JP3098828B2 - Dispersion shifted fiber and method of manufacturing the same - Google Patents

Dispersion shifted fiber and method of manufacturing the same

Info

Publication number
JP3098828B2
JP3098828B2 JP03323577A JP32357791A JP3098828B2 JP 3098828 B2 JP3098828 B2 JP 3098828B2 JP 03323577 A JP03323577 A JP 03323577A JP 32357791 A JP32357791 A JP 32357791A JP 3098828 B2 JP3098828 B2 JP 3098828B2
Authority
JP
Japan
Prior art keywords
sio
core
clad
refractive index
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03323577A
Other languages
Japanese (ja)
Other versions
JPH05155639A (en
Inventor
裕一 大賀
真二 石川
俊雄 彈塚
弘 横田
正治 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03323577A priority Critical patent/JP3098828B2/en
Publication of JPH05155639A publication Critical patent/JPH05155639A/en
Application granted granted Critical
Publication of JP3098828B2 publication Critical patent/JP3098828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02276Dispersion shifted fibres, i.e. zero dispersion at 1550 nm
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03672Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + -
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/29Segmented core fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/36Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、通信用石英系光ファイ
バの構造及びその製造方法に関するものであり、特に波
長1.5μm帯に零分散波長をシフトさせたシングルモ
ードファイバ(以下「分散シフトファイバ」と呼称す
る)の構造とそのプリフォームの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a quartz optical fiber for communication and a method of manufacturing the same, and more particularly to a single mode fiber (hereinafter referred to as "dispersion shift") having a zero-dispersion wavelength shifted to a wavelength of 1.5 .mu.m. (Referred to as "fiber") and a method for producing the preform.

【0002】[0002]

【従来の技術】石英系光ファイバにおいてその最低損失
波長領域である1.5μm帯に零分散波長をシフトさせ
た分散シフトファイバは、長距離且つ大伝送容量の光通
信伝送路として実用化が進んでいる。分散シフトファイ
バの中でも、図2に示すような階段状屈折率分布を有す
るものは、単純なステップ型屈折率分布を有する分散シ
フトファイバに比べ曲げ損失が小さくなり、実用上の利
点が大きく、開発検討が進められている(参考文献1:
「ディスパージョン−シフテッド コンヴェックス−イ
ンデックス シングルモード ファイバーズ」N.クワ
キ他、エレクトロニクス レターズ 1985年12月
5日、21、No. 25/26、p.1186−118
7)。図2に示した階段型屈折率分布では、中央部の屈
折率の最も高い部分21(内側コアと称する)と該内側
コア21を囲む内側コア21より低い屈折率を有する部
分22(外側コアと称する)、さらに該外側コア22を
取り囲む最も屈折率の低いクラッド部23から屈折率分
布構造が形成されている。このような階段型屈折率を有
する分散シフトファイバについて、その屈折率分布を形
成するガラス組成として、内側コアがGeO2 −SiO
2 、外側コアがSiO2 、クラッド部がF−SiO2
らなるものが提案されている(参考文献2:「ディスパ
ージョン−シフテッド ファイバーズ ウイズ フルオ
リン アッデッド クラッディング バイ ザ ベイパ
ー フェイズ アクシアル デポジッション メソッ
ド」H.ヨコタ他、テクニカル ダイジェスト オン
トピカル ミーティング オン オプティカル ファイ
バー コミュニケイション(アトランタ、1986)ペ
ーパーWF2)。
2. Description of the Related Art A dispersion-shifted fiber in which a zero-dispersion wavelength is shifted to a 1.5 μm band, which is the lowest loss wavelength region, of a silica-based optical fiber has been put into practical use as an optical communication transmission line having a long distance and a large transmission capacity. In. Among the dispersion-shifted fibers, those having a step-like refractive index distribution as shown in FIG. 2 have a smaller bending loss and larger practical advantages than dispersion-shifted fibers having a simple step-type refractive index distribution. Studies are ongoing (Ref. 1:
"Dispersion-shifted convex-index single-mode fibers" Kwaki et al., Electronics Letters December 5, 1985, 21 , No. 25/26, p.
7). In the step-type refractive index distribution shown in FIG. 2, a portion 21 (referred to as an inner core) having the highest refractive index at the center and a portion 22 having a lower refractive index than the inner core 21 surrounding the inner core 21 (the outer core and the inner core 21). ), And a refractive index distribution structure is formed from the clad portion 23 having the lowest refractive index surrounding the outer core 22. Regarding the dispersion-shifted fiber having such a step-type refractive index, the inner core is made of GeO 2 —SiO as a glass composition for forming the refractive index distribution.
2. A proposal has been made in which the outer core is made of SiO 2 and the cladding is made of F-SiO 2 (Ref. 2: “Dispersion-shifted fibers with fluorin-added cladding by the vapor phase axial deposition method”). .Yokota and other technical digests
Topical Meeting on Optical Fiber Communication (Atlanta, 1986) Paper WF2).

【0003】光ファイバの屈折率分布は、SiO2 ガラ
スにGeO2 を屈折率増加成分として添加することによ
って得られるのが最も一般的である。しかしながら、G
eO2 添加量を多くすると、ガラスのレイリー散乱が増
加して伝送損失が高くなる、或いはGeO2 →GeOの
還元に基づくと考えられる紫外域での電子遷移吸収が増
加し、その影響が使用波長域である1.5μm帯にまで
及び、やはり伝送損失が高くなる。そこで、上記組成で
は、クラッド部にFを添加しクラッド部の屈折率を下
げ、内側コアのみにGeO2 を添加することでGeO2
添加量を下げ、伝送損失の低減を図ろうとしている。こ
れまで本発明者等は、この考えに基づき、図3に示すよ
うな内側コア31がGeO2 −SiO2 、外側コア32
がSiO2 、クラッド部33がF−SiO2 であって、
例えば図3に示す屈折率分布と組成を有する分散シフト
ファイバを試作し、波長1.55μmにおける伝送損失
を0.23dB/kmまで低減することができている。
なお、図3中a、b、cは各部分の直径を表し、この例
ではaは3μm、bは9μm1cは125μmである
(参考文献3:「1.5μm帯分散シフトシングルモー
ドフアイバの伝送特性」重松,金森,田中,田中,渡
辺,鈴木、電子通信学会技術研究報告 OQE86−9
9)。
[0003] The refractive index distribution of an optical fiber is most commonly obtained by adding GeO 2 to SiO 2 glass as a refractive index increasing component. However, G
When the amount of added eO 2 is increased, Rayleigh scattering of the glass increases to increase the transmission loss, or the electron transition absorption in the ultraviolet region, which is considered to be based on the reduction of GeO 2 → GeO, increases. The transmission loss extends to the 1.5 μm band which is the band. Therefore, in the above composition, Ge is added to the clad portion to lower the refractive index of the clad portion, and GeO 2 is added only to the inner core, thereby making GeO 2.
Attempts are being made to reduce the amount of addition to reduce transmission loss. Previously the inventors have, based on this idea, the inner core 31 is GeO 2 -SiO 2 as shown in FIG. 3, the outer core 32
Is SiO 2 , the cladding part 33 is F-SiO 2 ,
For example, a dispersion-shifted fiber having a refractive index distribution and a composition shown in FIG. 3 has been experimentally manufactured, and the transmission loss at a wavelength of 1.55 μm can be reduced to 0.23 dB / km.
In addition, a, b, and c in FIG. 3 represent the diameter of each part, and in this example, a is 3 μm, b is 9 μm, and 1c is 125 μm (Ref. 3: Transmission characteristics of 1.5 μm band dispersion shift single mode fiber). Shigematsu, Kanamori, Tanaka, Tanaka, Watanabe, Suzuki, IEICE Technical Report OQE86-9
9).

【0004】[0004]

【発明が解決しようとする課題】上記のように、内側コ
アがGeO2 −SiO2 、外側コアがSiO2 、クラッ
ド部がF−SiO2 からなる階段型屈折率分布を有する
分散シフトファイバにおいては、GeO2 を含有する内
側コアとFを含有するクラッド部に挟まれたSiO2
らなる外側コアの部分は、他の部分に比して線引時の高
温加熱過程における粘性が高くなり、線引時にかかる張
力が外側コアの部分に集中して、紡糸後のファイバには
引張応力が残留する。その結果、光弾性効果によって紡
糸後(線引後)のファイバの外側コアSiO2 部の屈折
率が下がり、図4に示すように線引前の屈折率分布(実
線)と線引後の屈折率分布(破線)とではその形状が異
なるという問題があった。プリフォーム段階の屈折率分
布とファイバでの屈折率分布が異なると、プリフォーム
段階で予測したモードフィールド径零分散波長が実際に
製造されたファイバと異なってしまい、生産上大きな問
題となっていた。また、GeO2 −F−SiO2 ガラス
では、構造欠陥が存在し、低損失なファイバが得られな
いという問題があった。本発明は、上述のような問題点
を解決した分散シフトファイバの構造及びその製法を提
供しようとするものである。
As described above, in a dispersion-shifted fiber having a step-type refractive index distribution in which the inner core is made of GeO 2 —SiO 2 , the outer core is made of SiO 2 , and the cladding is made of F—SiO 2 , as described above. The portion of the outer core made of SiO 2 sandwiched between the inner core containing GeO 2 and the clad portion containing F has a higher viscosity in the high-temperature heating process at the time of drawing than the other portions. The tension applied at the time of drawing is concentrated on the portion of the outer core, and a tensile stress remains in the spun fiber. As a result, the refractive index of the outer core SiO 2 portion of the fiber after spinning (after drawing) decreases due to the photoelastic effect, and as shown in FIG. 4, the refractive index distribution before drawing (solid line) and the refractive index after drawing. There is a problem that the shape is different from the distribution (broken line). If the refractive index distribution in the preform stage and the refractive index distribution in the fiber are different, the mode field diameter zero dispersion wavelength predicted in the preform stage will be different from the actually manufactured fiber, which has been a major production problem. . In addition, GeO 2 —F—SiO 2 glass has a problem that structural defects exist and a low-loss fiber cannot be obtained. An object of the present invention is to provide a structure of a dispersion-shifted fiber that solves the above-mentioned problems and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する手段
として、本発明は内側コアの外周に内側コアより屈折率
の低い外側コアが形成され、外側コアの外層に外側コア
より屈折率の低い第1クラッドが形成され、階段状クラ
ッド分布を有してなり、更に第1クラッドの外層に第1
クラッドよりも屈折率の高い第2のクラッドが形成され
てなり、階段状屈折率分布を有する分散シフトファイバ
において、内側コアがGeO2 −SiO2 、外側コアが
SiO2 、第1クラッドがF−SiO2 、第2クラッド
がSiO2 からなる分散シフトファイバを提供する。ま
た本発明は、GeO2 −SiO2 の内側コア及びSiO
2 の外側コアからなるガラス複合体をF−SiO2 から
なるパイプ状の第1クラッド部用ガラス体の中空部に挿
入しして加熱一体化することにより、内側コアがGeO
2 −SiO2 、外側コアがSiO2 、第1クラッドがF
−SiO2 からなるガラス複合体を形成し、該ガラス複
合体の外周に更にSiO2 からなる第2クラッドを形成
することを特徴とする分散シフトファイバの製造方法を
提供する。
As a means for solving the above-mentioned problems, according to the present invention, an outer core having a lower refractive index than the inner core is formed on the outer periphery of the inner core, and an outer layer having a lower refractive index than the outer core is formed on an outer layer of the outer core. A first clad is formed and has a stepped clad distribution, and a first clad is formed on an outer layer of the first clad.
Cladding is formed a second cladding having a higher refractive index becomes than the dispersion-shifted fiber having a stepped refractive index distribution, the inner core GeO 2 -SiO 2, the outer core is SiO 2, the first cladding F- SiO 2, second cladding provides a dispersion-shifted fiber made of SiO 2. The present invention also provides an inner core of GeO 2 —SiO 2 and SiO 2.
2 is inserted into the hollow portion of the pipe-shaped first cladding glass body made of F-SiO 2 by heating and integrated by inserting the glass composite consisting of the outer core of No. 2 into GeO.
2- SiO 2 , outer core is SiO 2 , first cladding is F
To form a glass composite consisting -SiO 2, to provide a method of manufacturing a dispersion-shifted fiber and forming a second cladding comprising a further SiO 2 on the outer periphery of the glass composite.

【0006】[0006]

【作用】本発明は、紡糸前後での屈折率分布変化を抑制
するため、内側コア(中心コア)がGeO2 −Si
2 、外側コアがSiO2、第1クラッド部がF−Si
2 からなり、第1クラッド部の外側にSiO2 からな
る第2クラッド部を有する階段状屈折率分布を有する分
散シフトファイバ構造としたものであり、図1に本発明
の一具体例のプリフォーム段階での屈折率分布を示す。
図1において、11は内側コア、12は外側コア、13
は第1クラッド、14は第2クラッドを示す。即ち、紡
糸時の線引張力集中を、外側コアSiO2 のみに負担さ
せるのではなく、外側コア部より断面積の大きい第2ク
ラッド部のSiO2 部へ張力を集中させ、外側コア部の
張力集中を緩和させることにより、紡糸後の屈折率分布
変化を抑制するものである。また、本発明ファイバはそ
の組成においては、内側コアをGeO2 −SiO2 、外
側コアをSiO2 、第1クラッドをF−SiO2 、第2
クラッドをSiO2 とすることで、GeとFの共存を避
け、分散シフトファイバの低損失化を達成するものであ
る。なお、内側コア径、外側コア径、第1クラッド径、
第2クラッド径を、それぞれa,b,c,dとすると、
本発明のシングルモードファイバにおいて一般的な径比
としては、は下記のようなものが挙げられる。 内側コア径/外側コア径(a/b)=0.25〜0.4
5 0.3<c/d<1.0(これは、ディプレスト構造と
なることにより、長波長側でのモード遮断を防ぐためで
ある)
According to the present invention, the inner core (center core) is made of GeO 2 -Si in order to suppress a change in the refractive index distribution before and after spinning.
O 2 , outer core is SiO 2 , first cladding is F-Si
Consist O 2, is obtained by a dispersion shifted fiber structure having a stepped refractive index distribution having a second cladding portion made of SiO 2 on the outside of the first cladding portion, flop of one embodiment of the present invention in FIG. 1 4 shows a refractive index distribution in a reforming stage.
In FIG. 1, 11 is an inner core, 12 is an outer core, 13
Denotes a first clad and 14 denotes a second clad. That is, the tension of the drawing tension during spinning is not limited to the outer core SiO 2 alone, but the tension is concentrated on the SiO 2 portion of the second clad portion having a larger sectional area than the outer core portion, and the tension of the outer core portion is increased. By reducing the concentration, the change in the refractive index distribution after spinning is suppressed. In the composition of the fiber of the present invention, the inner core is GeO 2 —SiO 2 , the outer core is SiO 2 , the first clad is F—SiO 2 ,
By making the cladding of SiO 2 , coexistence of Ge and F is avoided, and the loss of the dispersion-shifted fiber is reduced. The inner core diameter, outer core diameter, first clad diameter,
Assuming that the second cladding diameters are a, b, c, and d, respectively,
Typical diameter ratios in the single mode fiber of the present invention include the following. Inner core diameter / outer core diameter (a / b) = 0.25 to 0.4
5 0.3 <c / d <1.0 (this is to prevent the mode cutoff on the long wavelength side by having a depressed structure)

【0007】本発明の屈折率分布構造をとることによ
り、線引時に外側コアのSiO2 部に集中する引張張力
を低減できるので、紡糸後の屈折率分布は、紡糸前のプ
リフォームとほぼ同じ形状とすることができる。従っ
て、紡糸ファイバのモードフィールド径、零分散波長も
プリフォーム段階での予測値とほぼ一致し、分散シフト
ファイバを製造、品質管理する上で非常に有効である。
また、従来、GeO2 をコアに含むガラスは線引時に高
温加熱されることから、下記(1)式のようにGeが4
価から2価に還元される。 GeO2 →GeO+1/2O2 ・・(1) 2価のGeは紫外域に大きな吸収帯を持ち、この吸収が
通信波長帯である1.55μmに悪影響を及ぼすことが
知られている。従って、より低温で、換言すれれは、高
張力で線引した方が、伝送損失の観点からも有利とな
る。本発明においては、具体的には、張力40g以上で
線引することが好ましい。更に、本発明の構造ではGe
とFが共存していないので、構造欠陥を抑制するのに
も、効果的である。
By employing the refractive index distribution structure of the present invention, the tensile tension concentrated on the SiO 2 portion of the outer core during drawing can be reduced, so that the refractive index distribution after spinning is almost the same as that of the preform before spinning. It can be shaped. Therefore, the mode field diameter and the zero-dispersion wavelength of the spun fiber almost match the predicted values at the preform stage, and are very effective in manufacturing and quality-controlling the dispersion-shifted fiber.
Conventionally, glass containing GeO 2 in the core is heated at a high temperature during drawing, so that Ge is 4 as shown in the following equation (1).
Is reduced from divalent to divalent. GeO 2 → GeO + / O 2 ... (1) It is known that divalent Ge has a large absorption band in the ultraviolet region, and this absorption adversely affects the communication wavelength band of 1.55 μm. Therefore, drawing at a lower temperature, in other words, with a high tension, is more advantageous from the viewpoint of transmission loss. In the present invention, specifically, it is preferable to draw with a tension of 40 g or more. Further, in the structure of the present invention, Ge
Since F and F do not coexist, it is also effective in suppressing structural defects.

【0008】[0008]

【実施例】実施例1 1)内側コア−外側コア用ガラス体の作製 図5に示すような構成でコア用スート体を作成した。5
1は内側コア用ガラス微粒子合成用バーナー(内側コア
用バーナーと称す)、52は外側コア用ガラス微粒子合
成用バーナー(外側コア用バーナーと称す)であり、内
側コア用バーナー51にGeCl4 ,SiCl4
2 ,O2 ,不活性ガスを供給し、GeCl4 ,SiC
4 を酸水素火炎中で反応させ、GeO2 を含有するS
iO2 ガラス微粒子を発生せしめ、出発材55先端上に
内側コア用スート体53を堆積させる。出発材55は回
転しつつ内側コア用スート体53の成長に合わせ上方に
引上げられていく。一方外側コア用バーナー52には、
SiCl4,H2 ,O2 ,不活性ガスを供給し、内側コ
ア用スート体53を取り囲むように、SiO2 ガラス微
粒子からなる外側コア用スート体54が形成されてい
く。本実施例では内側コア用バーナー51に、H2 3.
0リットル/分、O2 10リットル/分、SiCl4
5cc/分、GeCl4 4.2cc/分、Ar3.5リ
ットル/分を供給し、外側コア用バーナー52にH
2 8.0リットル/分、O2 5リットル/分、SiCl
4 300cc/分、、Ar2リットル/分を供給するこ
とにより、外径80mmφ(内側コア径25mmφ)、
長さ500mmのコア用スート体が50mm/時の引上
速度で得られた。このコア用スート体を、まずリング状
カーボンヒーターを有する炉内へ挿入し、1050℃に
加熱し、炉内雰囲気をCl2 :He=3:100として
加熱脱水処理を行った。次に、該コア用スート体をHe
100%の雰囲気中で1600℃に加熱することによ
り、透明ガラス化を行った。その結果、外径35mm
φ、内側コア径12mmφのコア用透明ガラス体が得ら
れた。このようにして得られたコア用透明ガラス体を電
気抵抗炉にて約1900℃に加熱し、直径3.8mmφ
まで延伸し内側コア−外側コアを有する透明なガラス体
とした。ここで延伸の際、酸水素バーナーなどOH成分
を含有する炎で加熱すると、コア用透明ガラス体表面が
OH基により汚染され、ファイバ化後の伝送損失が著し
く増大するので好ましくない。
EXAMPLES Example 1 1) Production of Glass Body for Inner Core-Outer Core A soot body for a core was produced with a configuration as shown in FIG. 5
Reference numeral 1 denotes a burner for synthesizing glass fine particles for the inner core (referred to as an inner core burner), 52 denotes a burner for synthesizing glass fine particles for the outer core (referred to as an outer core burner), and the inner core burner 51 includes GeCl 4 and SiCl. 4 ,
H 2 , O 2 and inert gas are supplied, and GeCl 4 , SiC
l 4 are reacted in an oxyhydrogen flame to obtain GeO 2 -containing sulfur.
The iO 2 glass fine particles are generated, and the inner core soot body 53 is deposited on the leading end of the starting material 55. The starting material 55 is pulled upward while rotating as the inner core soot body 53 grows. On the other hand, the outer core burner 52 includes:
By supplying SiCl 4 , H 2 , O 2 , and an inert gas, the outer core soot body 54 made of SiO 2 glass fine particles is formed so as to surround the inner core soot body 53. In the present embodiment, H 2 .
0 l / min, O 2 10 l / min, SiCl 4 8
5 cc / min, 4.2 cc / min of GeCl 4 and 3.5 liter / min of Ar were supplied to the burner 52 for the outer core.
2 8.0 l / min, O 2 5 l / min, SiCl
4 By supplying 300 cc / min and Ar 2 liter / min, the outer diameter is 80 mmφ (the inner core diameter is 25 mmφ),
A core soot body having a length of 500 mm was obtained at a pulling speed of 50 mm / hour. This soot body for a core was first inserted into a furnace having a ring-shaped carbon heater, heated to 1050 ° C., and heated and dehydrated by setting the atmosphere in the furnace to Cl 2 : He = 3: 100. Next, the core soot body is
Transparent vitrification was performed by heating to 1600 ° C. in a 100% atmosphere. As a result, outer diameter 35mm
A transparent glass body for a core having an inner core diameter of 12 mmφ was obtained. The transparent glass body for a core thus obtained was heated to about 1900 ° C. in an electric resistance furnace to have a diameter of 3.8 mmφ.
The glass was stretched to a transparent glass body having an inner core and an outer core. Here, it is not preferable that the surface of the transparent glass body for the core is contaminated with OH groups and the transmission loss after fiberization is remarkably increased if the substrate is heated with a flame containing an OH component such as an oxyhydrogen burner during the stretching.

【0009】2)第1クラッド用透明ガラス体の作製 VAD法により1本のガラス微粒子合成用バーナーを用
いて、SiO2 のみからなるクラッド用スート体を作成
した。バーナーには、H2 30リットル/分、O2 25
リットル/分、Ar15リットル/分、SiCl4 16
00cc/分を供給し、外径110mmφ、長さ550
mmのクラッド用スート体を得た。このクラッド用スー
ト体をCl2 :He=3:100の雰囲気を有する炉内
に挿入し、1050℃に加熱して脱水処理を施した後、
SiF4 :He =8:100の雰囲気中で1200℃に
加熱してF添加処理を施し、さらにSiF4 :He=
8:100の雰囲気中で1600℃に加熱し透明ガラス
化を行った。その結果、外径50mmφ、長さ270m
mの円柱状のクラッド用透明ガラス体を得た。該クラッ
ド用透明ガラス体の中央に超音波穿孔機を用いて8mm
φの穴をあけパイプ状としたのち、25mmφにまで延
伸した(この時内径は約4.0mmφになった)。次に
このクラッド用透明ガラス体の内部にSF6 を流しつつ
外部より酸水素バーナーで加熱することにより、内表面
を内径が約7mmφになるまでガスエッチングした。こ
のガスエッチングにより穿孔時に内面に生じた傷や凹凸
はなくなり、平滑な内面が得られた。
2) Preparation of First Transparent Glass Body for Cladding A single soot body for cladding consisting of SiO 2 was produced by a VAD method using one burner for synthesizing glass fine particles. The burner, H 2 30 liters / min, O 2 25
Liter / minute, Ar 15 liter / minute, SiCl 4 16
00cc / min, outer diameter 110mmφ, length 550
mm was obtained. This soot body for cladding is inserted into a furnace having an atmosphere of Cl 2 : He = 3: 100, heated to 1050 ° C. and subjected to a dehydration treatment.
It is heated to 1200 ° C. in an atmosphere of SiF 4 : He = 8: 100 to perform an F addition treatment, and further, SiF 4 : He =
The glass was heated to 1600 ° C. in an atmosphere of 8: 100 to perform transparent vitrification. As a result, outer diameter 50mmφ, length 270m
m was obtained. 8 mm at the center of the transparent glass body for cladding using an ultrasonic punch.
After making a pipe with a hole of φ, it was stretched to 25 mmφ (the inner diameter became about 4.0 mmφ at this time). Next, by heating the inside of the transparent glass body for cladding with an oxyhydrogen burner while flowing SF 6 therein, the inner surface was gas-etched until the inner diameter became about 7 mmφ. By this gas etching, scratches and irregularities generated on the inner surface at the time of perforation were eliminated, and a smooth inner surface was obtained.

【0010】3)コア用透明ガラス体と第1クラッド用
透明ガラス体の一体化 図6に示すように前記1)で得られた内側コアと外側コ
アからなるコア用透明ガラス体(3.8mmφ)61
を、前記2)で得られたパイプ状の第1クラッド用透明
ガラス体(外径25mmφ、内径7mmφ)62の中空
部内に挿入し、外部より酸水素バーナー63により第1
クラッド用ガラス体表面温度が1700〜1800℃に
なるよう加熱することにより、第1クラッド用ガラス体
62を収縮させ、第1クラッド用ガラス体内壁とコア用
ガラス体表面とを融着させ、両者を一体化した。なお、
64はダミー管を示す。この時の内側コア径は1.3m
mφ、外側コア径は3.8mmφ、ガラス母材外径は2
2.8mmφであった。
3) Integration of the core transparent glass body and the first clad transparent glass body As shown in FIG. 6, the core transparent glass body (3.8 mmφ) comprising the inner core and the outer core obtained in 1) above. ) 61
Is inserted into the hollow portion of the first transparent glass body for cladding (outside diameter 25 mmφ, inside diameter 7 mmφ) 62 obtained in the above 2), and the first first oxyhydrogen burner 63 is used from outside.
By heating so that the cladding glass body surface temperature becomes 1700 to 1800 ° C., the first cladding glass body 62 is contracted, and the first cladding glass inner wall and the core glass body surface are fused to each other. Was integrated. In addition,
Reference numeral 64 denotes a dummy tube. The inner core diameter at this time is 1.3m
mφ, outer core diameter is 3.8 mmφ, glass base material outer diameter is 2
It was 2.8 mmφ.

【0011】4)第2クラッド用透明ガラス体の作製 前記3)で得られたガラス母材を外径16mmφに延伸
して内側コア−外側コア−第1クラッド用ガラス複合体
とした後、図7に示す形態のVAD装置を用いて内側コ
ア−外側コア−第1クラッド用ガラス複合体71上にS
iO2 からなる多孔質ガラス体72を堆積させた、次い
で前記1)の場合と同様の加熱脱水、透明化処理を行
い、外径55mmφのプリフォームが得られた。このよ
うにして得られた本発明のガラス母材の屈折率分布を図
1に示す。
4) Preparation of Transparent Glass Body for Second Clad The glass base material obtained in the above 3) is stretched to an outer diameter of 16 mmφ to form an inner core-outer core-first clad glass composite. 7 is formed on the inner core-outer core-first cladding glass composite 71 by using a VAD apparatus of the form shown in FIG.
The porous glass body 72 made of iO 2 was deposited, and then subjected to the same heat dehydration and transparency treatment as in 1) to obtain a preform having an outer diameter of 55 mmφ. FIG. 1 shows the refractive index distribution of the glass base material of the present invention thus obtained.

【0012】5)ファイバ化 前記4)で得られたガラス母材を外径25mmφに延伸
したのち、線引張力70gで外径125μmに線引し、
紡糸後の屈折率分布を零分散波長、モードフィールド径
を測定した。
5) Fiberization The glass base material obtained in 4) was drawn to an outer diameter of 25 mmφ, and then drawn to an outer diameter of 125 μm with a drawing tension of 70 g.
The refractive index distribution after spinning was measured for the zero dispersion wavelength and the mode field diameter.

【0013】6)ファイバの特性評価 表1に本発明のプリフォーム構造で線引したファイバの
零分散波長とモードフィールド径を、従来のプリフォー
ム構造で線引したファイバのそれと比較して示す。
6) Evaluation of Fiber Characteristics Table 1 shows the zero-dispersion wavelength and the mode field diameter of the fiber drawn with the preform structure of the present invention in comparison with those of the fiber drawn with the conventional preform structure.

【表1】 本発明のプリフォーム構造とすることで、紡糸後の零分
散波長、モードフィールド径共に予測値とほぼ一致する
ことを確認できた。また、伝送損失も1.55μmで
0.20dB/kmと良好であった。
[Table 1] By using the preform structure of the present invention, it was confirmed that the zero-dispersion wavelength and the mode field diameter after spinning almost matched the predicted values. Also, the transmission loss was as good as 0.20 dB / km at 1.55 μm.

【0014】実施例2 実施例1において、第1クラッド用透明ガラス体の作成
を次に示す別法で行い、その他は実施例1と同様にして
分散シフトファイバ用プリフォームを作成し、以下実施
例1と同様に評価した。結果は実施例1と同等であっ
た。 2′)第1クラッド用透明ガラス体の作成 VAD法により、1本のガラス微粒子合成用バーナを用
い、原料としてSiCl4 とCF4 を供給して、F−S
iO2 からなるクラッド用スート体を作成した。バーナ
には、H2 30リットル/分、O2 25リットル/分、
Ar 15リットル/分、SiCl4 1600cc/分、
CF4 300cc/分を供給し、外径110mmφ、長
さ550mmのクラッド用スート体を得た。このクラッ
ド用スート体をCl2 :He =3:100の雰囲気を有
する炉内に挿入し、1050℃に加熱して脱水処理を施
した後、He 100%の雰囲気にて透明ガラス化を行っ
た。その結果、外径50mmφ、長さ270mmの円柱
状の第1クラッド用透明ガラス体を得た。該第1クラッ
ド用透明ガラス体の中央に超音波穿孔機を用いて8mm
φの穴をあけパイプ状としたのち、25mmφにまで延
伸した(この時内径は約4.0mmφになった)。次に
この第1クラッド用透明ガラス体の内部にSF6 を流し
つつ外部より酸水素バーナーで加熱することにより、内
表面を内径が約7mmφになるまでガスエッチングし
た。このガスエッチングにより穿孔時に内面に生じた傷
や凹凸はなくなり、平滑な内面が得られた。
Example 2 In Example 1, a transparent glass body for the first clad was prepared by the following alternative method, and otherwise, a preform for a dispersion-shifted fiber was prepared in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1. The result was equivalent to that of Example 1. 2 ') Preparation of transparent glass body for first clad By VAD method, SiCl 4 and CF 4 were supplied as raw materials using one burner for synthesizing glass fine particles, and FS
A soot body for cladding made of iO 2 was prepared. The burner contains 30 liters / minute H 2 , 25 liters / minute O 2 ,
Ar 15 liters / minute, SiCl 4 1600 cc / minute,
By supplying CF 4 at 300 cc / min, a soot body for cladding having an outer diameter of 110 mmφ and a length of 550 mm was obtained. This soot body for cladding was inserted into a furnace having an atmosphere of Cl 2 : He = 3: 100, heated to 1050 ° C. to perform a dehydration treatment, and then vitrified in an atmosphere of 100% He. . As a result, a columnar transparent glass body for the first clad having an outer diameter of 50 mmφ and a length of 270 mm was obtained. 8 mm at the center of the transparent glass body for the first clad using an ultrasonic punch.
After making a pipe with a hole of φ, it was stretched to 25 mmφ (the inner diameter became about 4.0 mmφ at this time). Next, the inner surface was gas-etched by heating with an oxyhydrogen burner from the outside while flowing SF 6 inside the first cladding transparent glass body until the inner diameter became about 7 mmφ. By this gas etching, scratches and irregularities generated on the inner surface at the time of perforation were eliminated, and a smooth inner surface was obtained.

【0015】比較例1 内側コアがGeO2 −F−SiO、外側コアがF−Si
2 、第1クラッドがF−SiO2 、第2クラッドがS
iO2 からなる分散シフトファイバを作製し、その特性
を評価した。モードフィールド径、零分散波長は予測値
とほぼ一致させることができたが、1.55μmにおけ
る伝送損失は、0.22dB/kmにとどまった。
Comparative Example 1 The inner core was GeO 2 -F-SiO, and the outer core was F-Si
O 2 , first cladding is F—SiO 2 , second cladding is S
A dispersion-shifted fiber made of iO 2 was manufactured and its characteristics were evaluated. Although the mode field diameter and the zero-dispersion wavelength could almost match the predicted values, the transmission loss at 1.55 μm was only 0.22 dB / km.

【0016】なお、本発明において外側のクラッド部
(第2クラッド部)を合成する方法としては、図7に示
したような構成に限定されるものではなく、例えば図8
に示すように内側コア−外側コア−第1クラッド用複合
ガラス体82を水平方向あるいは垂直方向にセットし
て、該複合ガラス体82とバーナー81とを相対的に左
右上下に移動させる方法を用いてもよい。図8の83は
ダミー石英棒、84は外側クラッド部となる多孔質ガラ
ス体である。
In the present invention, the method of synthesizing the outer cladding (second cladding) is not limited to the structure shown in FIG.
As shown in the figure, the inner glass-outer core-first clad composite glass body 82 is set in a horizontal direction or a vertical direction, and the method of moving the composite glass body 82 and the burner 81 relatively left, right, up and down is used. You may. In FIG. 8, reference numeral 83 denotes a dummy quartz rod, and reference numeral 84 denotes a porous glass body serving as an outer clad portion.

【0017】[0017]

【発明の効果】本発明は、以上示したようにF−SiO
2 ガラスからなる第1クラッドの外側にSiO2 からな
る第2クラッドを形成することにより、外側コアのSi
2 部にかかる線引張力を緩和させ、紡糸前後での屈折
率分布の変化を抑え、プリフォーム段階での特性予測値
と紡糸ファイバの特性値をほぼ一致させることができる
ので、製品の品質管理上、極めて効果的である。また、
線引張力を高張力としても屈折率分布変化を低減できる
ので、GeOに起因する紫外域に吸収を有する伝送損失
劣化要因を低減でき、且つGe−F共存による構造欠陥
に起因する損失劣化要因をも低減できるので、低損失化
にも効果がある。
According to the present invention, as described above, F-SiO
By forming a second clad made of SiO 2 outside the first clad made of 2 glass, Si of the outer core is formed.
Since the drawing tension applied to the O 2 portion is reduced, the change in the refractive index distribution before and after spinning is suppressed, and the characteristic predicted value in the preform stage and the characteristic value of the spun fiber can be almost matched, so that the quality of the product can be improved. It is extremely effective in management. Also,
Since the change in the refractive index distribution can be reduced even when the drawing tension is set to a high tension, the transmission loss deterioration factor having absorption in the ultraviolet region caused by GeO can be reduced, and the loss deterioration factor caused by the structural defect due to Ge-F coexistence can be reduced. Can also be reduced, which is also effective in reducing the loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明分散シフトファイバの一具体例の屈折率
分布構造を示す図である。
FIG. 1 is a diagram showing a refractive index distribution structure of a specific example of the dispersion-shifted fiber of the present invention.

【図2】従来の分散シフトファイバの階段状屈折率分布
を説明する図である。
FIG. 2 is a diagram illustrating a step-like refractive index distribution of a conventional dispersion-shifted fiber.

【図3】従来の分散シフトファイバの階段状屈折率分布
を説明する図である。
FIG. 3 is a diagram illustrating a step-like refractive index distribution of a conventional dispersion-shifted fiber.

【図4】従来の分散シフトファイバにおける線引前後の
屈折率分布構造の変化を示す図である。
FIG. 4 is a diagram showing a change in a refractive index distribution structure before and after drawing in a conventional dispersion-shifted fiber.

【図5】本発明の実施例において、内側コア用多孔質ガ
ラス体の製造法を説明する図である。
FIG. 5 is a diagram illustrating a method for producing a porous glass body for an inner core in an example of the present invention.

【図6】本発明の実施例において、内側コア−外側コア
用透明ガラス体とパイプ状第1クラッド用透明ガラス体
の加熱一体化方法の説明図である。
FIG. 6 is an explanatory view of a method of heating and integrating a transparent glass body for an inner core and an outer core and a transparent glass body for a pipe-shaped first clad in an embodiment of the present invention.

【図7】本発明の実施例において、内側及び外側コアと
第1クラッドを有する複合体と外周部に多孔質ガラス体
を堆積させる方法の説明図である。
FIG. 7 is an explanatory view of a composite having inner and outer cores and a first clad and a method of depositing a porous glass body on an outer peripheral portion in an embodiment of the present invention.

【図8】本発明において、内側及び外側コアと第1クラ
ッドを有する複合体と外周部に多孔質ガラス体を堆積さ
せる別の方法の説明図である。
FIG. 8 is a diagram illustrating a composite having an inner and outer core and a first clad and another method of depositing a porous glass body on an outer peripheral portion in the present invention.

【図9】比較例1で得られたプリフォームの屈折率分布
構造を示す図である。
FIG. 9 is a view showing a refractive index distribution structure of a preform obtained in Comparative Example 1.

【符号の説明】[Explanation of symbols]

11 内側コア(GeO2 −SiO2 ) 12 外側コア(SiO2 ) 13 第1クラッド(F−SiO2 ) 14 第2クラッド(SiO2 ) 21 内側コア 22 外側コア 23 クラッド 31 内側コア(GeO2 −SiO2 ) 32 外側コア(SiO2 ) 33 クラッド(F−SiO2 ) 51 内側コア用ガラス微粒子合成用バーナー 52 外側コア用ガラス微粒子合成用バーナー 53 内側コア用スート体 54 外側コア用スート体 55 出発材 61 内側コア−外側コア用複合透明ガラス体 62 第1クラッド用透明ガラス体 63 酸水素バーナー 64 ダミー石英パイプ 71 内側コア−外側コア−第1クラッド用ガラス複合
体 72 第2クラッドとなる多孔質ガラス体 81 酸水素バーナー 82 内側コア−外側コア−第1クラッド用複合ガラス
体 83 ダミー石英棒 84 第2クラッドとなる多孔質ガラス体
Reference Signs List 11 inner core (GeO 2 —SiO 2 ) 12 outer core (SiO 2 ) 13 first clad (F-SiO 2 ) 14 second clad (SiO 2 ) 21 inner core 22 outer core 23 clad 31 inner core (GeO 2 −) SiO 2 ) 32 Outer core (SiO 2 ) 33 Cladding (F-SiO 2 ) 51 Burner for synthesizing glass fine particles for inner core 52 Burner for synthesizing glass fine particles for outer core 53 Soot body for inner core 54 Soot body for outer core 55 Starting Material 61 Inner Core-Outer Core Composite Transparent Glass Body 62 First Clad Transparent Glass Body 63 Hydrogen Oxygen Burner 64 Dummy Quartz Pipe 71 Inner Core-Outer Core-First Clad Glass Composite 72 Glass body 81 Hydrogen oxyhydrogen burner 82 Inner core-Outer core-Composite glass body for first clad 83 Dummy quartz rod 84 Porous glass body to be the second clad

───────────────────────────────────────────────────── フロントページの続き (72)発明者 彈塚 俊雄 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社横浜製作所内 (72)発明者 横田 弘 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社横浜製作所内 (72)発明者 大橋 正治 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (58)調査した分野(Int.Cl.7,DB名) C03C 13/04 C03B 37/012 G02B 6/00 356 G02B 6/16 321 G02B 6/22 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio Torazuka 1 Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Hiroshi Yokota 1 Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric (72) Inventor Shoji Ohashi 1-6-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (58) Field surveyed (Int. Cl. 7 , DB name) C03C 13/04 C03B 37/012 G02B 6/00 356 G02B 6/16 321 G02B 6/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内側コアの外周に内側コアより屈折率の
低い外側コアが形成され、外側コアの外層に外側コアよ
り屈折率の低い第1クラッドが形成され、階段状クラッ
ド分布を有してなり、更に第1クラッドの外層に第1ク
ラッドよりも屈折率の高い第2のクラッドが形成されて
なり、階段状屈折率分布を有する分散シフトファイバに
おいて、内側コアがGeO2 −SiO2 、外側コアがS
iO2 、第1クラッドがF−SiO2 、第2クラッドが
SiO2 からなる分散シフトファイバ。
An outer core having a lower refractive index than the inner core is formed on an outer periphery of the inner core, and a first clad having a lower refractive index than the outer core is formed on an outer layer of the outer core, and has a step-like cladding distribution. Further, a second clad having a higher refractive index than the first clad is formed in an outer layer of the first clad. In the dispersion-shifted fiber having a step-like refractive index distribution, the inner core is GeO 2 —SiO 2 , and the outer The core is S
A dispersion-shifted fiber comprising iO 2 , a first cladding made of F-SiO 2 , and a second cladding made of SiO 2 .
【請求項2】 GeO2 −SiO2 からなる内側コア及
びSiO2 からなる外側コアを有してなるガラス体をF
−SiO2からなるパイプ状の第1クラッド部用ガラス
体の中空部に挿入して加熱一体化することにより、内側
コアがGeO2 −SiO2 、外側コアがSiO2 、第1
クラッドがF−SiO2 からなるガラス複合体を形成
し、該ガラス複合体の外周に更にSiO2 からなる第2
クラッドを形成することを特徴とする分散シフトファイ
バの製造方法。
2. A glass body having an inner core made of GeO 2 —SiO 2 and an outer core made of SiO 2 is F
-SiO by heating integrally inserted into the hollow portion of the glass body 2 first cladding part pipe-shaped consisting of, GeO 2 -SiO 2 inner core, the outer core SiO 2, first
A clad is formed of a glass composite made of F-SiO 2, and a second composite made of SiO 2 is further formed around the glass composite.
A method for manufacturing a dispersion-shifted fiber, comprising forming a clad.
JP03323577A 1991-12-09 1991-12-09 Dispersion shifted fiber and method of manufacturing the same Expired - Fee Related JP3098828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03323577A JP3098828B2 (en) 1991-12-09 1991-12-09 Dispersion shifted fiber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03323577A JP3098828B2 (en) 1991-12-09 1991-12-09 Dispersion shifted fiber and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05155639A JPH05155639A (en) 1993-06-22
JP3098828B2 true JP3098828B2 (en) 2000-10-16

Family

ID=18156264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03323577A Expired - Fee Related JP3098828B2 (en) 1991-12-09 1991-12-09 Dispersion shifted fiber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3098828B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW342460B (en) 1996-01-16 1998-10-11 Sumitomo Electric Industries A dispersion shift fiber
BR9706588A (en) * 1996-07-31 1999-07-20 Corning Inc Dispersion compensation simple mode waveguide
ZA9711125B (en) * 1996-12-12 1998-09-22 Sumitomo Electric Industries Single-mode optical fiber
CA2225889A1 (en) * 1996-12-27 1998-06-27 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
JPH10260330A (en) 1997-03-18 1998-09-29 Furukawa Electric Co Ltd:The Dispersion shift optical fiber
KR19990038607A (en) 1997-11-06 1999-06-05 윤종용 Singlemode Fiber with Multilevel Core Structure
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
TW419603B (en) * 1999-03-03 2001-01-21 Sumitomo Electric Industries Optical fiber
EP1239312A4 (en) 1999-09-27 2005-09-21 Sumitomo Electric Industries Distribution management optical fiber, its manufacturing method, optical communication system employing the optical fiber and optical fiber base material
JP2004126141A (en) * 2002-10-01 2004-04-22 Furukawa Electric Co Ltd:The Optical fiber and its manufacturing method
CN100374888C (en) * 2003-04-11 2008-03-12 株式会社藤仓 Optical fiber
JP4890767B2 (en) * 2005-01-31 2012-03-07 昭和電線ケーブルシステム株式会社 Manufacturing method of preform rod for optical fiber

Also Published As

Publication number Publication date
JPH05155639A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
EP0249230B1 (en) Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
JP3986842B2 (en) Manufacturing method of optical fiber preform for non-zero dispersion shifted optical fiber
US4675040A (en) Method for producing glass preform for single mode optical fiber
US4846867A (en) Method for producing glass preform for optical fiber
JPS6113203A (en) Single mode optical fiber
JP3098828B2 (en) Dispersion shifted fiber and method of manufacturing the same
JPS60257408A (en) Optical fiber and its production
AU719695B2 (en) Optical fiber and method of manufacturing the same
AU700828B2 (en) Method of making optical fiber having depressed index core region
JPS61191543A (en) Quartz base optical fiber
US4318726A (en) Process for producing optical fiber preform
US20020197005A1 (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
JPH10206669A (en) Optical fiber and its manufacture
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JP2004126141A (en) Optical fiber and its manufacturing method
JPH085685B2 (en) Method for manufacturing base material for dispersion-shifted optical fiber
JPS63139028A (en) Production of optical fiber glass base material
JPH0327491B2 (en)
JPH0717395B2 (en) Manufacturing method of base material for dispersion shift fiber
JPH0453823B2 (en)
JP4419339B2 (en) Optical fiber preform manufacturing method
EP0185975A1 (en) Process for fabricating a glass preform
JPS632900B2 (en)
JP3174682B2 (en) Method for producing glass preform for optical fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees