JPH0327491B2 - - Google Patents
Info
- Publication number
- JPH0327491B2 JPH0327491B2 JP13376286A JP13376286A JPH0327491B2 JP H0327491 B2 JPH0327491 B2 JP H0327491B2 JP 13376286 A JP13376286 A JP 13376286A JP 13376286 A JP13376286 A JP 13376286A JP H0327491 B2 JPH0327491 B2 JP H0327491B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- base material
- sio
- soot body
- cladding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 60
- 239000004071 soot Substances 0.000 claims description 34
- 238000005253 cladding Methods 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 18
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 16
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 14
- 239000013307 optical fiber Substances 0.000 claims description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000005553 drilling Methods 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 239000011162 core material Substances 0.000 description 49
- 239000000835 fiber Substances 0.000 description 24
- 238000009826 distribution Methods 0.000 description 18
- 239000002245 particle Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000002194 synthesizing effect Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 229910003902 SiCl 4 Inorganic materials 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Landscapes
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は1.5μm帯に零分散波長を有するシング
ルモード光フアイバの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a single mode optical fiber having a zero dispersion wavelength in the 1.5 μm band.
石英系光フアイバにおいて伝送損失が最小とな
る1.5μm帯(1.50〜1.60μm)に零分散波長を有す
るシングルモードフアイバ(以下、分散シフト・
フアイバと称する)は、長距離かつ大伝送容量の
光通信線路として研究開発が進められている。分
散シフト・フアイバの屈折率分布構造設計の中
で、非常に曲げ損失に強くなるという特徴を有す
る構造として、第1図に示すような階段状の屈折
率分布構造が提案されている。第1図において1
は内側コア、2は外側コア、3はクラツドであり
n1〜3はそれぞれの屈折率である。
Single-mode fiber (hereinafter referred to as dispersion-shifted fiber) has a zero dispersion wavelength in the 1.5 μm band (1.50 to 1.60 μm), where the transmission loss is minimum in silica-based optical fiber.
(referred to as fiber) is being researched and developed as a long-distance, high-capacity optical communication line. Among the designs of refractive index distribution structures for dispersion-shifted fibers, a stepped refractive index distribution structure as shown in FIG. 1 has been proposed as a structure that is highly resistant to bending loss. In Figure 1, 1
is the inner core, 2 is the outer core, and 3 is the cladding.
n1-3 are respective refractive indices.
〔文献1:大橋他「階段形屈折率分布の分散シ
フトフアイバの特性」、昭和60年電子通信学会半
導体・材料部門全国大会講演論文集、413頁。文
献2:ケー.クワキ他“デイスパージヨン−シフ
テツド コンヴエツクス−インデツクス シング
ルモードフアイバーズ”エレクトロニクスレター
ズ、1985年21巻1186−1187頁。文献3:桑木他
「α乗分布段階形分散シフトフアイバの特性」
昭和61年度電子通信学会総合全国大会講演論文
集、1072頁〕
上記文献3などに見られるように内側コアの屈
折率はクラツドに比して比屈折率差で1.0%程度
と高くなる。石英系光フアイバにおいて屈折率を
高くするための添加物としてはGeO2が最も一般
的であるが、GeO2のみを用いて第1図のような
屈折率分布を形成すると、内側コア1内に含まれ
るGeO2量が極めて高くなりGeO2による散乱損失
が増加する。一方、屈折率を下げる成分としては
B2O3やFがよく用いられる。特に、FはB2O3の
ように1.5μm帯近傍に吸収帯を持たないことか
ら、低損失化にとつて有利な材料である。そこで
クラツド部3にFを添加することにより内側コア
1中のGeO2量を低減せしめることが低損失化に
とつて有効である、〔文献4:エイチ.ヨコタ他
“デイスパージヨン−シフテツド フアイバーズ
ウイズ フルオリン アツデツド クラツデイ
ング バイ ザ ベイパー フエイズ アクシア
ル デポジシヨン メソツド(VAP法により作
成したF添加クラツドを有する分散シフトフアイ
バー)”コンフエレンス オン オプテイカル
フアイバー コミユニケイシヨン テクニカル
ダイジエスト、1986年 ジヨージア州、アトンタ
(米国) WF2〕。 [Reference 1: Ohashi et al., "Characteristics of dispersion-shifted fibers with stepped refractive index distribution," Proceedings of the 1985 IEICE Semiconductor and Materials Division National Conference, p. 413. Reference 2: K. Kwaki et al., “Dispersion-Shifted Convex-Index Single Mode Fibers,” Electronics Letters, Vol. 21, pp. 1186-1187, 1985. Reference 3: Kuwagi et al., "Characteristics of alpha-power distribution stepwise dispersion-shifted fibers," Proceedings of the 1985 IEICE General Conference National Conference, p. 1072] As seen in the above-mentioned Reference 3, the refractive index of the inner core becomes clad. In comparison, the relative refractive index difference is as high as about 1.0%. GeO 2 is the most common additive for increasing the refractive index of silica-based optical fibers, but if only GeO 2 is used to form the refractive index distribution shown in Figure 1, The amount of GeO 2 contained becomes extremely high, and scattering loss due to GeO 2 increases. On the other hand, as a component that lowers the refractive index,
B 2 O 3 and F are often used. In particular, since F does not have an absorption band near the 1.5 μm band like B 2 O 3 , it is an advantageous material for reducing loss. Therefore, it is effective to reduce the amount of GeO 2 in the inner core 1 by adding F to the cladding part 3 [Reference 4: H. Yokota et al. “Dispersion-Shifted Fibers with Fluorinated Cladding by the Vapor Phase Axial Deposition Method (Dispersion-Shifted Fibers with F-doped Clads Prepared by the VAP Method)” Conference on Optical
fiber communication technical
Digest, 1986 Atonta, Georgia (USA) WF2].
VAD法は量産性に優れた光フアイバ用母材の
製法として知られているが、第1図のような屈折
率分布を有し、かつFをクラツド部に、GeO2を
内側コアに撰択的に添加した分散シフトフアイバ
用母材のような複雑な屈折率分布構造を作成する
ことが難かしいという問題点があつた。本発明は
このような現状に鑑み、VAD法を有効に利用し
て階段状屈折率分布を有する分散シフトフアイバ
用母材を容易に製造できる新規で優れた方法を提
供することを目的とするものである。
The VAD method is known as a method for manufacturing optical fiber base materials with excellent mass productivity, but it has a refractive index distribution as shown in Figure 1, and F is selected for the cladding part and GeO 2 is selected for the inner core. There was a problem in that it was difficult to create a complex refractive index distribution structure such as a base material for a dispersion-shifted fiber doped with carbon. In view of the current situation, it is an object of the present invention to provide a new and excellent method for easily producing a base material for a dispersion-shifted fiber having a stepped refractive index distribution by effectively utilizing the VAD method. It is.
本発明はVAD法によりGeO2を含有するSiO2か
らなる中央層と該中央層を取り囲む実質的に純粋
なSiO2からなる外層部からなるスート体を作成
し、該スート体を脱水及び焼結した透明ガラス体
をH原子を含まない雰囲気中で延伸し、中央部の
GeO2含有部とその外側の実質的に純粋SiO2から
なる部分からなる2重構造を有するコア用母材を
作成する工程と、VAD法により実質的に純粋な
SiO2からなるスート体を作成し、該スート体を
弗素を含有する雰囲気中で高温で加熱処理して弗
素をスート体に添加し、これを焼結することによ
り得られた透明ガラス体の中央部を穿設し、必要
に応じて延伸し、弗素を含有したSiO2からなる
円筒状のクラツド用母材を作成する工程と、該コ
ア用母材を該クラツド用母材中に挿入し両者を加
熱一体化する工程を含むことを特徴とする分散シ
フトシングルモード光フアイバの製造方法であ
る。
In the present invention, a soot body consisting of a central layer made of SiO 2 containing GeO 2 and an outer layer made of substantially pure SiO 2 surrounding the central layer is created by the VAD method, and the soot body is dehydrated and sintered. The transparent glass body is stretched in an atmosphere that does not contain H atoms, and the central part
A step of creating a core base material having a double structure consisting of a GeO 2- containing part and an outer part made of substantially pure SiO 2 , and a step of creating a base material for a core with a double structure consisting of a GeO 2-containing part and an outer part made of substantially pure SiO 2, and
The center of a transparent glass body obtained by creating a soot body made of SiO 2 , heat-treating the soot body at high temperature in an atmosphere containing fluorine, adding fluorine to the soot body, and sintering the soot body. A step of creating a cylindrical clad base material made of fluorine-containing SiO 2 by drilling a section and stretching as necessary, and inserting the core base material into the clad base material and stretching the core base material into the clad base material. A method of manufacturing a dispersion-shifted single-mode optical fiber is characterized in that it includes a step of heating and integrating.
本発明ではVAD法により、GeO2が添加された
内側コアを有するコア用ガラス体及びFを添加し
たクラツド用ガラス体を作成し、該F添加クラツ
ド用ガラス体をパイプ化加工した後、上記コア用
ガラス体を該クラツド用ガラスパイプ内に挿入、
一体化することにより、第1図に示すような階段
状屈折率分布を容易に得ることができる。 In the present invention, a glass body for a core having an inner core doped with GeO 2 and a glass body for a cladding doped with F are created by the VAD method, and after processing the F-doped glass body for a cladding into a pipe, the above-mentioned core is Insert the glass body into the glass pipe for the cladding,
By integrating them, a stepped refractive index distribution as shown in FIG. 1 can be easily obtained.
以下、本発明の方法の各工程を詳細に説明す
る。 Each step of the method of the present invention will be explained in detail below.
コア用ガラス体
VAD法によるコア用スート体製造は第2図に
示すような構成で行われる。第2図において3は
内側コア用ガラス微粒子合成用バーナー、4は外
側コア用ガラス微粒子合成用バーナーである。内
側コア用ガラス微粒子合成用バーナー3にSiCl4,
GeCl4,H2,O2,Arを供給し、外側コア用ガラ
ス微粒子合成用バーナー4にSiCl4,H2,O2,Ar
を供給し、各バーナーの火炎5及び6中でSiCl4,
GeCl4を反応させてガラス微粒子(スート)を発
生させ、回転しているGeO2を含有するスート体
8とスート体8を取り囲む外側コアに相当する
SiO2からなるスート体9を同時に堆積させる。
出発石英棒7を回転・引上装置によりスート体
8,9の成長に合わせ除々に上方に引上げていく
ことにより、コア用スート体を軸方向に成長させ
る。このコア用スート体を加熱脱水処理及び焼結
することによりコア用透明ガラス体を得る。該コ
ア用透明ガラス体を電気抵抗炉等のH原子を含ま
ない雰囲気中で加熱軟化させることにより、所定
径に延伸されたコア用ガラス体を得る。このよう
にして、GeO2を含有するSiO2からなる内側コア
と実質的に純粋SiO2である外側コアからなる2
重構造を有するコア用ガス体を得ることができ
る。 Glass body for the core The soot body for the core is manufactured using the VAD method using the configuration shown in Figure 2. In FIG. 2, 3 is a burner for synthesizing glass particles for the inner core, and 4 is a burner for synthesizing glass particles for the outer core. SiCl 4 in the burner 3 for glass particle synthesis for the inner core,
GeCl 4 , H 2 , O 2 , Ar are supplied, and SiCl 4 , H 2 , O 2 , Ar are supplied to the burner 4 for synthesizing glass particles for the outer core.
SiCl 4 ,
GeCl 4 is reacted to generate glass particles (soot), which corresponds to the rotating soot body 8 containing GeO 2 and the outer core surrounding the soot body 8.
A soot body 9 made of SiO 2 is simultaneously deposited.
The core soot body is grown in the axial direction by gradually pulling the starting quartz rod 7 upward in accordance with the growth of the soot bodies 8 and 9 using a rotating/pulling device. A transparent glass body for a core is obtained by heat-dehydrating and sintering this soot body for a core. By heating and softening the transparent glass body for a core in an atmosphere not containing H atoms, such as in an electric resistance furnace, a glass body for a core stretched to a predetermined diameter is obtained. In this way, a two
A core gas body having a heavy structure can be obtained.
なおコア用ガス体延伸の際、H原子を含む雰囲
気中で延伸することは、コア用ガラス体表面が
OH基により汚染され、光フアイバの伝送損失の
原因となるので好ましくない。 Note that when stretching the core gas body, stretching in an atmosphere containing H atoms may cause the surface of the core glass body to
This is undesirable because it is contaminated by OH groups and causes transmission loss in the optical fiber.
クラツド用ガラス体の作製
VAD法により純粋SiO2からなるスート体を形
成し、該スート体をSiF4などのFを含む雰囲気中
で高温(約1100〜1200℃)処理することによりス
ート体を脱水処理するとともにスート体にFを添
加し、しかるのちに、さらに高温(1600℃程度)
処理を行い透明ガラス化し、Fを添加したSiO2
からなる円柱状クラツド用ガラス母材を得ること
ができる。該円柱状クラツド用ガラス母材の中央
部に超音波穿孔機などにより穴をあけ、必要に応
じて延伸したのち、パイプ内部にガラスエツチン
グ作用のあるSF6などのF化合物ガスを流しつつ
外部より酸水素火炎等で加熱することにより、パ
イプ内表面をエツチングしつつ平滑化する。この
ようにしてFを添加したパイプ状のクラツド用ガ
ラス体を得ることができる。 Preparation of glass body for cladding A soot body made of pure SiO2 is formed by the VAD method, and the soot body is dehydrated by treating it at high temperature (approximately 1100 to 1200℃) in an atmosphere containing F such as SiF4 . At the same time as treatment, F is added to the soot body, and then heated to an even higher temperature (approximately 1600℃)
SiO 2 treated to become transparent vitrified and added with F
A glass base material for cylindrical cladding can be obtained. A hole is made in the center of the cylindrical glass base material for the cladding using an ultrasonic drilling machine, etc., and after stretching it as necessary, it is heated from the outside while flowing an F compound gas such as SF 6 that has a glass etching effect inside the pipe. By heating with an oxyhydrogen flame, etc., the inner surface of the pipe is etched and smoothed. In this way, a pipe-shaped glass body for a cladding doped with F can be obtained.
コア用ガラス体とクラツド用ガラス体との一
体化
で得られたコア用ガラス体をで得られたパ
イプ状のクラツド用ガラス体内に挿入したのち、
外部より酸水素火炎等で加熱し、クラツド用ガラ
ス体を収縮させコア用ガラス体とクラツド用ガラ
ス体を融着・一体化させることにより、第1図に
示すような屈折率分布構造を有し、内側コアに
GeO2をクラツド部にFを各々添加した分散シフ
トフアイバ用母材を作製することができる。 After inserting the core glass body obtained by integrating the core glass body and the cladding glass body into the obtained pipe-shaped cladding glass body,
By heating from the outside with an oxyhydrogen flame, etc., the glass body for the cladding is contracted, and the glass body for the core and the glass body for the cladding are fused and integrated, resulting in a refractive index distribution structure as shown in Figure 1. , to the inner core
A base material for a dispersion-shifted fiber can be produced in which GeO 2 and F are added to the cladding portion.
なお、上記ないしの工程で作製した母材の
外周部にさらにスート体を堆積させ、で述べた
ようにスート体部にF添加をし、透明ガラス化処
理を施すことにより、フアイバ最外層までFを均
一に添加させた構造を有する分散シフトフアイバ
と同一の断面構造を有する母材を作製することが
でき、さらにこの母材を線引することにより分散
シフトフアイバを作製することができる。 In addition, by further depositing a soot body on the outer periphery of the base material produced in the above steps, adding F to the soot body as described in , and performing transparent vitrification treatment, F is applied to the outermost layer of the fiber. A base material having the same cross-sectional structure as a dispersion-shifted fiber having a structure in which the dispersion-shifted fiber is uniformly added can be produced, and a dispersion-shifted fiber can be produced by drawing this base material.
或いは、ないしの工程で作製した母材を
と同様の工程で作製したFを添加したガラスパイ
プ内に挿入一体化することによつてもフアイバ最
外層までFを均一に添加した構造を有する分散シ
フトフアイバと同一の断面構造を有する母材を作
製できる。 Alternatively, a dispersion shift having a structure in which F is uniformly added to the outermost layer of the fiber can be obtained by inserting and integrating the base material produced in the above process into a glass pipe containing F added in the same process as above. A base material having the same cross-sectional structure as the fiber can be produced.
実施例
1 コア用ガラス体の作製
第2図に示した構成において内側コア用ガラス
微粒子合成用バーナー3として多重管バーナーを
用いSiCl4を120c.c./分、GeCl4を20c.c./分、Arを
2.5/分、H2を3/分、O2を6.0/分供給
し、外側コア用ガラス微粒子合成用バーナー4に
SiCl4を350c.c./分、Arを3.0/分、H2を12/
分、O2を6.0/分を供給し、外径100mm長さ500
mmのコア材用スート体を合成した。該コア材用ス
ート体をCl2:He=1:40の雰囲気の1100℃のリ
ング状電気炉中で5mm/分の速度で通過させ脱水
処理をしたのち、Heのみの雰囲気の1600℃のリ
ング状電気炉中で4mm/分の速度で通過させ、外
径40mm、長さ200mmの透明ガラス化したコア用ガ
ラス体を得た。このコア用ガラス体をリング状の
電気抵抗炉により1850℃に加熱し、外径4mmに延
伸し、長さ約300mmずつに分割した。このコア用
ガラス材の屈折率分布構造を第3図に示す。この
コア用ガラス材は、表面の汚れを取るため10%の
HF液にて約3時間洗浄した。
Example 1 Production of glass body for core In the configuration shown in FIG. 2, a multi-tube burner was used as the burner 3 for synthesizing glass particles for the inner core, and SiCl 4 was fed at 120 c.c./min and GeCl 4 was fed at 20 c.c./min. minutes, Ar
2.5/min, H 2 at 3/min, and O 2 at 6.0/min to burner 4 for glass particle synthesis for the outer core.
SiCl 4 at 350 c.c./min, Ar at 3.0/min, H 2 at 12/min
min, supply O2 6.0/min, outer diameter 100mm length 500
A soot body for core material of mm was synthesized. The core material soot body was dehydrated by being passed through a ring-shaped electric furnace at 1100°C in an atmosphere of Cl 2 :He = 1:40 at a speed of 5 mm/min, and then passed through a ring-shaped electric furnace at 1600°C in an atmosphere containing only He. This was passed through an electric furnace at a speed of 4 mm/min to obtain a transparent vitrified core glass body having an outer diameter of 40 mm and a length of 200 mm. This core glass body was heated to 1850° C. in a ring-shaped electric resistance furnace, stretched to an outer diameter of 4 mm, and divided into lengths of approximately 300 mm. The refractive index distribution structure of this core glass material is shown in FIG. This core glass material has a 10%
It was washed with HF solution for about 3 hours.
2 クラツド用ガラス体の作製
VAD法により外径120mm長さ600mmの純粋SiO2
からなるスート体を作成し、このスート体を
SiF4:Cl2:He=0.08:0.15:15の雰囲気の1150
℃に加熱したリング状電気抵抗炉内を2mm/分で
通過させ、該スート体に脱水及びF程加処理を施
し、さらにSiF4:He=0.08:15の雰囲気の1600
℃に加熱したリング状電気抵抗炉内を6mm/分で
通過させて透明ガラス化し、Fが約0.65重量%添
加されたクラツド用ガラス体を得た。この時のク
ラツド用ガラス体の寸法は外径50mm、長さ280mm
であつた。このクラツド用ガラス体の中央部に超
音波穿孔機により直径8mmの穴をあけたのち酸水
素火炎により加熱延伸し、外径25mm、内径4mm、
長さ1120mmのパイプ状クラツド用ガラスとした。
これを長さ280mmずつに分割した。さらに該クラ
ツドパイプ内部にSF6200c.c./分、O2を600c.c./分
流しつつ外部より酸水素バーナーで加熱し内表面
をエツチングしつつ平滑化処理を行い、内径を6
mmとした。2 Preparation of glass body for cladding Pure SiO 2 with outer diameter 120 mm and length 600 mm by VAD method
Create a suit field consisting of
1150 in an atmosphere of SiF 4 :Cl 2 :He=0.08:0.15:15
The soot body was passed through a ring-shaped electric resistance furnace heated to ℃ at 2 mm/min, dehydrated and subjected to F treatment, and further heated at 1600 °C in an atmosphere of SiF 4 :He = 0.08:15.
The glass was passed through a ring-shaped electric resistance furnace heated to 0.degree. C. at a rate of 6 mm/min to obtain a transparent glass body containing about 0.65% by weight of F. The dimensions of the glass body for the cladding at this time are outer diameter 50mm and length 280mm.
It was hot. A hole with a diameter of 8 mm was drilled in the center of this glass body for the cladding using an ultrasonic drilling machine, and then heated and stretched with an oxyhydrogen flame to form a hole with an outer diameter of 25 mm, an inner diameter of 4 mm,
This is glass for a pipe-shaped cladding with a length of 1120 mm.
This was divided into 280mm length pieces. Furthermore, while flowing SF 6 at 200c.c./min and O 2 at 600c.c./min inside the clad pipe, it was heated from the outside with an oxyhydrogen burner, and the inner surface was etched and smoothed to reduce the inner diameter to 600c.c./min.
mm.
3 コア用ガラス体とクラツド用ガラス体の一体
化
1)で得られたコア用ガラス体を2)で得られ
たクラツド用パイプ内に挿入したのち外部より酸
水素炎により加熱し、コア用ガラス体表面及びク
ラツド用ガラス体内表面の清浄化処理を行つたの
ち、クラツド用ガラスパイプを加熱収縮させコア
用ガラス体とクラツド用ガラス体を溶着一体化さ
せた。このようにして得られた母材の屈折率分布
を第4図に示す。3 Integration of core glass body and cladding glass body The core glass body obtained in 1) was inserted into the cladding pipe obtained in 2), and then heated from the outside with an oxyhydrogen flame to form the core glass body. After cleaning the body surface and the inner surface of the cladding glass body, the cladding glass pipe was heated and shrunk, and the core glass body and the cladding glass body were welded and integrated. FIG. 4 shows the refractive index distribution of the base material thus obtained.
4 その後の工程
1)ないし3)にて得られた母材を外径15mmに
延伸し第5図に示すような構成にて、該母材の外
周部に純粋SiO2からなるスート体を堆積したの
ち、2)で示した条件でスート体部分にFを添加
するとともにスート体部分を透明ガラス化するこ
とにより第6図に示すような構造を有するプリフ
オームを得た。なお第5図において10はガラス
微粒子合成用バーナー、11は1)ないし3)に
て得られた母材を外径15mmに延伸したもの、12
はスート体、13は支持用ダミー棒である、該プ
リフオームを外径125μmに線引し分散シフトフア
イバを得た。このフアイバの零分散波長は
1.552μm、1.55μmでの伝送損失は0.25dB/Kmであ
り、実用上問題のない特性が得られた。4 Subsequent steps The base material obtained in steps 1) to 3) was stretched to an outer diameter of 15 mm, and a soot body made of pure SiO 2 was deposited on the outer periphery of the base material in the configuration shown in Figure 5. Thereafter, F was added to the soot body portion under the conditions shown in 2) and the soot body portion was made into transparent glass to obtain a preform having the structure shown in FIG. 6. In Fig. 5, 10 is a burner for synthesizing glass particles, 11 is the base material obtained in 1) to 3) stretched to an outer diameter of 15 mm, and 12 is a burner for synthesizing glass particles.
13 is a soot body, and 13 is a supporting dummy rod. The preform was drawn to an outer diameter of 125 μm to obtain a dispersion-shifted fiber. The zero dispersion wavelength of this fiber is
The transmission loss at 1.552 μm and 1.55 μm was 0.25 dB/Km, and characteristics with no problems in practical use were obtained.
本発明は単なるVAD法では作製が難しかつた
コア中央にGeO2をクラツドにFを撰択的に添加
した階段状屈折率分布を有する分散シフトフアイ
バを、コア部とクラツド部のガラス体を別個に作
製しこれらを一体化させることによつて実現させ
ることが可能とするもので、本発明による分散シ
フトフアイバは、1.5μm帯で零分散であり伝送損
失特性も優れたものである。
The present invention creates a dispersion-shifted fiber with a step-like refractive index distribution in which GeO 2 is selectively added to the cladding in the center of the core, which was difficult to fabricate using a simple VAD method, and the core and cladding glass bodies are separated. The dispersion shifted fiber according to the present invention has zero dispersion in the 1.5 μm band and has excellent transmission loss characteristics.
第1図は本発明の分散シフトフアイバの段階状
屈折率分布構造を示す模式図、第2図は本発明に
おけるコア用スート体作製の実施態様を概略説明
する概念図、第3図は本発明の実施例で製造した
コア用ガラス体の屈折率分布構造を示す模式図、
第4図は本発明の実施例におけるクラツド用ガラ
ス体とコア用ガラス体を一体化させた時の屈折率
分布構造を示す模式図、第5図は本発明の実施例
においてクラツド用ガラス体の外周部にさらにス
ート体を合成する際の構成を説明する概念図、第
6図は本発明の実施例で得られたプリフオームの
屈折率分布構造を示す模式図である。
FIG. 1 is a schematic diagram showing the stepwise refractive index distribution structure of the dispersion-shifted fiber of the present invention, FIG. 2 is a conceptual diagram schematically explaining an embodiment of the production of a core soot body in the present invention, and FIG. 3 is a schematic diagram showing the stepwise refractive index distribution structure of the dispersion-shifted fiber of the present invention A schematic diagram showing the refractive index distribution structure of the core glass body manufactured in the example of
FIG. 4 is a schematic diagram showing the refractive index distribution structure when the cladding glass body and the core glass body are integrated in an embodiment of the present invention, and FIG. FIG. 6 is a conceptual diagram illustrating a configuration for further synthesizing a soot body on the outer peripheral portion, and FIG. 6 is a schematic diagram showing a refractive index distribution structure of a preform obtained in an example of the present invention.
Claims (1)
中央層と該中央層を取り囲む実質的に純粋な
SiO2からなる外層部からなるスート体を作成し、
該スート体を脱水及び焼結した透明ガラス体をH
原子を含まない雰囲気中で延伸し、中央部の
GeO2含有部とその外側の実質的に純粋SiO2から
なる部分からなる2重構造を有するコア用母材を
作成する工程と、VAD法により実質的に純粋な
SiO2からなるスート体を作成し、該スート体を
弗素を含有する雰囲気中で高温で加熱処理して弗
素をスート体に添加し、これを焼結することによ
り得られた透明ガラス体の中央部を穿孔し、必要
に応じて延伸し、弗素を含有したSiO2からなる
円筒状のクラツド用母材を作成する工程と、該コ
ア用母材を該クラツド用母材中に挿入し両者を加
熱一体化する工程を含むことを特徴とする分散シ
フトシングルモード光フアイバの製造方法。1 The VAD method creates a central layer of SiO 2 containing GeO 2 and a substantially pure layer surrounding the central layer.
Create a soot body consisting of an outer layer made of SiO 2 ,
The transparent glass body obtained by dehydrating and sintering the soot body is
Stretched in an atom-free atmosphere, the central part
A step of creating a core base material having a double structure consisting of a GeO 2- containing part and an outer part made of substantially pure SiO 2 , and a step of creating a base material for a core with a double structure consisting of a GeO 2-containing part and an outer part made of substantially pure SiO 2, and
The center of a transparent glass body obtained by creating a soot body made of SiO 2 , heat-treating the soot body at high temperature in an atmosphere containing fluorine, adding fluorine to the soot body, and sintering the soot body. A step of forming a cylindrical cladding base material made of fluorine-containing SiO 2 by drilling a hole in the cladding base material and stretching as necessary; A method for manufacturing a dispersion-shifted single mode optical fiber, the method comprising the step of heating and integrating.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61133762A JPS62292647A (en) | 1986-06-11 | 1986-06-11 | Production of decentralized-shift single-mode optical fiber |
KR1019870005307A KR900003449B1 (en) | 1986-06-11 | 1987-05-28 | Dispersion-shift fiber and its production |
US07/060,176 US4822399A (en) | 1986-06-11 | 1987-06-10 | Glass preform for dispersion shifted single mode optical fiber and method for the production of the same |
CA000539353A CA1294438C (en) | 1986-06-11 | 1987-06-10 | Glass preform for dispersion shifted single mode optical fiber and method for the production of the same |
AU74131/87A AU592875B2 (en) | 1986-06-11 | 1987-06-11 | Glass preform for dispersion shifted single mode optical fiber and method for the production of the same |
EP87108453A EP0249230B1 (en) | 1986-06-11 | 1987-06-11 | Glass preform for dispersion shifted single mode optical fiber and method for the production of the same |
DE8787108453T DE3762609D1 (en) | 1986-06-11 | 1987-06-11 | GLASS PREFORM FOR A DISPERSION-SHIFTED OPTICAL SINGLE-MODE FIBER AND METHOD FOR THE PRODUCTION THEREOF. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61133762A JPS62292647A (en) | 1986-06-11 | 1986-06-11 | Production of decentralized-shift single-mode optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62292647A JPS62292647A (en) | 1987-12-19 |
JPH0327491B2 true JPH0327491B2 (en) | 1991-04-16 |
Family
ID=15112357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61133762A Granted JPS62292647A (en) | 1986-06-11 | 1986-06-11 | Production of decentralized-shift single-mode optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62292647A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110927862A (en) * | 2019-12-10 | 2020-03-27 | 普天线缆集团有限公司 | Novel bending insensitive G657 single mode fiber and manufacturing method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6243522B1 (en) * | 1998-12-21 | 2001-06-05 | Corning Incorporated | Photonic crystal fiber |
KR100919515B1 (en) * | 2004-10-22 | 2009-09-28 | 가부시키가이샤후지쿠라 | Optical fiber, transmission system and multiple wavelength transmission system |
JP6402471B2 (en) * | 2014-04-07 | 2018-10-10 | 住友電気工業株式会社 | Optical fiber manufacturing method |
-
1986
- 1986-06-11 JP JP61133762A patent/JPS62292647A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110927862A (en) * | 2019-12-10 | 2020-03-27 | 普天线缆集团有限公司 | Novel bending insensitive G657 single mode fiber and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS62292647A (en) | 1987-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900003449B1 (en) | Dispersion-shift fiber and its production | |
EP0198510B1 (en) | Method of producing glass preform for optical fiber | |
KR890001121B1 (en) | Method for producing glass preform for single mode optical | |
US4737179A (en) | Method for producing glass preform for optical fiber | |
JPS61155225A (en) | Manufacture of optical wave guide tube | |
JPS60257408A (en) | Optical fiber and its production | |
JPH11209141A (en) | Production of segment core optical waveguide preform | |
EP0176263B1 (en) | Optical fiber | |
CN102149648A (en) | Process for producing optical-fiber base material | |
JP3098828B2 (en) | Dispersion shifted fiber and method of manufacturing the same | |
CA1266403A (en) | Method for producing glass preform for optical fiber containing fluorine in cladding | |
JPH0327491B2 (en) | ||
CN113716861A (en) | Method for preparing bending insensitive optical fiber by external gas phase deposition method | |
JPH0479981B2 (en) | ||
JPH0820574B2 (en) | Dispersion shift fiber and manufacturing method thereof | |
JPS63315530A (en) | Production of optical fiber preform | |
JPS63139028A (en) | Production of optical fiber glass base material | |
JPH0463365B2 (en) | ||
JPH0798671B2 (en) | Method for manufacturing preform for optical fiber | |
JPH0460930B2 (en) | ||
JPH0930823A (en) | Optical fiber preform, optical fiber and its production | |
JPS63147840A (en) | Production of quartz glass material | |
JP3439258B2 (en) | Method for producing glass preform for optical fiber | |
JPS60145927A (en) | Production of base material for optical fiber | |
JPH0453823B2 (en) |