JPH0453823B2 - - Google Patents

Info

Publication number
JPH0453823B2
JPH0453823B2 JP62052089A JP5208987A JPH0453823B2 JP H0453823 B2 JPH0453823 B2 JP H0453823B2 JP 62052089 A JP62052089 A JP 62052089A JP 5208987 A JP5208987 A JP 5208987A JP H0453823 B2 JPH0453823 B2 JP H0453823B2
Authority
JP
Japan
Prior art keywords
core
cladding
sio
heating
glass body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62052089A
Other languages
Japanese (ja)
Other versions
JPS63222042A (en
Inventor
Hiroo Kanamori
Hiroshi Suganuma
Masayuki Shigematsu
Gotaro Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62052089A priority Critical patent/JPS63222042A/en
Priority to KR1019870005307A priority patent/KR900003449B1/en
Priority to CA000539353A priority patent/CA1294438C/en
Priority to US07/060,176 priority patent/US4822399A/en
Priority to DE8787108453T priority patent/DE3762609D1/en
Priority to AU74131/87A priority patent/AU592875B2/en
Priority to EP87108453A priority patent/EP0249230B1/en
Publication of JPS63222042A publication Critical patent/JPS63222042A/en
Publication of JPH0453823B2 publication Critical patent/JPH0453823B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は通信用石英系光フアイバ用母材の構造
及びその製造方法に関するものであり、特に波長
1.5μm帯に零分散波長をシフトさせたシングルモ
ードフアイバ(以下「分散シフトフアイバ」と呼
称する)の製造に適する母材の構造とその製造方
法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the structure of a base material for a quartz-based optical fiber for communications and a method for manufacturing the same, and particularly relates to a
The present invention relates to a structure of a base material suitable for manufacturing a single mode fiber (hereinafter referred to as "dispersion shifted fiber") with a zero dispersion wavelength shifted to the 1.5 μm band, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

石英系光フアイバにおいてその最低損失波長領
域である1.5μm帯に零分散波長をシフトさせた分
散シフトフアイバは、長距離かつ大伝送容量の光
通信伝送路として実用化が進んでいる。
Dispersion-shifted fibers, in which the zero-dispersion wavelength is shifted to the 1.5 μm band, which is the lowest loss wavelength region of silica-based optical fibers, are being put into practical use as long-distance, high-capacity optical communication transmission lines.

分散シフトフアイバの中でも第1図に示すよう
な階段型屈折率分布を有するものは、単純なステ
ツプ型屈折率分布を有する分散シフトフアイバに
比べ曲げ損失が小さくなり、実用上の利点が大き
く開発検討が進められている(参考文献1:“デ
イスパージヨン−シフテツド コンヴエツクス−
インデツクス シングルモード フアイバーズ
(分散シフト階段型屈折率分布シングルモードフ
アイバ)”、N.クワキ他、エレクトロニクス レ
ターズ、1985年12月5日、21巻No.25/26、1186−
1187頁)。
Among dispersion-shifted fibers, those with a step-type refractive index distribution as shown in Figure 1 have lower bending loss than dispersion-shifted fibers with a simple step-type refractive index distribution, and are considered for development due to their great practical advantages. (Reference 1: “Dispersion - Shifted Combinations -
“Index Single Mode Fibers (Dispersion Shifted Step Type Graded Index Single Mode Fiber)”, N. Kwaki et al., Electronics Letters, December 5, 1985, Vol. 21 No. 25/26, 1186-
1187 pages).

第1図に示した階段型屈折率分布では、中央部
の屈折率の最も高い部分1・1(内側コアと称す
る)と該内側コア1・1を囲む内側コアより低い
屈折率を有する部分1・2(外側コアと称する)、
さらに該外側コア1・2を取り囲む最も屈折率の
低いクラツド部1,3から屈折率分布構造が形成
されている。
In the stepped refractive index distribution shown in FIG. 1, a central portion 1.1 having the highest refractive index (referred to as the inner core) and a portion 1 surrounding the inner core 1.1 having a lower refractive index than the inner core.・2 (referred to as outer core),
Further, a refractive index distribution structure is formed from cladding parts 1 and 3 having the lowest refractive index surrounding the outer cores 1 and 2.

このような階段型屈折率分布を有する分散シフ
トフアイバについて、その屈折率分布を形成する
ガラス組成として第6図に示すように内側コア
6・1がGeO2−SiO2、外側コア6・2がSiO2
クラツド部6・3がF−SiO2からなるものが提
案されている〔参考文献2:“デイスパージヨン
−シフテツド フアイバーズ ウイズ フルオリ
ン アツデツド クラツデイング バイ ザ
VADメソツド(気相軸付法によるフツ素添加ク
ラツドを有する分散シフトフアイバ)”、H.ヨコ
タ他、テクニカルダイジエスト オン トピカル
ミーテイング オン オプテイカル フアイバ
コミユニケイシヨン(アトランタ、1986)、ヘ
ーパーWF2〕。
Regarding the dispersion shifted fiber having such a stepped refractive index distribution, as shown in FIG. 6, the glass composition forming the refractive index distribution is GeO 2 -SiO 2 for the inner core 6. SiO2 ,
It has been proposed that the cladding portions 6 and 3 are made of F-SiO 2 [Reference 2: "Dispersion - Shifted Fibers with Fluorine Attached Cladding by the
VAD Method (Dispersion-Shifted Fiber with Fluorine-doped Cladding by Vapor-phase Axial Mounting)”, H. Yokota et al., Technical Digest on Topical Meeting on Optical Fiber Communication (Atlanta, 1986), Heper WF2].

光フアイバの屈折率分布は、SiO2ガラスに
GeO2を屈折率増加成分として添加することによ
つて得るのが最も一般的である。しかしながら、
GeO2添加量を多くすると、ガラスのレイソー散
乱が増加し伝送損失が高くなる或いはGeO2
GeOの還元に基づくと考えられる紫外域での電
子遷移吸収が増加し、その影響が使用波長域であ
る1.5μm帯にまで及び、やはり伝送損失が高くな
る。そこで、上記組成ではクラツド部6,3にF
を添加してクラツド部の屈折率を下げ、内側コア
6,1のみにGeO2を添加することでGeO2添加量
を下げて伝送損失の低減を図ろうとしている。こ
れまでに本発明者等は、この考えに基づき第6図
に示すような屈折率分布と組成を有する分散シフ
トフアイバを製造し、波長1.55μmにおける伝送
損失は0.23dB/Kmまで低減することができてい
る(参考文献3:重松他、“1.5μm帯分散シフト
シングルモードフアイバの伝送特性”、電子通信
学会技術研究報告OQE86−99)。尚、第6図にお
いて内側コア径C1は3μm、外側コア径C2は9μm、
フアイバ外径C3は125μmである。また以下の図
で比屈折率差(△n)は純粋SiO2の屈折率を△
n=oとして表してある。各数値については、第
6図或いは上記に示したものは、あくまでも例示
であつて、これらに限定されるものではない。
The refractive index distribution of optical fiber is similar to that of SiO 2 glass.
It is most commonly obtained by adding GeO 2 as a refractive index increasing component. however,
When the amount of GeO 2 added is increased, Raysor scattering of the glass increases and the transmission loss increases, or GeO 2
Electronic transition absorption in the ultraviolet region, which is thought to be based on the reduction of GeO, increases, and its influence extends to the 1.5 μm band, which is the wavelength range used, and transmission loss also increases. Therefore, in the above composition, F is applied to the cladding parts 6 and 3.
By adding GeO 2 to lower the refractive index of the cladding portion, and adding GeO 2 only to the inner cores 6 and 1, the amount of GeO 2 added is lowered in an attempt to reduce transmission loss. Based on this idea, the present inventors have manufactured a dispersion-shifted fiber having the refractive index distribution and composition shown in Figure 6, and were able to reduce the transmission loss at a wavelength of 1.55 μm to 0.23 dB/Km. (Reference 3: Shigematsu et al., “Transmission characteristics of 1.5 μm band dispersion-shifted single mode fiber”, Institute of Electronics and Communication Engineers technical research report OQE86-99). In addition, in Fig. 6, the inner core diameter C 1 is 3 μm, the outer core diameter C 2 is 9 μm,
The fiber outer diameter C 3 is 125 μm. In addition, in the figure below, the relative refractive index difference (△n) is the refractive index of pure SiO 2 .
It is expressed as n=o. Regarding each numerical value, those shown in FIG. 6 or above are merely examples, and the present invention is not limited to these.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように内側コアがGeO2−SiO2、外側コ
アがSiO2、クラツド部がF−SiO2からなる階段
型屈折率分布を有する分散シフトフアイバにおい
ては、波長1.55μmにおいて0.23dB/Kmの伝送損
失は得られているがさらに低損失化を図ることが
困難であつた。本発明はこの現状に鑑みてなされ
たもので、より低損失な階段型屈折率分布分散シ
フトフアイバを製造できる新規な母材構造及びこ
の製造方法を提供することを目的とするものであ
る。
As mentioned above, in the dispersion-shifted fiber with a stepped refractive index distribution consisting of GeO 2 -SiO 2 in the inner core, SiO 2 in the outer core, and F-SiO 2 in the cladding part, the dispersion shift fiber has a dispersion shift of 0.23 dB/Km at a wavelength of 1.55 μm. Although transmission loss has been achieved, it has been difficult to further reduce the loss. The present invention has been made in view of this current situation, and an object of the present invention is to provide a new base material structure and a method for manufacturing the same, which can manufacture a step-type refractive index distribution dispersion shifted fiber with lower loss.

〔問題点を解決するための手段及び作用〕[Means and actions for solving problems]

本発明者らは研究を重ねた結果、前記問題点を
解決できる手段として、本発明の内側コアが
GeO2−F−SiO2、外側コアがF−SiO2、クラツ
ド部がF−SiO2からなることを特徴とする階段
状屈折率分布を有する光フアイバ用母材を提供す
る。
As a result of repeated research, the present inventors found that the inner core of the present invention is a means to solve the above problems.
Provided is a base material for an optical fiber having a stepped refractive index distribution, characterized in that the outer core is made of F- SiO2 , and the cladding part is made of F- SiO2 .

さらに上記の本発明母材を作製するにあたり、
VAD法により複数のガラス微粒子合成用バーナ
ーを用いて、GeO2を添加したSiO2からなる内側
コアと純粋SiO2からなる外側コアを有するコア
用スート体を作成した後、該コア用スート体をF
を含有する雰囲気中で加熱して、該コア用スート
体にFを添加するとともに加熱脱水処理及び加熱
透明化処理を行なうことによりコア用透明ガラス
体を作成する工程と、VAD法により作成した純
粋SiO2からなるクラツド用スート体をFを含有
する雰囲気中で加熱して、該クラツド用スート体
にFを添加するとともに加熱脱水処理及び加熱透
明化処理を行なうことによりクラツド用透明ガラ
ス体を作成した後、該クラツド用透明ガラス体の
中央部を穿孔する工程と、該コア用ガラス体を該
クラツド用ガラス体の中空部に挿入して両者を加
熱一体化する工程とを有することを特徴とする内
側コアがGeO2−F−SiO2、外側コアがF−
SiO2、クラツド部がF−SiO2からなる階段状屈
折率分布を有する光フアイバ用母材の製造方法を
提供する。
Furthermore, in producing the above-mentioned base material of the present invention,
After creating a soot body for a core having an inner core made of SiO 2 doped with GeO 2 and an outer core made of pure SiO 2 using a plurality of burners for synthesizing glass fine particles by the VAD method, the soot body for the core was F
A step of creating a transparent glass body for the core by heating in an atmosphere containing soot for the core, adding F to the soot body for the core, and performing a heating dehydration treatment and a heating transparency treatment; A transparent glass body for cladding is created by heating a soot body for cladding made of SiO 2 in an atmosphere containing F, adding F to the soot body for cladding, and performing heating dehydration treatment and heating transparency treatment. After that, the method comprises the steps of: drilling a hole in the center of the transparent glass body for the cladding; and inserting the core glass body into the hollow part of the glass body for the cladding, and heating and integrating the two. The inner core is GeO 2 −F−SiO 2 and the outer core is F−
A method for manufacturing an optical fiber base material having a stepped refractive index distribution made of SiO 2 and a cladding portion of F-SiO 2 is provided.

本発明の光フアイバ用母材の屈折率分布は、第
1図に示すような階段型であつて、本発明母材の
組成は内側コア1・1がGeO2−F−SiO2からな
り、外側コア1・2がF−SiO2からなり、外側
コアより低屈折率のクラツド部1・3がF−
SiO2からなるものである。第3図は後記する本
発明の実施例で得た分散シフトフアイバ用ガラス
母材の屈折率分布とガラス組成を示す図であり、
同図中3・1は内側コア、3・2は外側コア、
3・3はクラツド部である。
The refractive index distribution of the optical fiber preform of the present invention is step-shaped as shown in FIG. 1, and the composition of the preform of the present invention is such that the inner cores 1 . The outer cores 1 and 2 are made of F-SiO2, and the cladding parts 1 and 3, which have a lower refractive index than the outer core, are made of F-SiO2.
It is made of SiO2 . FIG. 3 is a diagram showing the refractive index distribution and glass composition of a glass base material for a dispersion-shifted fiber obtained in an example of the present invention to be described later.
In the figure, 3.1 is the inner core, 3.2 is the outer core,
3.3 is the cladding part.

本発明の母材構造がより低損失化を可能とする
ことを説明するに先だつて、前記した第6図の従
来構造において、さらなる低損失化が困難であつ
た理由に関する考察を述べる。すなわち第6図の
従来構造の伝送損失劣化要因としては、内側コ
アに含有されるGeO2のために、線引等の高温加
熱過程において通常4価のGeが還元されて2価
の状態に変化し、紫外域に吸収を有する電子遷移
の吸収中心となり、波長1.5μm帯までその影響が
及ぶこと、GeO2を含有する内側コアとFを含
有するクラツド部に挾まれた、SiO2からなる外
側コアの部分は、他の部分に比して線引時の高温
加熱過程における粘性が高くなるため、線引時に
かかる張力が該外側コアの部分に集中して、外側
コアの部分に欠陥を生じ、やはり紫外域での吸収
の原因となること、等が考えられる。
Before explaining that the base material structure of the present invention enables further reduction in loss, consideration will be given as to why it was difficult to further reduce loss in the conventional structure shown in FIG. 6 described above. In other words, the transmission loss deterioration factor of the conventional structure shown in Figure 6 is that due to the GeO 2 contained in the inner core, tetravalent Ge is usually reduced and changed to a divalent state during the high temperature heating process such as wire drawing. However, the outer core made of SiO 2 sandwiched between the inner core containing GeO 2 and the cladding containing F becomes the absorption center for electronic transitions that have absorption in the ultraviolet region, and its influence extends to the wavelength band of 1.5 μm. The core part has a higher viscosity than other parts during the high-temperature heating process during wire drawing, so the tension applied during wire drawing concentrates on the outer core part, causing defects in the outer core part. , it is thought that this may also cause absorption in the ultraviolet region.

上記の考察に基き、本発明のFを内側コア及び
外側コアの両者に添加することがより低損失化に
有効であると考えられた。すなわち、上記の伝送
損失劣化要因に対しては、内側コアのGeO2
添加されている部分にFを共存させることによ
り、Geが還元されてもさらにGe−F結合を作る
ので、2価のGeに特徴的な紫外吸収が低減でき
る、又はGe−F結合そのものがGeの還元を抑制
する効果を期待できる。また要因に対しては、
外側コアにFを添加することにより、その粘性を
下げて内側コア及びクラツド部のそれに近づける
ことができるので、紫外域での吸収を低減でき
る。また、内側コアにFを添加することにより内
側コアの屈折率が低下するので、GeO2添加量を
増加することなくその低下分を補償するために
は、外側コアの屈折率を下げる要があり、このた
めにも外側コアへのF添加は必要である。
Based on the above considerations, it was considered that adding F of the present invention to both the inner core and the outer core is more effective in reducing loss. In other words, for the above transmission loss deterioration factor, by allowing F to coexist in the part of the inner core where GeO 2 is added, even if Ge is reduced, further Ge-F bonds are created, so that divalent It can be expected that the ultraviolet absorption characteristic of Ge can be reduced, or that the Ge-F bond itself can suppress the reduction of Ge. Also, regarding the factors,
By adding F to the outer core, its viscosity can be lowered to approach that of the inner core and cladding, thereby reducing absorption in the ultraviolet region. Furthermore, since the refractive index of the inner core decreases by adding F to the inner core, it is necessary to lower the refractive index of the outer core in order to compensate for this decrease without increasing the amount of GeO 2 added. , Also for this purpose, it is necessary to add F to the outer core.

但し外側コア部とクラツド部の屈折率差を所要
分だけ保つためには、外側コアにFを添加した場
合、クラツド部へのF添加量を増しクラツド部の
屈折率をより低減しておく必要がある。
However, in order to maintain the required refractive index difference between the outer core and the cladding, when F is added to the outer core, it is necessary to increase the amount of F added to the cladding to further reduce the refractive index of the cladding. There is.

以上の考えに基き、本発明の母材を作製し、光
フアイバとしてその特性を調べたところ、従来困
難であつた伝送損失のいつそうの低減が達成でき
たことが確認できた。
Based on the above considerations, the base material of the present invention was manufactured and its properties were investigated as an optical fiber, and it was confirmed that a reduction in transmission loss, which had been difficult in the past, could be achieved.

なお、本発明におけるVAD法(Vaporphase
Axial Deposition Method ヴエイパーフエイ
ズアクシアル デポジツシヨン メソツド、気相
軸付法)は、光フアイバ母材の製造において一般
的に用いられる方法であつて、例えばガラス微粒
子合成用バーナーにH2などの燃焼用ガス、O2
どの助燃性ガス、SiCl4などのガラス原料ガスを
供給し、該バーナーの火炎内で火炎加水分解反応
させることによりガラス微粒子を発生させ、この
ガラス微粒子を回転する出発材先端付近に堆積さ
せ始め、ガラス微粒子堆積体の成長に伴い出発材
を軸方向に移動しガラス微粒子堆積体を軸方向に
形成し、しかるのち該ガラス微粒子堆積体を加熱
脱水処理及び加熱透明化処理して透明ガラス体を
得る、というような方法である。
Note that the VAD method (Vaporphase
Axial Deposition Method (vapor phase axial deposition method) is a method commonly used in the production of optical fiber base materials. Gas, combustion auxiliary gas such as O 2 , and frit gas such as SiCl 4 are supplied, and a flame hydrolysis reaction occurs in the flame of the burner to generate glass particles, and the glass particles are rotated near the tip of the starting material. As the glass fine particle deposit grows, the starting material is moved in the axial direction to form a glass fine particle deposit in the axial direction, and then the glass fine particle deposit is subjected to heating dehydration treatment and heating transparentization treatment. This is a method to obtain a transparent glass body.

本発明の母材は、VAD法によるスート体をF
添加、脱水、透明化してガラス体とする方法で、
各組成に対応したコア用ガラス体、クラツド用ガ
ラス体を得ておき、クラツド用ガラス体について
は孔開け加工してクラツド用ガラスパイプとし、
必要に応じてコア用ガラス体及び/又はクラツド
用ガラスパイプについて延伸を行ない、次にクラ
ツド用ガラスパイプの中空部にコア用ガラス体を
挿入した状態で加熱して一体化する方法で得るこ
とができる。
The base material of the present invention is a soot body produced by the VAD method.
Addition, dehydration, and clarification to form a glass body.
A glass body for the core and a glass body for the cladding corresponding to each composition are obtained, and the glass body for the cladding is made into a glass pipe for the cladding by drilling holes.
It can be obtained by stretching the core glass body and/or the cladding glass pipe as necessary, and then heating and integrating the core glass body inserted into the hollow part of the cladding glass pipe. can.

本発明の光フアイバ用母材の具体的な製造方法
については、以下の実施例にて詳述するが、これ
はあくまで例示にすぎず、これに限定されるもの
ではない。
A specific method for manufacturing the optical fiber base material of the present invention will be described in detail in the following examples, but this is merely an example and is not limited thereto.

〔実施例〕〔Example〕

実施例 (1) コア用透明ガラス体の作成 第4図に示すような構成でコア用スート体を
作成した。4・1は内側コア用ガラス微粒子合
成用バーナー(内側コア用バーナーと称す)、
4・2は外側コア用ガラス微粒子合成用バーナ
ー(外側コア用バーナーと称す)であり、内側
コア用バーナー4,1にGeCl4、SiCl4、H2
O2、不活性ガスを供給し、GeCl4、SiCl4
酸・水素火炎中で反応させGeO2を含有する
SiO2ガラス微粒子を発生せしめ、出発材5先
端上に内側コア用スート体を堆積させる。出発
材5は回転しつつ内側コア用スート体の成長に
合わせ上方に引上げられていく。一方外側コア
用バーナー4・2にはSiO2、H2、O2、不活性
ガスを供給し内側コア用スート体を取り囲むよ
うに、SiO2ガラス微粒子からなる外側コア用
スート体が形成されていく。本実施例では内側
コア用バーナー4・1にH23.0/分、O210
/分、SiCl485c.c./分、GeCl44.2c.c./分、
Ar3.5/分を供給し、外側コア用バーナー
4・2にH280/分、O25.0/分、SiCl4300
c.c./分、Ar2/分を供給することにより、外
径80mmφ(内側コア径25mmφ)長さ500mmのコア
用スート体が50mm/時の引上速度で得られた。
Example (1) Creation of a transparent glass body for a core A soot body for a core was created with the configuration shown in FIG. 4.1 is a burner for synthesizing glass particles for the inner core (referred to as the burner for the inner core);
4.2 is a burner for synthesizing glass particles for the outer core (referred to as an outer core burner), and the inner core burners 4 and 1 contain GeCl 4 , SiCl 4 , H 2 ,
O 2 and inert gas are supplied, and GeCl 4 and SiCl 4 are reacted in an acid/hydrogen flame to contain GeO 2
SiO 2 glass particles are generated and a soot body for the inner core is deposited on the tip of the starting material 5. The starting material 5 is rotated and pulled upward in accordance with the growth of the soot body for the inner core. On the other hand, SiO 2 , H 2 , O 2 , and inert gas are supplied to the burners 4 and 2 for the outer core, and an outer core soot body made of SiO 2 glass particles is formed to surround the soot body for the inner core. go. In this example, H 2 3.0/min and O 2 10 were applied to the inner core burners 4 and 1.
/min, SiCl 4 85c.c./min, GeCl 4 4.2cc/min,
Supply Ar3.5/min, H 2 80/min, O 2 5.0/min, SiCl 4 300 to burners 4 and 2 for the outer core.
By supplying cc/min and Ar2/min, a core soot body with an outer diameter of 80 mmφ (inner core diameter of 25 mmφ) and a length of 500 mm was obtained at a pulling speed of 50 mm/hour.

このコア用スート体を、まずリング状カーボ
ンヒーターを有する炉内へ挿入し、1050℃に加
熱し、炉内雰囲気をCl2:He=3:100として
加熱脱水処理を行つた。次に該コア用スート体
を1200℃に加熱し炉内雰囲気をSiF4:He=
5:1000としてコア用スート体にFを添加せし
め、最後にSiF4:He=5:1000の雰囲気中で
1600℃に加熱することにより透明ガラス化を行
つた。その結果外径35mmφ、内側コア径12mmφ
のコア用透明ガラス体が得られた。このコア用
透明ガラス体の屈折率分布を第2図に示す。第
2図において2・1は内側コア相当部分2,2
は外側コア相当部分でa1,a2は夫々12mm、35mm
である。
This core soot body was first inserted into a furnace equipped with a ring-shaped carbon heater, heated to 1050° C., and heated and dehydrated with the atmosphere in the furnace set to Cl 2 :He=3:100. Next, the soot body for the core is heated to 1200°C, and the atmosphere inside the furnace is changed to SiF 4 :He=
F was added to the soot body for the core at a ratio of 5:1000, and finally in an atmosphere of SiF 4 :He = 5:1000.
Transparent vitrification was achieved by heating to 1600°C. As a result, the outer diameter is 35mmφ, and the inner core diameter is 12mmφ.
A transparent glass body for a core was obtained. FIG. 2 shows the refractive index distribution of this transparent glass body for the core. In Figure 2, 2.1 is the inner core equivalent part 2,2
are the parts corresponding to the outer core, and a 1 and a 2 are 12 mm and 35 mm, respectively.
It is.

このようにして得られたコア用透明ガラス体
を電気抵抗炉にて約1900℃に加熱し、直径3.8
mmφにまで延伸した。ここで延伸の際酸・水素
バーナーなどOH成分を含有する炎で加熱する
とコア用透明ガラス体表面がOH基により汚染
され、フアイバ化後の伝送損失が著しく劣化す
るので好ましくない。
The transparent glass body for the core obtained in this way was heated to about 1900℃ in an electric resistance furnace, and the diameter was 3.8℃.
It was stretched to mmφ. In this case, heating with a flame containing an OH component such as an acid/hydrogen burner during stretching is not preferable because the surface of the transparent glass body for the core will be contaminated with OH groups and the transmission loss after fiberization will be significantly degraded.

(2) クラツド用透明ガラス体の作製 VAD法により1本のガラス微粒子合成用バ
ーナーを用いてSiO2のみからなるクラツド用
スート体を作成した。バーナーにはH230/
分、O225/分、Ar15/分、SiCl41600c.c./
分を供給し、外径110mmφ、長さ550mmのクラツ
ド用スート体を得た。
(2) Preparation of transparent glass body for cladding A soot body for cladding consisting only of SiO 2 was prepared by the VAD method using one burner for synthesizing glass fine particles. H2 30/ for burner
min, O 2 25/min, Ar15/min, SiCl 4 1600c.c./
A soot body for cladding with an outer diameter of 110 mmφ and a length of 550 mm was obtained.

このクラツド用スート体をCl2:He=3:
100の雰囲気を有する炉内に挿入し、1050℃に
加熱して脱水処理を施したのち、SiF4:He=
8:100の雰囲気中で1200℃に加熱してF添加
処理を施し、さらにSiF4:He=8:100の雰囲
気中で1600℃に加熱し透明ガラス化を行つた。
その結果外径50mmφ、長さ270mmの円柱状の
クラツド用透明ガラス体を得た。該クラツド用
透明ガラス体中央に超音波穿孔機を用いて8mm
φの穴をあけパイプ状としたのち、22mmφにま
で延伸した(この時内径は約3.5mmφになつ
た)。次に、このクラツド用透明ガラス体の内
部にSF6を長しつつ外部より酸・水素バーナー
で加熱することにより内表面を内径が約7mmφ
になるまでガスエツチングした。このガスエツ
チングにより穿孔時に内面に生じた傷や凹凸は
なくなり平滑な内面が得られた。
This soot body for cladding is Cl 2 :He=3:
SiF 4 :He=
F addition treatment was carried out by heating to 1200° C. in an atmosphere of 8:100 ratio, and transparent vitrification was performed by heating to 1600° C. in an atmosphere of SiF 4 :He=8:100.
As a result, a cylindrical transparent glass body for a cladding with an outer diameter of 50 mmφ and a length of 270 mm was obtained. Using an ultrasonic perforator, a hole of 8mm is made in the center of the transparent glass body for the cladding.
After drilling a φ hole and making it into a pipe shape, it was stretched to 22 mmφ (at this time, the inner diameter was approximately 3.5 mmφ). Next, by extending SF 6 inside the transparent glass body for the cladding and heating it from the outside with an acid/hydrogen burner, the inner surface was heated to an inner diameter of approximately 7 mmφ.
Gas etched until This gas etching eliminated the scratches and irregularities that occurred on the inner surface during drilling, resulting in a smooth inner surface.

(3) コア用透明ガラス体とクラツド用透明ガラス
体の一体化 前記(1)で得られたコア用透明ガラス体(3.8
mmφ)を前記(2)で得られたパイプ状クラツド用
ガラス体(外径22mmφ、内径7mmφ)の中空部
内に挿入し、外部より酸・水素バーナーにより
クラツド用ガラス体表面温度が1700〜1800℃程
度になるよう加熱することにより、クラツド用
ガラス体を収縮させ、クラツド用ガラス体内壁
とコア用ガラス体表面とを融着させ両者を一体
化した。このようにして得られた本発明のガラ
ス母材の屈折率分布を第3図に示す。この時の
内側コア径b1は1.3mmφ、外側コア径b2は3.8mm
φ、ガラス母材外径b3は19mmφであつた。
(3) Integration of the transparent glass body for the core and the transparent glass body for the cladding The transparent glass body for the core obtained in (1) above (3.8
mmφ) is inserted into the hollow part of the pipe-shaped glass body for cladding (outer diameter 22 mmφ, inner diameter 7 mmφ) obtained in (2) above, and the surface temperature of the cladding glass body is heated to 1700 to 1800℃ using an acid/hydrogen burner from the outside. By heating to a certain degree, the glass body for the cladding was contracted, and the inner wall of the glass body for the cladding and the surface of the glass body for the core were fused and integrated. The refractive index distribution of the glass base material of the present invention thus obtained is shown in FIG. In this case, the inner core diameter b 1 is 1.3 mmφ, and the outer core diameter b 2 is 3.8 mm.
φ and the outer diameter b3 of the glass base material were 19 mmφ.

(4) フアイバ化 前記(3)で得られたガラス母材を外径16mmφに
延伸したのち、VAD装置を用いてガラス母材
上にSiO2からなるスス体を堆積させたのち、
(2)の場合と同様の加熱脱水、F添加、透明化処
理を行い、外径55mmφのプリフオームが得られ
た。この時スス体の収縮力により中央のガラス
母材も押し縮められその径は約21mmφにまで太
くなつた。このプリフオームを外径25mmφに延
伸したのち、外径125μmφにまで紡糸した。
(4) Fiberization After stretching the glass base material obtained in the above (3) to an outer diameter of 16 mmφ, a soot body consisting of SiO 2 was deposited on the glass base material using a VAD device, and then
A preform with an outer diameter of 55 mmφ was obtained by performing the same heating dehydration, F addition, and transparency treatment as in case (2). At this time, the central glass base material was also compressed by the contraction force of the soot body, and its diameter increased to approximately 21 mmφ. This preform was drawn to an outer diameter of 25 mmφ and then spun to an outer diameter of 125 μmφ.

(5) 伝送損失特性及び従来フアイバとの比較第5
図に前記(4)で得られた本発明による分散シフト
フアイバの伝送損失スペクトルを実線イで示
し、また比較例として第6図の従来フアイバの
スペクトルを破線ロで示す。第3図及び第6図
から明らかなように本発明フアイバと従来フア
イバは内側コア、外側コア間が0.65%、外側コ
アとクラツド部の間が0.2%と相対的な比屈折
率差は同じであるが、本発明品は内側コア、外
側コアにFが添加され、さらにクラツド部もF
添加量が増量されているので0.45〜−0.4%の
間にあり、従来品は0.65〜−0.2%の間にある。
第5図から明らかなように従来フアイバの伝送
損失ロも波長1.55μmで0.25dB/Kmと比較的低
ロスではあるが、本発明品フアイバのそれイは
波長1.55μmで0.205dB/Kmまでもの低損失化が
達成できている。しかも、短波長領域にいくに
つれ、イ,ロ両者の伝送損失の差が広がつてい
る。この事実は本発明の構造をとることで、紫
外域での吸収を低減できることを示すものであ
る。
(5) Transmission loss characteristics and comparison with conventional fiber Part 5
In the figure, the transmission loss spectrum of the dispersion-shifted fiber according to the present invention obtained in the above (4) is shown by the solid line A, and the spectrum of the conventional fiber shown in FIG. 6 as a comparative example is shown by the broken line B. As is clear from FIGS. 3 and 6, the relative refractive index difference between the fiber of the present invention and the conventional fiber is the same: 0.65% between the inner core and the outer core, and 0.2% between the outer core and the cladding. However, in the product of the present invention, F is added to the inner core and outer core, and F is also added to the cladding part.
Since the amount added has been increased, it is between 0.45 and -0.4%, while the conventional product is between 0.65 and -0.2%.
As is clear from Figure 5, the transmission loss of the conventional fiber is relatively low at 0.25 dB/Km at a wavelength of 1.55 μm, but that of the fiber of the present invention is as low as 0.205 dB/Km at a wavelength of 1.55 μm. Low loss has been achieved. Moreover, the difference in transmission loss between A and B widens as the wavelength range gets shorter. This fact indicates that the structure of the present invention can reduce absorption in the ultraviolet region.

〔発明の効果〕 本発明の光フアイバ用母材は以上説明したよう
に、内側コア及び外側コアにFを添加することに
より紫外域に吸収を有する伝送損失劣化要因を低
減できるので、階段型分散シフトフアイバの母材
として用いて該フアイバの低損失化に非常に効果
がある。
[Effects of the Invention] As explained above, the optical fiber base material of the present invention can reduce the transmission loss deterioration factor that has absorption in the ultraviolet region by adding F to the inner core and outer core, so that step-type dispersion can be achieved. When used as a base material for shift fibers, it is very effective in reducing the loss of the fibers.

さらに本発明の光フアイバ用母材の製造方法は
内側コアがGeO2−F−SiO2、外側コアがF−
SiO2、クラツド部がF−SiO2からなる本発明母
材を実現でき、しかもこの製法による母材を線引
きすると非常に低損失で高品質の階段型屈折率分
布フアイバが得られ、階段型分散シフトフアイバ
製造に用いて非常に有効である。
Furthermore, in the method for manufacturing an optical fiber base material of the present invention, the inner core is made of GeO 2 -F-SiO 2 and the outer core is made of F-
It is possible to realize the base material of the present invention consisting of SiO 2 and F-SiO 2 in the cladding part, and when the base material is drawn by this manufacturing method, a step-shaped refractive index distribution fiber of very low loss and high quality can be obtained. It is very effective in manufacturing shifted fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明及び従来の光フアイバ用母材の
階段型屈折率分布を説明する図、第2図及び第3
図は本発明の実施例で得られたコア用透明ガラス
体及び本発明のガラス母材の屈折率分布を示す図
である。第4図は本発明の実施例におけるコア用
スート体の作成方法の説明図、第5図は本発明に
よるフアイバ及び従来品の伝送損失スペクトルを
比較した図、第6図は従来の分散シフトフアイバ
の屈折率分布を示す図である。
FIG. 1 is a diagram explaining the stepped refractive index distribution of the present invention and the conventional optical fiber base material, and FIGS.
The figure is a diagram showing the refractive index distribution of a transparent glass body for a core obtained in an example of the present invention and a glass base material of the present invention. FIG. 4 is an explanatory diagram of a method for producing a core soot body in an embodiment of the present invention, FIG. 5 is a diagram comparing the transmission loss spectra of a fiber according to the present invention and a conventional product, and FIG. 6 is a diagram of a conventional dispersion-shifted fiber. FIG. 2 is a diagram showing the refractive index distribution of

Claims (1)

【特許請求の範囲】 1 内側コアがGeO2−F−SiO2、外側コアがF
−SiO2、クラツド部がF−SiO2からなることを
特徴とする階段状屈折率分布を有する光フアイバ
用母材。 2 VAD法により複数のガラス微粒子合成用バ
ーナーを用いて、GeO2を添加したSiO2からなる
内側コアと純粋SiO2からなる外側コアを有する
コア用スート体を作成した後、該コア用スート体
をFを含有する雰囲気中で加熱して、該コア用ス
ート体にFを添加するとともに加熱脱水処理及び
加熱透明化処理を行なうことによりコア用透明ガ
ラス体を作成する工程と、VAD法により作成し
た純粋SiO2からなるクラツド用スート体をFを
含有する雰囲気中で加熱して、該クラツド用スー
ト体にFを添加するとともに加熱脱水処理及び加
熱透明化処理を行なうことによりクラツド用透明
ガラス体を作成した後、該クラツド用透明ガラス
体の中央部を穿孔する工程と、該コア用ガラス体
を該クラツド用ガラス体の中空部に挿入して両者
を加熱一体化する工程とを有することを特徴とす
る内側コアがGeO2−F−SiO2、外側コアがF−
SiO2、クラツド部がF−SiO2からなる階段状屈
折率分布を有する光フアイバ用母材の製造方法。
[Claims] 1. The inner core is made of GeO 2 -F-SiO 2 and the outer core is made of F.
- A base material for an optical fiber having a stepped refractive index distribution, characterized in that the cladding part is made of -SiO2 and F- SiO2 . 2 After creating a soot body for a core having an inner core made of SiO 2 doped with GeO 2 and an outer core made of pure SiO 2 using a plurality of burners for synthesizing glass fine particles by the VAD method, the soot body for the core is A step of creating a transparent glass body for the core by heating in an atmosphere containing F, adding F to the soot body for the core, and performing a heating dehydration treatment and a heating transparency treatment, and a step of creating a transparent glass body for the core by VAD method. A transparent glass body for a cladding is obtained by heating a soot body for a cladding made of pure SiO 2 in an atmosphere containing F, adding F to the soot body for a cladding, and performing a heating dehydration treatment and a heating transparentization treatment. After creating the transparent glass body for the cladding, the method includes the steps of drilling a hole in the center of the transparent glass body for the cladding, and inserting the glass body for the core into the hollow part of the glass body for the cladding and heating and integrating the two. Characteristic: The inner core is GeO 2 −F−SiO 2 and the outer core is F−.
A method for manufacturing an optical fiber base material having a stepped refractive index distribution made of SiO 2 and a cladding portion of F-SiO 2 .
JP62052089A 1986-06-11 1987-03-09 Optical fiber preform and production thereof Granted JPS63222042A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62052089A JPS63222042A (en) 1987-03-09 1987-03-09 Optical fiber preform and production thereof
KR1019870005307A KR900003449B1 (en) 1986-06-11 1987-05-28 Dispersion-shift fiber and its production
CA000539353A CA1294438C (en) 1986-06-11 1987-06-10 Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
US07/060,176 US4822399A (en) 1986-06-11 1987-06-10 Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
DE8787108453T DE3762609D1 (en) 1986-06-11 1987-06-11 GLASS PREFORM FOR A DISPERSION-SHIFTED OPTICAL SINGLE-MODE FIBER AND METHOD FOR THE PRODUCTION THEREOF.
AU74131/87A AU592875B2 (en) 1986-06-11 1987-06-11 Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
EP87108453A EP0249230B1 (en) 1986-06-11 1987-06-11 Glass preform for dispersion shifted single mode optical fiber and method for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052089A JPS63222042A (en) 1987-03-09 1987-03-09 Optical fiber preform and production thereof

Publications (2)

Publication Number Publication Date
JPS63222042A JPS63222042A (en) 1988-09-14
JPH0453823B2 true JPH0453823B2 (en) 1992-08-27

Family

ID=12905101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052089A Granted JPS63222042A (en) 1986-06-11 1987-03-09 Optical fiber preform and production thereof

Country Status (1)

Country Link
JP (1) JPS63222042A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
US20090041415A1 (en) * 2006-04-05 2009-02-12 Nippon Telegraph And Telephone Corporation Double-core optical fiber

Also Published As

Publication number Publication date
JPS63222042A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
KR900003449B1 (en) Dispersion-shift fiber and its production
JP5342614B2 (en) Optical fiber preform and optical fiber manufacturing method
US4846867A (en) Method for producing glass preform for optical fiber
JPH0425210B2 (en)
JPH11209141A (en) Production of segment core optical waveguide preform
KR100426385B1 (en) Optical fiber and how to make it
CN102149648B (en) Process for producing optical-fiber base material
JP3098828B2 (en) Dispersion shifted fiber and method of manufacturing the same
US4880452A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPH0453823B2 (en)
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JP2002047027A (en) Preform for optical fiber and single mode optical fiber
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPS6131324A (en) Production of base material for optical fiber
JPH0327491B2 (en)
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPS63139028A (en) Production of optical fiber glass base material
JPH085685B2 (en) Method for manufacturing base material for dispersion-shifted optical fiber
JPH0717395B2 (en) Manufacturing method of base material for dispersion shift fiber
JPH01111747A (en) Production of optical fiber preform
JPH01242432A (en) Production of base material for optical fiber
JPH0784330B2 (en) Manufacturing method of base material for dispersion shift fiber
JPH02201403A (en) Optical fiber and production of base material thereof as well as production of optical fiber
JPH068185B2 (en) Manufacturing method of optical fiber preform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees