JP2002047027A - Preform for optical fiber and single mode optical fiber - Google Patents

Preform for optical fiber and single mode optical fiber

Info

Publication number
JP2002047027A
JP2002047027A JP2000234111A JP2000234111A JP2002047027A JP 2002047027 A JP2002047027 A JP 2002047027A JP 2000234111 A JP2000234111 A JP 2000234111A JP 2000234111 A JP2000234111 A JP 2000234111A JP 2002047027 A JP2002047027 A JP 2002047027A
Authority
JP
Japan
Prior art keywords
optical fiber
core
gas
preform
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000234111A
Other languages
Japanese (ja)
Other versions
JP4455740B2 (en
Inventor
Masaru Inoue
大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000234111A priority Critical patent/JP4455740B2/en
Publication of JP2002047027A publication Critical patent/JP2002047027A/en
Application granted granted Critical
Publication of JP4455740B2 publication Critical patent/JP4455740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a preform and single mode optical fiber in which zero dispersion wavelength, mode field diameter and cutoff wavelength are all within limits of desirable numeric value, and increasing of absorption loss by hydrogen can be controlled, by controlling the generation of micro bubble on the interface of core and clad. SOLUTION: The preform for the optical fiber is characterized in that a core soot body is manufactured by vapor phase synthesis method, and after dehydrating in dehydrating gas atmosphere, the core soot body is fired in inert gas for vitrification, and to the core member obtained by heating and drawing to the stated diameter, the clad part is given for manufacturing the preform, and the core member has low refractive index part around its outer part by 1×10-5-3×10-4 lower than that of the clad part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバの前駆
体である光ファイバ用プリフォーム(以下、単にプリフ
ォームと称する)、特には、気相合成法により製造され
るプリフォーム及びこれを線引きして得られるシングル
モード光ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preform for an optical fiber (hereinafter, simply referred to as a preform) which is a precursor of an optical fiber, and more particularly, to a preform manufactured by a vapor phase synthesis method and a drawing of the same. The present invention relates to a single mode optical fiber obtained by the above method.

【0002】[0002]

【従来の技術】プリフォームの製造方法の1つに、VA
D法のような気相合成法を用いてコア用スート体をクラ
ッドの一部と同時に形成し、これを脱水・ガラス化した
後、必要な長さと径になるように加熱延伸して、外周に
クラッドの一部を有するコアロッドを製造し、さらに、
このコアロッドの外周に、OVD法などのやはり気相合
成法でスートを堆積し、脱水・ガラス化して、必要な厚
さのクラッド部を有するプリフォームを製造する方法が
ある。
2. Description of the Related Art One of the methods for manufacturing a preform is VA.
A soot body for the core is formed simultaneously with a part of the clad using a vapor phase synthesis method such as the method D, which is dehydrated and vitrified, and then heated and stretched to a required length and diameter, and Manufacturing a core rod having a part of the clad,
There is a method in which a soot is deposited on the outer periphery of the core rod by a vapor phase synthesis method such as an OVD method, dehydrated and vitrified to produce a preform having a clad portion having a required thickness.

【0003】1,310nm付近にゼロ分散波長λ0を有
するシングルモード光ファイバの径方向への理想的な屈
折率分布形状は、コア部がクラッド部よりも矩形状に高
くなっている。このような理想的な屈折率分布形状を有
する光ファイバは、モードフィールド径MFD[μ
m]、カットオフ波長λc[μm]、ゼロ分散波長λ
0[nm]が下記の式を満たす関係にある。 −2≦1,427−(10×MFD×λc+λ0)≦2 なお、ゼロ分散波長は、1,310±5[nm]である
ことが望ましいとされている。
The ideal refractive index distribution shape in the radial direction of a single mode optical fiber having a zero dispersion wavelength λ 0 around 1,310 nm is such that the core portion is rectangularly higher than the cladding portion. An optical fiber having such an ideal refractive index distribution shape has a mode field diameter MFD [μ
m], cut-off wavelength λ c [μm], zero dispersion wavelength λ
0 [nm] satisfies the following equation. −2 ≦ 1,427− (10 × MFD × λ c + λ 0 ) ≦ 2 Note that the zero dispersion wavelength is desirably 1,310 ± 5 [nm].

【0004】径方向への屈折率分布は、バーナにコア部
を形成する原料ガス、例えばSiCl4に屈折率を上昇
させる効果のあるGe化合物、例えばGeCl4を添加
することによって形成される。しかしながら、このとき
堆積されたスート体中のGeまたはGeO2は、堆積や
脱水、ガラス化の際に、コア周辺のクラッド部に拡散
し、屈折率分布のすそ引きという意図しない屈折率上昇
を招く。屈折率分布にすそ引きがあると、得られる光フ
ァイバの分散特性が悪化する。つまり、ゼロ分散波長を
所望の数値範囲内に納めた場合、モードフィールド径及
びカットオフ波長のいずれかまたは双方が、好ましい値
より大きくなる。このように、コア周辺のクラッド部の
屈折率上昇は、光ファイバの伝送特性上好ましくない。
[0004] refractive index profile in the radial direction is formed by adding the raw material gas for forming the core portion to the burner, such as Ge compound having the effect of raising the refractive index to SiCl 4, for example, GeCl 4. However, Ge or GeO 2 in the soot body deposited at this time diffuses into the clad portion around the core during deposition, dehydration, or vitrification, causing an unintended increase in the refractive index such as tailing of the refractive index distribution. . If there is a tail in the refractive index distribution, the dispersion characteristics of the obtained optical fiber deteriorate. That is, when the zero-dispersion wavelength falls within a desired numerical range, one or both of the mode field diameter and the cutoff wavelength become larger than desirable values. As described above, the increase in the refractive index of the cladding around the core is not preferable in terms of the transmission characteristics of the optical fiber.

【0005】このような屈折率分布のすそ引きを抑制す
るには、堆積したコア部の外側から熱を加えることで、
コア部外周付近の密度を高めGeの拡散を抑制するとい
う手法がある。しかしながらこの方法は、コア部とクラ
ッド部との間に急峻な密度変化を生じるため、ガラス化
の際に、この部分に輝点となって観察される微小な気泡
を発生し易いという問題がある。さらに、例えば、特開
平9−171120号公報にはクラッド中に拡散したG
eO2の効果が記載されており、クラッド中への意図し
ないGeの拡散が、水素による吸収損失の増大を抑制し
ていることもまた分かっている。つまり、上記の方法に
よりGeの拡散を抑制すると水素による吸収損失が増大
する可能性がある。
[0005] In order to suppress such tailing of the refractive index distribution, heat is applied from outside the deposited core portion,
There is a method of increasing the density near the outer periphery of the core to suppress the diffusion of Ge. However, this method causes a sharp change in density between the core portion and the clad portion, so that there is a problem that, during vitrification, fine bubbles which are observed as bright spots in this portion are easily generated. . Further, for example, Japanese Unexamined Patent Publication No. 9-171120 discloses that G diffused in the clad.
The effect of eO 2 is described, and it is also found that unintended diffusion of Ge into the cladding suppresses an increase in absorption loss due to hydrogen. That is, if the diffusion of Ge is suppressed by the above method, the absorption loss due to hydrogen may increase.

【0006】さらに、信号伝送用の光ファイバをVAD
法のような気相合成法によって製造する場合、塩素など
による脱水処理が不可欠である。これは1,385μm
という信号波長付近に、OH基による吸収ピークが存在
するため、OH基を脱水処理して除去する必要がある。
脱水処理に一般的に用いられる塩素は、石英ガラス中で
屈折率を上昇させる効果も有している。脱水処理はコア
及びクラッドの双方に対して行われるが、OVD法で形
成されるスート体の密度は、一般にVAD法で形成され
るものよりも高いため、脱水・ガラス化後のガラス中
に、脱水処理で使用された塩素は残りにくい。
Further, an optical fiber for signal transmission is connected to a VAD.
In the case of manufacturing by a gas phase synthesis method such as the method, dehydration treatment with chlorine or the like is indispensable. This is 1,385 μm
Since there is an absorption peak due to an OH group near the signal wavelength, it is necessary to remove the OH group by a dehydration treatment.
Chlorine generally used in the dehydration treatment also has the effect of increasing the refractive index in quartz glass. Although the dehydration treatment is performed on both the core and the clad, the density of the soot body formed by the OVD method is generally higher than that formed by the VAD method. Chlorine used in the dehydration treatment hardly remains.

【0007】その結果、VAD法で形成されたクラッド
と、その外側にOVD法で付加されたクラッドとでは、
残存した塩素によるクラッド部の屈折率上昇の度合が異
なり、クラッド部の屈折率分布において、外側の方が低
くなり段差を生じやすい。この段差は、上記したように
OVD法の方が、クラッド中の残存塩素が少ないために
生じる。このような段差があると、得られる光ファイバ
の伝送特性、特にカットオフ波長が大きくなる結果をも
たらし、屈折率分布のすそ引きによる分散特性の悪化を
助長することになる。このような段差を抑制するには、
OVD法で形成されたスート体を脱水する際に、より多
量のCl2などの脱水ガスを使用するか、より時間をか
けて脱水する必要があるが、この場合、得られる特性は
比較的良好なものの製造コストが上昇してしまう。
As a result, the cladding formed by the VAD method and the cladding added by the OVD method outside the cladding are:
The degree of increase in the refractive index of the clad portion due to the remaining chlorine is different, and the refractive index distribution of the clad portion is lower on the outer side, so that a step is likely to occur. This step occurs because the residual chlorine in the cladding is smaller in the OVD method as described above. The presence of such a step results in an increase in the transmission characteristics of the obtained optical fiber, in particular, the cutoff wavelength, and promotes the deterioration of the dispersion characteristics due to the tailing of the refractive index distribution. To suppress such a step,
When dehydrating the soot body formed by the OVD method, it is necessary to use a larger amount of a dehydrating gas such as Cl 2 or to dehydrate over a longer time. In this case, the obtained characteristics are relatively good. However, the manufacturing cost increases.

【0008】[0008]

【発明が解決しようとする課題】上記したように、気相
合成法によってSiCl4などの原料ガス中にGeなど
の屈折率を上昇させる物質のみを添加してスート体を形
成し、脱水・ガラス化した後、所望の径に加工してプリ
フォームを製造した場合、このプリフォームを線引きし
て得られる光ファイバの伝送特性、特に、ゼロ分散波
長、モードフィールド径及びカットオフ波長の値を全て
所望の数値範囲内に維持しつつ、コアとクラッドの界面
での微小な気泡の発生を抑え、水素による吸収損失の増
大が抑制されたプリフォームを得ることは困難であっ
た。
As described above, a soot body is formed by adding only a substance such as Ge that raises the refractive index to a source gas such as SiCl 4 by a vapor phase synthesis method, and forming a soot body. When the preform is manufactured by processing to a desired diameter after the formation, the transmission characteristics of the optical fiber obtained by drawing this preform, particularly, the values of the zero dispersion wavelength, the mode field diameter, and the cutoff wavelength are all adjusted. It has been difficult to obtain a preform in which the generation of minute bubbles at the interface between the core and the clad is suppressed while maintaining the value within the desired numerical range, and the increase in absorption loss due to hydrogen is suppressed.

【0009】本発明は、上記事情に鑑みてなされたもの
であり、光ファイバとしたときにゼロ分散波長、モード
フィールド径及びカットオフ波長の全てが所望の数値範
囲内にあり、コアとクラッドの界面での微小な気泡の発
生が抑えられ、水素による吸収損失の増大が抑制された
プリフォーム及びシングルモード光ファイバを提供する
ことを課題としている。
The present invention has been made in view of the above circumstances, and when an optical fiber is used, all of the zero dispersion wavelength, the mode field diameter, and the cutoff wavelength are within desired numerical ranges, and the It is an object of the present invention to provide a preform and a single mode optical fiber in which generation of minute bubbles at an interface is suppressed and increase in absorption loss due to hydrogen is suppressed.

【0010】[0010]

【課題を解決するための手段】本発明のプリフォーム
は、気相合成法によりコアスート体を製造し、該コアス
ート体を脱水ガス雰囲気中で脱水した後、不活性ガス中
で焼成ガラス化し、これを所定の径に加熱延伸して得た
コア部材に、クラッド部を付与してなる光ファイバ用プ
リフォームであって、該コア部材がコア部の外周部に、
クラッド部の屈折率よりも1×10-5〜3×10-4だけ
低い低屈折率部を有することを特徴としている。
According to the preform of the present invention, a core soot body is produced by a gas phase synthesis method, the core soot body is dehydrated in a dehydrating gas atmosphere, and then fired and vitrified in an inert gas. Is a core member obtained by heating and stretching to a predetermined diameter, a preform for an optical fiber provided with a clad portion, the core member on the outer peripheral portion of the core portion,
It is characterized by having a low refractive index portion lower by 1 × 10 −5 to 3 × 10 −4 than the refractive index of the cladding portion.

【0011】また、他の発明は、上記コアスート体を製
造する工程において、フッ素含有ガスを原料ガス、燃焼
ガス、助燃ガス及びシール用ガスのいずれかと混合し
て、先に堆積したコア部の外周部に、フッ素を含むスー
トを堆積して、脱水・ガラス化後の屈折率がクラッド部
の屈折率よりも1×10-5〜3×10-4だけ低くなるよ
うに低屈折率部が設けられたプリフォームである。
In another aspect of the present invention, in the step of manufacturing the core soot body, a fluorine-containing gas is mixed with any of a raw material gas, a combustion gas, an auxiliary gas, and a sealing gas to form an outer periphery of the core portion previously deposited. In the part, soot containing fluorine is deposited, and a low refractive index part is provided so that the refractive index after dehydration and vitrification is lower than the refractive index of the clad part by 1 × 10 −5 to 3 × 10 −4. It is a preform that was obtained.

【0012】上記気相合成法としてVAD法を採用し、
コア堆積用バーナと複数のクラッド堆積用バーナを用い
てスートを堆積させるに際し、クラッド堆積用バーナの
いずれかのバーナに、原料ガス、燃焼ガス、助燃ガス及
びシール用ガスのいずれかにフッ素含有ガスを添加して
供給するのが好ましい。フッ素は脱水・ガラス化中にコ
アスート体全体に拡散するため、1本のバーナにおいて
フッ素を添加するだけでコア部材全体の屈折率が低下す
る。また、フッ素含有ガスを添加するバーナはコア堆積
用バーナに隣接するクラッド堆積用バーナである方が、
フッ素がスート内に残留する効率が高いので好ましい。
添加するフッ素含有ガスは、SiF4、SF6、CF4
びCCl22の群から選択して使用し、フッ素含有ガス
に含まれるFのモル数が、コアスート体を製造するのに
使用される原料ガス中のSiのモル数の1/100〜1
/5、好ましくは1/30〜1/5とするのが望まし
い。また、低屈折率部の外径bとコア径aとの比a/b
が、0.1〜0.25の範囲内にあるのが好ましい。
The VAD method is adopted as the above-mentioned vapor phase synthesis method,
When depositing soot using a core deposition burner and a plurality of clad deposition burners, a raw material gas, a combustion gas, a combustion supporting gas, and a fluorine-containing gas as one of sealing gases are deposited on any of the clad deposition burners. It is preferred to add and supply. Fluorine diffuses throughout the core soot body during dehydration and vitrification, so that the addition of fluorine in one burner lowers the refractive index of the entire core member. Also, the burner for adding the fluorine-containing gas is a burner for clad deposition adjacent to the burner for core deposition,
This is preferable because the efficiency of fluorine remaining in the soot is high.
The fluorine-containing gas to be added is selected from the group consisting of SiF 4 , SF 6 , CF 4 and CCl 2 F 2 , and the number of moles of F contained in the fluorine-containing gas is used to produce a core soot body. 1 / 100-1 of the number of moles of Si in the raw material gas
/ 5, preferably 1/30 to 1/5. Also, the ratio a / b between the outer diameter b of the low refractive index portion and the core diameter a.
Is preferably in the range of 0.1 to 0.25.

【0013】本発明のシングルモード光ファイバは、上
記構成からなるプリフォームを加熱線引きして光ファイ
バを製造し、該光ファイバが、モードフィールド径MF
D[μm]、カットオフ波長λc[μm]、ゼロ分散波
長λ0[nm]が下記の式を満たす範囲内にあり、 −2≦1,427−(10×MFD×λc+λ0)≦2 1,310±5[nm]にゼロ分散波長を有することを
特徴としている。
The single mode optical fiber according to the present invention is manufactured by drawing an optical fiber by heating the preform having the above structure, and the optical fiber has a mode field diameter MF.
D [μm], cut-off wavelength λ c [μm], and zero dispersion wavelength λ 0 [nm] are within a range satisfying the following formula: −2 ≦ 1,427− (10 × MFD × λ c + λ 0 ) ≦ 2 1,310 ± 5 [nm], characterized by having a zero dispersion wavelength.

【0014】[0014]

【発明の実施の形態】図を用いて本発明をさらに詳細に
説明する。図1に示すように本発明のプリフォームは、
VAD法でコア部材を形成する際、コア部材のコア部
(径a)の外周部に、該コア部材の上にOVD法で形成
されるクラッド部の屈折率n0よりも屈折率の低い外径
がbで、屈折率がn2の低屈折率部を径方向に形成し、
これを加熱焼成してガラス化し、さらに所定の径に加熱
延伸してコア部材とし、これにOVD法でクラッド部を
付与して製造される。このような構成とすることによっ
て、すそ引きによる分散特性の悪化を補うことができ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the drawings. As shown in FIG. 1, the preform of the present invention
When the core member is formed by the VAD method, the outer peripheral portion of the core portion (diameter a) of the core member has an outer refractive index lower than the refractive index n 0 of the clad portion formed on the core member by the OVD method. Forming a low-refractive-index portion having a diameter b and a refractive index n 2 in the radial direction;
This is heated and baked to be vitrified, and further heated and stretched to a predetermined diameter to form a core member, which is provided with a clad portion by an OVD method. With such a configuration, it is possible to compensate for the deterioration of the dispersion characteristics due to the tailing.

【0015】このコア部の外周部に形成された低屈折率
部の外径bとコア径aとの比a/bが0.1〜0.25
の範囲内にあるのが望ましい。0.1未満では生産効率
が著しく低下するので好ましくなく、0.25を超える
とコア部材とこれに付与するクラッド部の界面付近に残
留するOH基により、1.385nm付近の吸収ピーク
が許容できない程度にまで増大するため好ましくない。
このコア部の外周部に形成された低屈折率部とクラッド
部との屈折率差(n0−n2)は1×10-5〜3×10-4
とされる。屈折率差が1×10-5未満、あるいは3×1
-4を超えるとMFD、λc、λ0が、−2≦1,427
−(10×MFD×λc+λ0)≦2の式を満たすことが
できない。
The ratio a / b of the outer diameter b of the low refractive index portion formed on the outer peripheral portion of the core portion to the core diameter a is 0.1 to 0.25.
Is desirably within the range. If it is less than 0.1, the production efficiency is remarkably reduced, so that it is not preferable. If it exceeds 0.25, an absorption peak around 1.385 nm cannot be tolerated due to OH groups remaining near the interface between the core member and the clad portion provided thereto. It is not preferable because it increases to the extent.
The difference in refractive index between the low refractive index portion and a cladding portion formed on an outer circumferential portion of the core portion (n 0 -n 2) is 1 × 10 -5 ~3 × 10 -4
It is said. Refractive index difference is less than 1 × 10 -5 or 3 × 1
When the value exceeds 0 -4 , MFD, λ c , and λ 0 become −2 ≦ 1,427.
-(10 × MFD × λ c + λ 0 ) ≦ 2 cannot be satisfied.

【0016】本発明のプリフォームは、VAD法による
気相合成法によってコアスート体を製造する際、図2に
示すように、コア堆積用バーナ1に隣接するクラッド堆
積用バーナ2に供給される原料ガス、燃焼ガス、助燃ガ
ス及びシール用ガスのいずれかのガスにフッ素含有ガス
を添加して、コアスートの外周部に、クラッド部の屈折
率よりも1×10-5〜3×10-4だけ低い低屈折率部を
形成する。さらにこの上に、クラッド堆積用バーナ3で
クラッドの一部を形成してもよい。このようにして堆積
したコアスート体4を脱水ガス、例えば塩素系ガス雰囲
気中で脱水した後、Ar等の不活性ガス雰囲気中で焼成
ガラス化し、これを所定の径に加熱延伸してコア部材と
し、該コア部材の外周にOVD法による気相合成法によ
ってクラッド部を形成するものである。なお、符号5は
ターゲット棒である。
When a preform of the present invention is used to produce a core soot body by a gas phase synthesis method using a VAD method, as shown in FIG. 2, a raw material supplied to a clad deposition burner 2 adjacent to a core deposition burner 1 is used. A fluorine-containing gas is added to any one of the gas, the combustion gas, the auxiliary gas, and the sealing gas, and the outer periphery of the core soot is 1 × 10 −5 to 3 × 10 −4 more than the refractive index of the clad. Form a low low refractive index portion. Further, a part of the clad may be formed thereon by the clad deposition burner 3. After the core soot body 4 thus deposited is dehydrated in a dehydrating gas, for example, a chlorine-based gas atmosphere, it is fired and vitrified in an inert gas atmosphere such as Ar, and heated and stretched to a predetermined diameter to form a core member. A cladding portion is formed on the outer periphery of the core member by a gas phase synthesis method using an OVD method. Reference numeral 5 is a target bar.

【0017】添加するフッ素含有ガスは、SiF4、S
6、CF4及びCCl22の群から選択して使用すれば
よく、特に好ましくは1分子中のF原子数の多いSiF
4、SF6またはCF4である。また、フッ素含有ガスに
含まれるFのモル数は、コアスート体を製造するのに使
用される原料ガス中のSiのモル数の1/100〜1/
5とするのが好ましく、より好ましくは1/30〜1/
5である。1/100未満では所望の屈折率の低下が得
られず、1/5を超えると所望以上に屈折率が低下して
しまうため好ましくない。
The fluorine-containing gas to be added is SiF 4 , S
It may be used by selecting from the group of F 6 , CF 4 and CCl 2 F 2 , particularly preferably SiF having a large number of F atoms in one molecule.
4 , SF 6 or CF 4 . The number of moles of F contained in the fluorine-containing gas is 1/100 to 1/100 of the number of moles of Si in the raw material gas used for manufacturing the core soot body.
5 is preferable, and 1/30 to 1/1 is more preferable.
5 If it is less than 1/100, a desired decrease in the refractive index cannot be obtained, and if it exceeds 1/5, the refractive index is undesirably lowered more than desired.

【0018】[0018]

【実施例】(実施例1)VAD法による気相合成法を3
本のバーナを用いて行ない、コア堆積用バーナに、原料
ガスであるSiCl4を0.11リットル/分、添加剤
であるGiCl4を0.01リットル/分、コア堆積用
バーナに隣接するクラッド堆積用バーナに原料ガスであ
るSiCl4を0.40リットル/分、フッ素含有ガス
であるSF6を0.10リットル/分、コア堆積用バー
ナに隣接しないクラッド堆積用バーナに原料ガスである
SiCl4を1.0リットル/分供給して火炎加水分解
反応で生じたスートを堆積し、スート堆積体を製造し
た。このスート堆積体を7%の塩素ガスを含む雰囲気中
で4時間脱水し、その後、Heガス中で焼成ガラス化
し、さらに加熱延伸して、直径40mm、長さ1,30
0mmのコア部材を得た。
EXAMPLES Example 1 Gas-phase synthesis by VAD method
Performed using this burner, the core deposition burner, the SiCl 4 as a raw material gas 0.11 liters / min, the GiCl 4 is an additive 0.01 liters / min, cladding adjacent to the core deposition burner 0.40 l / min of SiCl 4 as a source gas in the deposition burner, 0.10 l / min of SF 6 as the fluorine-containing gas, and SiCl 4 as the source gas in the burner for cladding deposition not adjacent to the core deposition burner. 4 was supplied at 1.0 liter / min to deposit soot produced by the flame hydrolysis reaction, thereby producing a soot deposit. The soot deposit was dehydrated in an atmosphere containing 7% chlorine gas for 4 hours, then fired and vitrified in He gas, and further heated and stretched to have a diameter of 40 mm and a length of 1,30.
A 0 mm core member was obtained.

【0019】次いで、OVD法による気相合成法を用
い、コア部材の外周に所望の厚さのスートを堆積させ、
得られたスート堆積体を10%の塩素ガスを含む雰囲気
中で20時間かけて脱水・焼成ガラス化し、さらにこれ
を所望の径、長さに加熱延伸して光ファイバ用プリフォ
ームを得た。このプリフォームはコア部とクラッド部と
の間に、クラッド部の屈折率よりも1.0×10-4だけ
低い低屈折率部を有し、この低屈折率部の外径bとコア
径aとの比a/bは0.2であった。さらに、このプリ
フォームを線引して光ファイバを得た。この光ファイバ
は波長1,310[nm]にゼロ分散波長λ0を有し、
MFD9.20[nm]、λc1.27[μm]で上記
関係式を満たし、シングルモード光ファイバとして極め
て優れた分散特性を有していた。
Next, a soot having a desired thickness is deposited on the outer periphery of the core member by using a gas phase synthesis method by the OVD method.
The obtained soot deposit was dehydrated and fired into glass in an atmosphere containing 10% chlorine gas for 20 hours, and further heated and stretched to a desired diameter and length to obtain an optical fiber preform. This preform has a low refractive index portion lower by 1.0 × 10 −4 than the refractive index of the cladding portion between the core portion and the cladding portion. The ratio a / b to a was 0.2. Further, the preform was drawn to obtain an optical fiber. This optical fiber has a zero dispersion wavelength λ 0 at a wavelength of 1,310 [nm],
MFD of 9.20 [nm] and λ c of 1.27 [μm] satisfied the above relational expression, and had extremely excellent dispersion characteristics as a single mode optical fiber.

【0020】(比較例1)コア堆積用バーナに隣接する
クラッド堆積用バーナにフッ素含有ガスを添加しなかっ
たことを除いて、他は全て実施例1と同じ条件でプリフ
ォーム及び光ファイバを製造した。得られたプリフォー
ムはクラッド部に1.5×10-4の段差を生じ、このプ
リフォームを線引きして得た光ファイバは、分散特性が
悪く、シングルモード光ファイバとして好ましくないも
のであった。
Comparative Example 1 A preform and an optical fiber were manufactured under the same conditions as in Example 1 except that no fluorine-containing gas was added to the clad deposition burner adjacent to the core deposition burner. did. The obtained preform had a step of 1.5 × 10 −4 in the clad portion, and the optical fiber obtained by drawing this preform had poor dispersion characteristics and was not preferable as a single mode optical fiber. .

【0021】(比較例2)コア堆積用バーナに隣接する
クラッド堆積用バーナにフッ素含有ガスを添加しなかっ
たことと、OVD法により得られたスート堆積体を脱水
・焼成ガラス化する雰囲気を20%の塩素ガスを含むも
のとしたことを除いて、他は全て実施例1と同じ条件で
プリフォーム及び光ファイバを製造した。得られたプリ
フォームはコア部とクラッド部に0.1×10-4の低屈
折率部を生じ、このプリフォームを線引きして得た光フ
ァイバは、シングルモード光ファイバとして比較的好ま
しくないものであったが、製造に約1.9倍の塩素量を
要した。
(Comparative Example 2) No fluorine-containing gas was added to the burner for clad deposition adjacent to the burner for core deposition, and the atmosphere for dehydrating and firing vitrified soot deposits obtained by the OVD method was 20 times. % Except for containing chlorine gas, a preform and an optical fiber were manufactured under the same conditions as in Example 1 except for the above. The obtained preform has a low refractive index portion of 0.1 × 10 −4 in the core portion and the cladding portion, and the optical fiber obtained by drawing this preform is relatively unfavorable as a single mode optical fiber. However, the production required about 1.9 times the amount of chlorine.

【0022】[0022]

【発明の効果】本発明のプリフォームは、コアとクラッ
ド界面での微小な気泡の発生が抑えられ、水素による吸
収損失の増大も抑制されたものであり、さらに、これを
線引きして得られる光ファイバは、ゼロ分散波長、モー
ドフィールド径及びカットオフ波長が全て所望の範囲内
にあり、シングルモード光ファイバとして極めて優れた
分散特性を有している。
According to the preform of the present invention, the generation of fine bubbles at the interface between the core and the clad is suppressed, and the increase in the absorption loss due to hydrogen is also suppressed. The optical fiber has a zero dispersion wavelength, a mode field diameter, and a cutoff wavelength all within desired ranges, and has extremely excellent dispersion characteristics as a single mode optical fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のプリフォームの径方向の屈折率分布
を示す概略図である。
FIG. 1 is a schematic diagram showing a refractive index distribution in a radial direction of a preform of the present invention.

【図2】 VAD法でコア部材を製造する様子を示す概
略図である。
FIG. 2 is a schematic view showing a state in which a core member is manufactured by a VAD method.

【符号の説明】[Explanation of symbols]

1. コア堆積用バーナ 2. クラッド堆積用バーナ 3. クラッド堆積用バーナ 4. コアスート体 5. ターゲット棒 a. コア径 b. 低屈折率部の外径 n0 クラッド部の屈折率 n1 コア部の屈折率 n2 低屈折率部の屈折率1. Burner for core deposition 2. 2. Burner for clad deposition Burner for clad deposition 4. Core suit body 5. Target rod a. Core diameter b. Outer diameter of low refractive index part n 0 Refractive index of cladding part n 1 Refractive index of core part n 2 Refractive index of low refractive index part

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 気相合成法によりコアスート体を製造
し、該コアスート体を脱水ガス雰囲気中で脱水した後、
不活性ガス中で焼成ガラス化し、これを所定の径に加熱
延伸して得たコア部材に、クラッド部を付与してなる光
ファイバ用プリフォームであって、該コア部材がコア部
の外周部に、クラッド部の屈折率よりも1×10-5〜3
×10-4だけ低い低屈折率部を有することを特徴とする
光ファイバ用プリフォーム。
Claims 1. A core soot body is produced by a gas phase synthesis method, and the core soot body is dehydrated in a dehydrating gas atmosphere.
An optical fiber preform in which a core member obtained by firing and vitrifying in an inert gas and heating and stretching the core member to a predetermined diameter is provided with a clad portion, wherein the core member has an outer peripheral portion of the core portion. In addition, the refractive index of the cladding is 1 × 10 −5 to 3
An optical fiber preform having a low refractive index portion lower by × 10 -4 .
【請求項2】 気相合成法によりコアスート体を製造
し、該コアスート体を脱水ガス雰囲気中で脱水した後、
不活性ガス中で焼成ガラス化し、これを所定の径に加熱
延伸して得たコア部材に、クラッド部を付与してなる光
ファイバ用プリフォームであって、該コアスート体を製
造する工程において、フッ素含有ガスを原料ガス、燃焼
ガス、助燃ガス及びシール用ガスのいずれかと混合し
て、先に堆積したコア部の外周部にフッ素を含むスート
を堆積して、脱水ガラス化後の屈折率がクラッド部の屈
折率よりも1×10-5〜3×10-4だけ低い低屈折率部
を設けてなることを特徴とする光ファイバ用プリフォー
ム。
2. After producing a core soot body by a gas phase synthesis method and dehydrating the core soot body in a dehydrating gas atmosphere,
Firing in an inert gas, vitrified, and a core member obtained by heating and stretching this to a predetermined diameter, a preform for an optical fiber obtained by providing a clad portion, in the step of manufacturing the core soot body, The fluorine-containing gas is mixed with any of the raw material gas, the combustion gas, the auxiliary gas, and the sealing gas, soot containing fluorine is deposited on the outer periphery of the previously deposited core, and the refractive index after dehydration vitrification is reduced. An optical fiber preform comprising a low refractive index portion lower by 1 × 10 −5 to 3 × 10 −4 than a refractive index of a cladding portion.
【請求項3】 気相合成法がVAD法であり、コア堆積
用バーナと複数のクラッド堆積用バーナを用いてフッ素
を含むスートを堆積させるに際し、クラッド堆積用バー
ナのいずれかに、原料ガス、燃焼ガス、助燃ガス及びシ
ール用ガスのいずれかにフッ素含有ガスを添加して供給
する請求項2に記載の光ファイバ用プリフォーム。
3. A vapor phase synthesis method is a VAD method, and when soot containing fluorine is deposited using a core deposition burner and a plurality of clad deposition burners, a source gas, 3. The optical fiber preform according to claim 2, wherein a fluorine-containing gas is added to any one of the combustion gas, the auxiliary gas, and the sealing gas.
【請求項4】 フッ素含有ガスを添加するバーナが、コ
ア堆積用バーナに隣接するクラッド堆積用バーナである
請求項3に記載の光ファイバ用プリフォーム。
4. The optical fiber preform according to claim 3, wherein the burner to which the fluorine-containing gas is added is a clad deposition burner adjacent to the core deposition burner.
【請求項5】 フッ素含有ガスが、SiF4、SF6、C
4及びCCl22の群から選択されたものである請求
項3又は4に記載の光ファイバ用プリフォーム。
5. The method according to claim 1, wherein the fluorine-containing gas is SiF 4 , SF 6 , C
F 4 and preform for optical fiber according to claim 3 or 4 are those selected from the group of CCl 2 F 2.
【請求項6】 添加するフッ素含有ガスに含まれるFの
モル数が、コア部材の製造に使用される原料ガス中のS
iのモル数の1/100〜1/5である請求項3乃至5
のいずれかに記載の光ファイバ用プリフォーム。
6. The molar number of F contained in the fluorine-containing gas to be added is determined by the number of moles of S in the raw material gas used for manufacturing the core member.
6. The number of moles of i is 1/100 to 1/5.
The preform for an optical fiber according to any one of the above.
【請求項7】 前記低屈折率部の外径bとコア径aとの
比a/bが、0.1〜0.25の範囲内にある請求項1
又は2に記載の光ファイバ用プリフォーム。
7. The ratio a / b of the outer diameter b of the low refractive index portion to the core diameter a is in the range of 0.1 to 0.25.
Or the preform for optical fibers according to 2.
【請求項8】 請求項1乃至7のいずれかに記載の光フ
ァイバ用プリフォームを加熱線引きして得られたもので
あることを特徴とする光ファイバ。
8. An optical fiber obtained by heating and drawing the optical fiber preform according to claim 1. Description:
【請求項9】 請求項8に記載の光ファイバが、モード
フィールド径MFD[μm]、カットオフ波長λc[μ
m]、ゼロ分散波長λ0[nm]が下記の式を満たす範
囲内にあり、 −2≦1,427−(10×MFD×λc+λ0)≦2 1,310±5[nm]にゼロ分散波長を有することを
特徴とするシングルモード光ファイバ。
9. The optical fiber according to claim 8, wherein a mode field diameter MFD [μm] and a cut-off wavelength λ c
m], and the zero dispersion wavelength λ 0 [nm] is within a range satisfying the following formula: −2 ≦ 1,427− (10 × MFD × λ c + λ 0 ) ≦ 2 1,310 ± 5 [nm] A single mode optical fiber having a zero dispersion wavelength.
JP2000234111A 2000-08-02 2000-08-02 Method for manufacturing preform for optical fiber Expired - Fee Related JP4455740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000234111A JP4455740B2 (en) 2000-08-02 2000-08-02 Method for manufacturing preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000234111A JP4455740B2 (en) 2000-08-02 2000-08-02 Method for manufacturing preform for optical fiber

Publications (2)

Publication Number Publication Date
JP2002047027A true JP2002047027A (en) 2002-02-12
JP4455740B2 JP4455740B2 (en) 2010-04-21

Family

ID=18726530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000234111A Expired - Fee Related JP4455740B2 (en) 2000-08-02 2000-08-02 Method for manufacturing preform for optical fiber

Country Status (1)

Country Link
JP (1) JP4455740B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307280A (en) * 2003-04-08 2004-11-04 Shin Etsu Chem Co Ltd Glass preform for optical fiber in which absorption due to hydroxide group is reduced and a method of manufacturing the same
WO2007102166A1 (en) * 2006-03-07 2007-09-13 Sterlite Optical Technologies Ltd. Optical fiber having desired waveguide parameters and method for producing the same
JP2008013410A (en) * 2006-07-07 2008-01-24 Furukawa Electric Co Ltd:The Method for producing optical fiber preform
US7647792B2 (en) 2003-11-11 2010-01-19 Fujikura Ltd. Method for fabricating porous silica preform
EP2253974A1 (en) 2009-05-20 2010-11-24 Shin-Etsu Chemical Co., Ltd. Optical fiber
CN101893733A (en) * 2009-05-20 2010-11-24 信越化学工业株式会社 Optical fiber
EP2650708A1 (en) 2012-04-12 2013-10-16 Shin-Etsu Chemical Co., Ltd. Optical fiber
JP2015098435A (en) * 2013-01-29 2015-05-28 古河電気工業株式会社 Optical fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307280A (en) * 2003-04-08 2004-11-04 Shin Etsu Chem Co Ltd Glass preform for optical fiber in which absorption due to hydroxide group is reduced and a method of manufacturing the same
US7647792B2 (en) 2003-11-11 2010-01-19 Fujikura Ltd. Method for fabricating porous silica preform
US8375749B2 (en) 2003-11-11 2013-02-19 Fujikura Ltd. Method for fabricating porous silica preform
WO2007102166A1 (en) * 2006-03-07 2007-09-13 Sterlite Optical Technologies Ltd. Optical fiber having desired waveguide parameters and method for producing the same
JP2008013410A (en) * 2006-07-07 2008-01-24 Furukawa Electric Co Ltd:The Method for producing optical fiber preform
JP4690956B2 (en) * 2006-07-07 2011-06-01 古河電気工業株式会社 Optical fiber preform manufacturing method
CN101893732A (en) * 2009-05-20 2010-11-24 信越化学工业株式会社 Optical fiber
EP2253975A1 (en) 2009-05-20 2010-11-24 Shin-Etsu Chemical Co., Ltd. Optical Fibre
CN101893733A (en) * 2009-05-20 2010-11-24 信越化学工业株式会社 Optical fiber
US8121453B2 (en) 2009-05-20 2012-02-21 Shin-Etsu Chemical Co., Ltd. Optical fiber
US8135255B2 (en) 2009-05-20 2012-03-13 Shin-Etsu Chemical Co., Ltd. Optical fiber
EP2253974A1 (en) 2009-05-20 2010-11-24 Shin-Etsu Chemical Co., Ltd. Optical fiber
EP2650708A1 (en) 2012-04-12 2013-10-16 Shin-Etsu Chemical Co., Ltd. Optical fiber
JP2015098435A (en) * 2013-01-29 2015-05-28 古河電気工業株式会社 Optical fiber

Also Published As

Publication number Publication date
JP4455740B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
AU2012203014B2 (en) Single mode optical fiber
US8265440B2 (en) Method for manufacturing an optical fiber preform
US20140161406A1 (en) Method of manufacturing optical fiber preform and optical fiber
US20020136515A1 (en) Substrate tube and process for producing a preform for an optical fiber
JP2017534551A (en) Fabrication method of optical fiber preform having one-step fluorine trench and overcladding
JP5799903B2 (en) Single mode optical fiber
JP4455740B2 (en) Method for manufacturing preform for optical fiber
WO2019142878A1 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
JP4540923B2 (en) Optical fiber manufacturing method and optical fiber preform manufacturing method
JP2012171802A (en) Method for producing optical fiber preform
JP3738510B2 (en) Optical fiber and manufacturing method thereof
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JP2003300744A (en) Method for manufacturing optical fiber, and optical fiber
WO2001072648A1 (en) Substrate tube and process for producing a preform for an optical fiber
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
WO2022181648A1 (en) Optical fiber, and method for producing optical fiber preform
JP3137849B2 (en) Manufacturing method of preform for dispersion shifted optical fiber
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JP2024086249A (en) Manufacturing method of glass base material for optical fiber and manufacturing method of optical fiber
CN115140932A (en) Bending insensitive single-mode fiber and preparation method thereof
JP2024086248A (en) Manufacturing method of glass base material for optical fiber and manufacturing method of optical fiber
JP3798190B2 (en) Method for manufacturing glass preform for dual-core dispersion-shifted optical fiber
KR101287545B1 (en) Manufacturing method for dispersion shifted optical fiber increasing effective active area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees