2ガラスであるため
、純SiO゜クランドのファイバに比しレイリイ散乱が
少なく、対環境特性も優れ、ざらに第6因のようなりラ
ンドの外層を石英管とした時に見られる曲げ損失がない
、また、残留応力に基くファイバの強度低下要因がない
、という優れたものである。本発明はコア/クランド間
の屈折率差の大きなシングルモードファイバ特に1.5
μm 波長に雰分散波長がくるようないわゆる分散シフ
トファイバの製造にも有利であるが、マルチモードファ
イバの製造に用いても同様に効果を示す。
Furthermore, since the bottom diameter of the core layer type is made solid, the amount of low-viscosity F--SiO2 glass is large, so the collumps operation is easy and the energy cost can be reduced. As described above, the fiber according to the present invention is inexpensive to produce and exhibits very good transmission characteristics, and because the crand is F-SIO2 glass, it has less Rayleigh scattering than a fiber with a pure SiO2 crand. It also has excellent environmental properties, and is excellent in that there is no bending loss that is seen when the outer layer of the land is made of quartz tube, which is the sixth factor, and there is no cause of decrease in fiber strength due to residual stress. be. The present invention is suitable for single mode fibers with a large refractive index difference between the core and the crand, especially 1.5
Although it is advantageous for the production of so-called dispersion-shifted fibers whose dispersion wavelength is in the μm wavelength, it is also effective when used for the production of multimode fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるファイバの屈折率分布を示す図、 第2図及び第3スは本発明における気相合成法により5
102  スート体を合成する工程の説明図、 第4因はF−3102クランドガラス中の残存OH@度
(ppm)とこれ上用いた純S 102  コア/F−
3102クラッドのファイバの1.3μm波長における
伝送損失値(aa7’Km)の関係を示すグラフ、 第5図(Kl及び(b)il−j:本発明によるファイ
バの屈折率分布の別の例を示す図である。 第6図は従来法(ucvo法)により純SiO2コア型
シングルモードファイバの屈折率分布t−示す図である
Figure 1 is a diagram showing the refractive index distribution of the fiber according to the present invention, Figures 2 and 3 are diagrams showing the refractive index distribution of the fiber according to the present invention.
An explanatory diagram of the process of synthesizing the 102 soot body. The fourth factor is the residual OH@ concentration (ppm) in the F-3102 cland glass and the pure S 102 core/F-
A graph showing the relationship between the transmission loss value (aa7'Km) at a wavelength of 1.3 μm for a fiber with a 3102 cladding. Fig. 6 is a diagram showing the refractive index distribution t- of a pure SiO2 core type single mode fiber by a conventional method (ucvo method).

Claims (2)

【特許請求の範囲】[Claims] (1)気相反応により合成したSiO_2ガラス微粒子
体を加熱炉内で弗素ガスもしくは気相弗化物とHeとを
含む雰囲気下で加熱し、脱水及び弗素添加焼結を行い、
これにより得られる残留OH量が1ppm以下のF−S
iO_2透明ガラス体を管状に加工し、該管を管外部か
ら加熱しながら、該管内面を気相エッチング処理し、引
き続いて少なくともガラス原料及び気相酸化剤を含有す
るガスを該管内に導入して該管内壁に合成ガラス膜を堆
積し、しかる後に該管をさらに高温に加熱して中実化す
ることを特徴とする光ファイバ用ガラス母材の製造方法
(1) SiO_2 glass microparticles synthesized by gas phase reaction are heated in a heating furnace in an atmosphere containing fluorine gas or gas phase fluoride and He to perform dehydration and fluorine addition sintering,
F-S with a residual OH amount of 1 ppm or less
The iO_2 transparent glass body is processed into a tube shape, the inner surface of the tube is subjected to vapor phase etching treatment while the tube is heated from the outside, and subsequently a gas containing at least a glass raw material and a vapor phase oxidizing agent is introduced into the tube. 1. A method for producing a glass preform for an optical fiber, comprising: depositing a synthetic glass film on the inner wall of the tube; and then heating the tube to a higher temperature to make it solid.
(2)合成ガラス膜が純SiO_2ガラスからなる特許
請求の範囲第(1)項記載の光ファイバ用ガラス母材の
製造方法。
(2) The method for manufacturing a glass preform for optical fibers according to claim (1), wherein the synthetic glass film is made of pure SiO_2 glass.
JP28439786A 1986-12-01 1986-12-01 Method for manufacturing glass base material for optical fiber Expired - Lifetime JPH0742131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28439786A JPH0742131B2 (en) 1986-12-01 1986-12-01 Method for manufacturing glass base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28439786A JPH0742131B2 (en) 1986-12-01 1986-12-01 Method for manufacturing glass base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS63139028A true JPS63139028A (en) 1988-06-10
JPH0742131B2 JPH0742131B2 (en) 1995-05-10

Family

ID=17678041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28439786A Expired - Lifetime JPH0742131B2 (en) 1986-12-01 1986-12-01 Method for manufacturing glass base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH0742131B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227827A (en) * 1992-02-07 1994-08-16 Asahi Glass Co Ltd Transparent silica glass and its production
JPH09235131A (en) * 1996-03-01 1997-09-09 Showa Electric Wire & Cable Co Ltd Production of transparent glass material for co-doped optical attenuator
FR2823198A1 (en) * 2001-04-09 2002-10-11 Cit Alcatel METHOD FOR MANUFACTURING LARGE CAPACITY PREFORMS BY MCVD
EP1256554A1 (en) * 2001-05-11 2002-11-13 Alcatel Step index optical fibre with doped core and cladding, preform and manufacturing process for such a fibre
JP2007536580A (en) * 2004-05-06 2007-12-13 ベイカー ヒューズ インコーポレイテッド Long wavelength pure silica core single mode fiber and method of forming the fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227827A (en) * 1992-02-07 1994-08-16 Asahi Glass Co Ltd Transparent silica glass and its production
JPH09235131A (en) * 1996-03-01 1997-09-09 Showa Electric Wire & Cable Co Ltd Production of transparent glass material for co-doped optical attenuator
FR2823198A1 (en) * 2001-04-09 2002-10-11 Cit Alcatel METHOD FOR MANUFACTURING LARGE CAPACITY PREFORMS BY MCVD
EP1249432A1 (en) * 2001-04-09 2002-10-16 Alcatel Process of manufacturing high capacity optical fibre preforms by MCVD
US6988379B2 (en) 2001-04-09 2006-01-24 Alcatel Method of manufacturing large capacity preforms by MCVD
EP1256554A1 (en) * 2001-05-11 2002-11-13 Alcatel Step index optical fibre with doped core and cladding, preform and manufacturing process for such a fibre
FR2824642A1 (en) * 2001-05-11 2002-11-15 Cit Alcatel INSPECTION FIBER WITH DOPED SHEATH AND HEAD INDEX, PREFORM AND METHOD OF MANUFACTURE FOR SUCH A FIBER
US6904213B2 (en) 2001-05-11 2005-06-07 Alcatel Step index optical fiber with doped cladding and core, a preform, and a method of fabricating such a fiber
JP2007536580A (en) * 2004-05-06 2007-12-13 ベイカー ヒューズ インコーポレイテッド Long wavelength pure silica core single mode fiber and method of forming the fiber

Also Published As

Publication number Publication date
JPH0742131B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
KR900003449B1 (en) Dispersion-shift fiber and its production
EP0198510B1 (en) Method of producing glass preform for optical fiber
Schultz Fabrication of optical waveguides by the outside vapor deposition process
US4082420A (en) An optical transmission fiber containing fluorine
KR100426385B1 (en) Optical fiber and how to make it
US4165152A (en) Process for producing optical transmission fiber
JPH0948629A (en) Optical fiber and its production
EP0164103B1 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JP3098828B2 (en) Dispersion shifted fiber and method of manufacturing the same
JPS63139028A (en) Production of optical fiber glass base material
EP0164127B1 (en) Method for producing glass preform for optical fibers
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPH085685B2 (en) Method for manufacturing base material for dispersion-shifted optical fiber
JPH0479981B2 (en)
JPS63315530A (en) Production of optical fiber preform
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH0327491B2 (en)
JPS6183639A (en) Production of quartz pipe of high purity
JPS63147840A (en) Production of quartz glass material
JPH0656454A (en) Production of optical fiber preform
JPH0558662A (en) Production of parent material for optical fiber
JPH0436101B2 (en)
JP2000327360A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term