JPH0717395B2 - Manufacturing method of base material for dispersion shift fiber - Google Patents

Manufacturing method of base material for dispersion shift fiber

Info

Publication number
JPH0717395B2
JPH0717395B2 JP62179118A JP17911887A JPH0717395B2 JP H0717395 B2 JPH0717395 B2 JP H0717395B2 JP 62179118 A JP62179118 A JP 62179118A JP 17911887 A JP17911887 A JP 17911887A JP H0717395 B2 JPH0717395 B2 JP H0717395B2
Authority
JP
Japan
Prior art keywords
core
sio
soot body
refractive index
geo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62179118A
Other languages
Japanese (ja)
Other versions
JPS6424041A (en
Inventor
裕一 大賀
弘雄 金森
弘 横田
豪太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62179118A priority Critical patent/JPH0717395B2/en
Publication of JPS6424041A publication Critical patent/JPS6424041A/en
Publication of JPH0717395B2 publication Critical patent/JPH0717395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は通信用石英系光フアイバ用母材の構造及びその
製造方法に関するものであり、特に波長1.5μm帯に零
分散波長をシフトさせたシングルモードフアイバ(以下
「分散シフトフアイバ」と呼称する)の製造に適する方
法に関するものである。
The present invention relates to a structure of a silica-based optical fiber base material for communication and a method for manufacturing the same, and particularly to a zero dispersion wavelength shifted to a wavelength band of 1.5 μm. The present invention relates to a method suitable for manufacturing a single mode fiber (hereinafter referred to as "dispersion shift fiber").

〔従来の技術〕 石英系光フアイバにおいて、その最低損失波長領域であ
る1.5μm帯に零分散波長をシフトさせた分散シフトフ
アイバは、長距離かつ大伝送容量の光通信伝送路として
実用化が進んでいる。第1−A図に示すような段階型屈
折率分布を有するものは、単純なステツプ型屈折率分布
を有する分散シフトフアイバに比べ、曲げ損失が小さく
なり、実用上の利点が大きく、開発検討が進められてい
る(参考文献1:「デイスパージヨン−シフテツド コン
ヴエツクス−インデツクス シングルモードフアイバー
ズ」N.クワキ他、エレクトロニクス レターズ 1985年
12月5日、21、No.25/26、p1186−1187)。第1−A図
に示した段階型屈折率分布では、中央部の屈折率の最も
高い部分1.1(内側コアと称する)と該内側コア1.1を囲
む内側コアより低い屈折率を有する部分1.2(外側コア
と称する)、更に該外側コア1.2を取り囲む最も屈折率
の低い、クラツド部1.3から屈折率分布が形成されてい
る。
[Prior Art] A dispersion-shifted fiber in which the zero-dispersion wavelength is shifted to the 1.5 μm band, which is the minimum loss wavelength region in a silica-based optical fiber, has been put to practical use as an optical communication transmission line with a long distance and a large transmission capacity. I'm out. The one having a graded refractive index distribution as shown in FIG. 1-A has a smaller bending loss and a large practical advantage as compared with a dispersion shift fiber having a simple step type refractive index distribution, and its development and study are required. (Reference 1: "Dispersion-Shifted Conveyx-Index Single Mode Fibers" N. Kwaki et al., Electronics Letters 1985
December 5, 21 , No. 25/26, p1186-1187). In the graded refractive index profile shown in FIG. 1-A, a portion 1.1 having the highest refractive index in the central portion (referred to as an inner core) and a portion 1.2 having a lower refractive index than the inner core surrounding the inner core 1.1 (the outer portion) (Hereinafter referred to as the core), and the refractive index distribution is formed from the cladding portion 1.3 surrounding the outer core 1.2 and having the lowest refractive index.

このような段階型屈折率分布を有する分散シフトフアイ
バの一例として、第6図に示すようにその屈折率分布を
形成するガラス組成として内側コア1.1がGeO2−SiO2
外側コア1.2がSiO2、クラツド1.3がF−SiO2からなるも
のが提案されている(参考文献2:「デイスパージヨン・
シフテツドフアイバーズ ウイズ フルオリンアツデツ
ドクラツデイング バイ ザ ヴエイパーフエイズ ア
クシアル デポジツシヨン メソツド」、H.ヨコタ他、
テクニカル ダイジエスト オン トピカル ミーテイ
ング オン オプテイカル フアイバー コミユニケイ
シヨン(アトランタ、1986)ペーパー WF2)。この構
成の分散シフトフアイバでは1.55μmにおける伝送損失
を0.23dB/kmにまで低減できたが、これ以上の低損失化
は困難であつた。
As an example of the dispersion shift fiber having such a graded refractive index distribution, as shown in FIG. 6, the inner core 1.1 is made of GeO 2 -SiO 2 , and the glass composition forming the refractive index distribution is
It has been proposed that the outer core 1.2 is made of SiO 2 and the cladding 1.3 is made of F-SiO 2 (reference 2: “dispersion.
Shift Tefde Ivors With Fluorine Attended Cladding By The Wave Aperture Axial Deposit Method, H. Yokota and others,
Technical Digest on Topical Meeting on Optical Fiber Comunication (Atlanta, 1986) Paper WF2). With the dispersion shift fiber with this configuration, the transmission loss at 1.55 μm could be reduced to 0.23 dB / km, but it was difficult to further reduce the loss.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

光フアイバの屈折率分布は、コアのSiO2ガラスにGeO2
屈折率増加成分として添加することによつて得るのが一
般的である。しかしながら、GeO2添加量を多くすると、
ガラスのレーリー散乱損失が増加して伝送損失が高くな
る、あるいはGeO2→GeOの還元に基づくと考えられる紫
外域での電子遷移吸収が増加し、その影響が使用波長域
である1.5μm帯にまで及び、やはり、伝送損失が高く
なるという問題があつた。
The refractive index distribution of the optical fiber is generally obtained by adding GeO 2 as a refractive index increasing component to the SiO 2 glass of the core. However, if the amount of GeO 2 added is increased,
The Rayleigh scattering loss of glass increases and the transmission loss increases, or the electron transition absorption in the ultraviolet region, which is considered to be due to the reduction of GeO 2 → GeO, increases, and the effect is increased to the wavelength range of 1.5 μm. However, there is a problem that the transmission loss becomes high.

また、GeO2を含有する内側コアとFを含有するクラツド
部に挟まれたSiO2からなる外側コアは、他の部分に比べ
て高温加熱における粘性が高く、線引時にかかる張力が
外側コアに集中して、ここに欠陥を生じ、やはり紫外域
での吸収の原因となるという問題があつた。
The outer core made of SiO 2 sandwiched between the inner core containing GeO 2 and the cladding containing F has a higher viscosity at high temperature heating than other parts, and the tension applied during drawing is applied to the outer core. There was a problem in that, when concentrated, defects were generated here, which also caused absorption in the ultraviolet region.

以上の考察から、本発明者らは第1−A図の型の屈折率
分布を得るガラスの組成として、第1−B図に示すよう
に内側コアをGeO2−SiO2、外側コアをF−SiO2とし、ク
ラツドを外側コアより低屈折率のF−SiO2とすること
で、GeO2添加量を増加せずに屈折率差をとることがで
き、しかもF−SiO2外側コアとして張力集中を防げるの
で、上記の問題が解決できると考え、検討を進めてき
た。本発明はこのような構成の分散シフトフアイバ用母
材の新規な製造方法を提供して、非常に低損失な分散シ
フトフアイバの製造を実現するものである。
From the above consideration, the inventors of the present invention, as the composition of the glass for obtaining the refractive index distribution of the type shown in FIG. 1-A, use GeO 2 --SiO 2 for the inner core and F for the outer core as shown in FIG. 1-B. and -SiO 2, by the a F-SiO 2 having a low refractive index than the outer core Kuratsudo can take a refractive index difference without increasing the GeO 2 added amounts, moreover the tension as F-SiO 2 outer core Since we can prevent concentration, we thought that we could solve the above problems and proceeded with the study. The present invention provides a novel method of manufacturing a base material for a dispersion shift fiber having such a configuration, and realizes the manufacture of a dispersion shift fiber with extremely low loss.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はGeO2を添加したSiO2からなる内側コア部とFを
添加したSiO2からなる外側コア部を有するコア用透明ガ
ラス体外周にFを添加したSiO2からなるクラツド部を形
成して光フアイバ母材を製造する方法において、VAD法
により複数のガラス微粒子合成用バーナを用いて、GeO2
を添加したSiO2からなる内側コアスート体と純粋SiO2
らなる外側コアスート体を有してなるコア用スート体を
作製し、該コア用スート体を加熱脱水処理した後に、F
の存在しない雰囲気で該コアスート体の透明化温度より
低温で加熱し、然る後Fを含有する雰囲気で該コア用ス
ート体が透明化する温度で加熱することにより外側コア
スート体にFを添加するとともに該コア用スート体を透
明化して上記コア用透明ガラス体を作製することを特徴
とする分散シフトフアイバ用母材の製造方法である。
The present invention forms a Kuratsudo portion made of SiO 2 with the addition of F to the transparent glass body outer peripheral core having an outer core portion made of SiO 2 added with the inner core portion and F made of SiO 2 with the addition of GeO 2 In the method of manufacturing an optical fiber preform, a plurality of burners for synthesizing glass particles by the VAD method are used to produce GeO 2
Consisting inner core soot body and pure SiO 2 made of SiO 2 was added to prepare a core soot body formed by an outer core soot body, after heating the dehydration process the soot body for the core, F
Of F is added to the outer core soot body by heating the core soot body at a temperature lower than the clearing temperature of the core soot body and then heating at a temperature at which the soot body for core becomes transparent in an atmosphere containing F. At the same time, the soot body for core is made transparent to produce the transparent glass body for core, which is a method for producing a base material for dispersion shift fiber.

本発明においては内側コア部へのGeO2の添加量を比屈折
率差で0.1〜0.8%とし、かつ内側コア径と外側コア径の
径比が0.2〜1.0とし、Fの存在しない雰囲気での加熱を
1300〜1600℃の範囲内の温度で行なうことが特に好まし
い。
In the present invention, the amount of GeO 2 added to the inner core portion is 0.1 to 0.8% in relative refractive index difference, and the diameter ratio of the inner core diameter and the outer core diameter is 0.2 to 1.0, and in an atmosphere without F. Heating
It is particularly preferable to carry out at a temperature within the range of 1300 to 1600 ° C.

本発明は内側コアがGeO2−SiO2、外側コアがF−SiO2
クラツドが外側コアより低屈折率のF−SiO2である第1
−B図の型の屈折率分布の光フアイバ母材を得ることを
目的とするが、VAD法によりコア用のガラス微粒子体
(以下スート体という)を作製し、これを透明ガラス化
してコア用透明ガラス体とし、この外周にクラツド部を
形成する。
In the present invention, the inner core is GeO 2 —SiO 2 , the outer core is F—SiO 2 ,
The cladding is F-SiO 2 which has a lower refractive index than the outer core.
-For the purpose of obtaining an optical fiber base material having a refractive index distribution of the type shown in Fig. B, glass fine particles for the core (hereinafter referred to as soot body) are produced by the VAD method, and this is made into a transparent glass to be used for the core. A transparent glass body is formed, and a cladding portion is formed around this.

本発明は、特に、コア用透明ガラス体の作製方法に特徴
のあるもので、複数本のバーナを用いて、内側コアとな
るGeO2−SiO2スート体と、外側コアとなる純粋SiO2スー
ト体からなる複合スート体、すなわちコア用スート体を
まず形成しておく。つまり、外側コアスート体は、この
段階では未だFを添加されていないのである。このとき
の条件は通常のVAD法によればよく、具体的にはスート
合成用バーナには例えばSiCl4,GeCl4等のガラス原料ガ
ス、例えばH2,O2等の燃焼ガス及び助燃ガス、例えばA
r,He等の不活性ガス等を流してスートを生成せしめる。
The present invention is particularly characterized by a method for producing a transparent glass body for a core, using a plurality of burners, a GeO 2 -SiO 2 soot body to be an inner core and a pure SiO 2 soot to be an outer core. First, a composite soot body composed of a body, that is, a soot body for core is formed. That is, the outer core soot body has not yet been added with F at this stage. The conditions at this time may be according to the usual VAD method, and specifically, soot synthesizing burners include, for example, SiCl 4 , GeCl 4 and other glass source gases, such as H 2 , O 2 and other combustion gases and auxiliary combustion gases, For example, A
A soot is generated by flowing an inert gas such as r and He.

また本発明においては、内側コアのGeO2としての添加量
が、比屈折率差(内側コアの屈折率をn1とし、外側コア
の純SiO2の屈折率をn2とするとき比屈折率差=n1−n2
n2)が0.1〜0.8%の範囲となり、かつ内側コア径d1と外
側コア径d2の比d1/d2が0.2〜1.0となるように作製する
ことが、特に好ましい。かかる限定の理由は、まず比屈
折率差については0.1〜0.8%の範囲であることが本発明
によるフアイバにおいて零分散波長を1.55μmにシフト
させるための必須の条件であり、またd1/d2が0.2〜1.0
という範囲は分散制御性から限定したものであつて、曲
げ損失を抑え、MFDを大きくするという点で必須であ
る。そしてこの屈折率範囲と径比の両方を満足させるこ
とが特に好ましい。なお従来は第6図のように比屈折率
差は0.8%を越えるものとしていたが本発明では外側コ
アがF−SiO2であるので0.8%以下で充分であり、GeO2
による影響や、外側コア張力の問題を解消できるのであ
る。
Further, in the present invention, the addition amount as GeO 2 of the inner core is a relative refractive index difference (when the refractive index of the inner core is n 1 and the refractive index of pure SiO 2 of the outer core is n 2 , the relative refractive index is Difference = n 1 −n 2 /
n 2) that is in the range 0.1 to 0.8% and the ratio d 1 / d 2 of the inner core diameter d 1 and the outer core diameter d 2 is manufactured such that 0.2 to 1.0, particularly preferred. The reason for this limitation is that the relative refractive index difference is in the range of 0.1 to 0.8%, which is an essential condition for shifting the zero dispersion wavelength to 1.55 μm in the fiber according to the present invention, and d 1 / d 2 is 0.2 to 1.0
This range is limited from the viewpoint of dispersion controllability, and is essential in terms of suppressing bending loss and increasing MFD. It is particularly preferable to satisfy both the refractive index range and the diameter ratio. Conventionally, the relative refractive index difference was set to exceed 0.8% as shown in FIG. 6, but in the present invention, since the outer core is F-SiO 2 , 0.8% or less is sufficient, and GeO 2
It is possible to eliminate the influence of the above and the problem of the outer core tension.

以上で得られたコア用スート体を公知の方法例えばCl2
ガス、Cl化合物ガス等の脱水作用のあるガスを含む不活
性ガス雰囲気中で加熱して脱水する。例えばCl24容量
%含有He雰囲気で1050℃で加熱といつた条件である。
The core soot body obtained above is prepared by a known method such as Cl 2
Gas is dehydrated by heating in an inert gas atmosphere containing a gas having a dehydrating action such as a Cl compound gas. For example, the conditions are heating at 1050 ° C. in a He atmosphere containing 4% by volume of Cl 2 .

加熱脱水処理されたコア用スート体は、まずFを含まな
い雰囲気中で透明化温度よりは低い温度で、例えばHeの
みの雰囲気中で1300〜1600℃の温度範囲内で加熱する。
GeO2−SiO2ガラスは純SiO2ガラスよりも軟化点が低いの
で、この温度域での加熱処理によりGeO2−SiO2からなる
内側コアスート体部分は収縮し、そのカサ密度が急増す
るが、純SiO2の外側コアスート部分は収縮できない。そ
こでコア用スート体は内側コアスート体が外側コアスー
ト体よりかなりカサ密度の高い状態となる。
The heat-dehydrated core soot body is first heated in an atmosphere not containing F at a temperature lower than the clearing temperature, for example, in an atmosphere of only He within a temperature range of 1300 to 1600 ° C.
Since the softening point of GeO 2 --SiO 2 glass is lower than that of pure SiO 2 glass, the heat treatment in this temperature range causes the inner core soot body portion made of GeO 2 --SiO 2 to shrink and its bulk density to increase sharply. The outer core soot portion of pure SiO 2 cannot shrink. Therefore, the inner soot body of the core soot body has a considerably higher bulk density than the outer core soot body.

このような状態のコア用スート体について、次にFを含
む雰囲気中、例えばSF6,SiF4,CCl2F2等のF化合物ガ
スとHe等の不活性ガスからなる雰囲気中で加熱して、F
添加・透明化処理する。
The core soot body in such a state is then heated in an atmosphere containing F, for example, in an atmosphere composed of an F compound gas such as SF 6 , SiF 4 , CCl 2 F 2 and an inert gas such as He. , F
Add / clear.

ここで、スートのカサ密度(g/cm3)とFの添加量(△-
%)については、第5図の図表に示す関係がある。これ
は本発明者らが現在に至るまでの研究途上で、実験デー
タから得ていたもので、第5図から明らかなようにスー
トのカサ密度が0.3g/cm3以上になると、Fはスート中に
拡散し難いことが判る。また0.8g/cm3以上では殆んどF
が添加されないことも判る。
Here, the bulk density of the soot (g / cm 3 ) and the amount of F added (△ -
%) Has the relationship shown in the chart of FIG. This was obtained from the experimental data by the present inventors in the course of research until now, and as is clear from FIG. 5, when the bulk density of the soot becomes 0.3 g / cm 3 or more, F becomes soot. It turns out that it is difficult to diffuse inside. Almost F at 0.8 g / cm 3 or more
It can also be seen that is not added.

したがつて、前段のFを含まない雰囲気中での加熱処理
によりカサ密度が急増した内側コアスート体には、この
F添加処理によつてもFは拡散せず、外側コアスート体
のみにFが添加され、GeO2−SiO2内側コア/F−SiO2外側
コアというガラス組成構造と、第1−B図の屈折率分布
に相当するコア部の屈折率構造が実現できる。
Therefore, in the inner core soot body in which the bulk density rapidly increased due to the heat treatment in the atmosphere containing no F in the previous stage, F did not diffuse even by this F addition treatment, and F was added only to the outer core soot body. Thus, a glass composition structure of GeO 2 —SiO 2 inner core / F—SiO 2 outer core and a refractive index structure of the core portion corresponding to the refractive index distribution of FIG. 1-B can be realized.

F添加処理工程と同時に又はこの工程に続いて加熱焼結
して、コア用透明ガラス体を得る。F添加の際の雰囲気
のままで加熱温度を1650℃程度にしてF添加と透明化を
同時に行なえば工程的に簡便である。
Simultaneously with or after the F addition treatment step, heat sintering is performed to obtain a transparent glass body for a core. If the heating temperature is set to about 1650 ° C. in the same atmosphere as when F is added, and F is added and the material is made transparent at the same time, the process becomes simple.

以上で得られたコア用透明ガラス体の外周にF−SiO2
らなるクラツドを形成する。具体的にはi)公知技術に
より別途作成したF−SiO2からなるクラツド用ガラス管
とコア用透明ガラス体とを合体せしめて、加熱により中
実化する方法、ii)コア用透明ガラス体を出発材とし、
この外周にスート付けしてクラツドスート体を形成した
後に、該クラツドスート体を前記と同様の方法でF添加
して透明化する方法、のいずれかの方法によればよく、
又は両者を組合せて行つてもよい。なおi)の方法にお
いては少くともハロゲンガス例えばCl2,SOCl2,CCl4
を含む雰囲気において合体中実化すれば、損失増の少な
いフアイバを得ることができるので好ましい。
Forming a Kuratsudo consisting F-SiO 2 on the outer periphery of the transparent glass body for obtained core above. Specifically, i) a method in which a glass tube for a cladding and a transparent glass body for a core made of F-SiO 2 separately prepared by a known technique are united and solidified by heating, ii) a transparent glass body for a core As a starting material,
After forming a cladded soot body by sooting to the outer periphery thereof, a method of adding F to the cladded soot body to make it transparent in the same manner as described above, or any of the methods,
Alternatively, both may be combined. In the method (i), it is preferable to perform solidification in an atmosphere containing at least a halogen gas such as Cl 2 , SOCl 2 , CCl 4 or the like because a fiber with less loss increase can be obtained.

本発明は複数バーナを用いて、コア部のスス付けを一度
に行ない、これをF素添加し焼結するという、簡単な工
程でGeO2−SiO2内側コア/F−SiO2外側コア構造のコア材
を製造できる点で、コスト低減効果も期待できる。ま
た、GeO2−SiO2ガラスロツドにSiO2スートを直接つける
方法も考えられるが、この方法では、酸水素炎からロツ
ド中にHが拡散してしまい、その後の脱水処理でも水分
の除去は容易でなく、伝送損失を低減することは無理で
ある。
The present invention uses a plurality of burners to perform sooting of the core portion at once, and then adds F to this and then sinters it, thereby forming a GeO 2 —SiO 2 inner core / F—SiO 2 outer core structure in a simple process. The cost reduction effect can be expected in that the core material can be manufactured. A method of directly attaching SiO 2 soot to the GeO 2 —SiO 2 glass rod is also conceivable. However, in this method, H is diffused from the oxyhydrogen flame into the rod, and removal of water is easy even in the subsequent dehydration treatment. No, it is not possible to reduce the transmission loss.

そして、本発明では、外側コアにFを添加しその屈折率
を下げることによつて内側コアの屈折率を上げるための
内側コアへのGeO2添加量を相対的に低減できる。その結
果GeO2に起因するレーリー散乱損失及び紫外域での吸収
損失の影響を低減できるに加え、外側コアヘの張力集中
の問題も解決できるので、伝送特性に優れた分散シフト
光フアイバ用母材を製造できる。
Then, in the present invention, by adding F to the outer core and lowering the refractive index thereof, the amount of GeO 2 added to the inner core for increasing the refractive index of the inner core can be relatively reduced. As a result, in addition to reducing the effects of Rayleigh scattering loss and absorption loss in the ultraviolet region due to GeO 2 , the problem of concentration of tension on the outer core can be solved, so a base material for dispersion-shifted optical fibers with excellent transmission characteristics can be used. Can be manufactured.

〔実施例〕〔Example〕

第2図に示す様な構成でコア用スート体を作製した。2.
1は内側コア用ガラス微粒子合成用バーナー(内側コア
用バーナーと称す)、2.2は外側コア用ガラス微粒子合
成用バーナ(外側コア用バーナーと称す)であり、内側
コア用バーナー2.1にGeCl4,SiCl4,H2,O2及び不活性
ガスを供給し、GeCl4,SiCl4を酸水素火炎中で加水分解
させGeO2を含有するSiO2ガラス微粒子を発生せしめ、出
発材4先端上に内側コア用スート体1を堆積させる。出
発材3は回転しつつ、内側コア用スート体の成長に合わ
せ、上方に引上げられていく。一方、外側コアバーナー
2.2にはSiCl4,H2,O2,不活性ガスを供給し、内側コア
用スート体1を取り囲む様に、SiO2微粒子からなる外側
コア用スート体2が形成される。
A soot body for a core was produced with the structure shown in FIG. 2.
1 is a burner for synthesizing glass fine particles for inner core (called burner for inner core), 2.2 is a burner for synthesizing glass fine particle for outer core (called burner for outer core), burner for inner core 2.1 is GeCl 4 , SiCl 4 , H 2 , O 2 and an inert gas were supplied to hydrolyze GeCl 4 and SiCl 4 in an oxyhydrogen flame to generate SiO 2 glass fine particles containing GeO 2 , and an inner core was formed on the tip of the starting material 4. The soot body 1 for use is deposited. The starting material 3 is rotated and is pulled upward as the inner core soot body grows. Meanwhile, the outer core burner
SiCl 4 , H 2 , O 2 and an inert gas are supplied to 2.2, and the outer core soot body 2 made of SiO 2 fine particles is formed so as to surround the inner core soot body 1.

本実施例では外側コアバーナ2.2にはSiCl4800cc./min、
H214l/min、O27l/min、Ar2l/minを流し、内側コア用バ
ーナーに2.1にH23.5l/min、O27l/min、SiCl4270cc/mi
n、GeCl48cc/min、Ar2l/minを供給することにより、外
径100mmφ(内径コア径30mmφ)、長さ450mmのコア用ス
ート体が50mm/hrの引上速度で得られた。
In this embodiment, the outer core burner 2.2 has SiCl 4 800 cc./min,
H 2 14l / min, O 2 7l / min, flowing AR2L / min, to 2.1 to the burner for inner core H 2 3.5l / min, O 2 7l / min, SiCl 4 270cc / mi
By supplying n, GeCl 4 8 cc / min and Ar 2 l / min, a core soot body having an outer diameter of 100 mmφ (inner diameter core diameter of 30 mmφ) and a length of 450 mm was obtained at a pulling rate of 50 mm / hr.

このコア用スート体をまずリング状カーボンヒーターを
有する炉内へ挿入し1050℃に加熱し、炉内雰囲気をCl2/
He=4/100として加熱脱水処理を行なつた。次に該コア
用スート体をHe雰囲気中1450℃で加熱処理し、コア用ス
ートを収縮させた。最後に1650℃に加熱し炉内雰囲気を
SiF4/He=1/100としてコア用スート収縮体にFを添加せ
しめ同時に透明ガラス化した。得られたコア用透明ガラ
ス体の屈折率分布と元素濃度(Ge,F)分布の関係をまと
めて第3図に示す。
The core soot body is first inserted into a furnace having a ring-shaped carbon heater and heated to 1050 ° C., and the atmosphere in the furnace is set to Cl 2 /
A heat dehydration treatment was performed with He = 4/100. Next, the soot body for core was heat-treated in a He atmosphere at 1450 ° C. to shrink the soot for core. Finally, heat to 1650 ° C and change the atmosphere in the furnace.
SiF 4 / He = 1/100 was added to the soot shrinkage body for the core, and F was added at the same time to form a transparent glass. The relationship between the refractive index distribution and the element concentration (Ge, F) distribution of the obtained transparent glass body for a core is summarized in FIG.

一方、VAD法により作製した純粋SiO2からなるクラツド
用スート体をCl2/He=4/100、1050℃の条件で脱水後、S
iF4/He=2/100、1350℃で加熱して該クラツド用スート
体を添加した後同雰囲気で1650℃に加熱して透明化処理
を行なうことによりクラツド用透明ガラス体を作製し
た。該クラツド用透明ガラス体の中央部を穿孔し、前記
で得た該コア用ガラス体を該クラツド用ガラス体の内空
部に挿入して両者を加熱一体化しコア・クラツドを有す
るガラス母材を得た。
On the other hand, the soot body for the cladding made of pure SiO 2 produced by the VAD method was dehydrated under the condition of Cl 2 / He = 4/100 and 1050 ° C.
A transparent glass body for cladding was produced by heating at 1350 ° C. at iF 4 / He = 2/100, adding the soot body for cladding, and then heating at 1650 ° C. in the same atmosphere to carry out a clearing treatment. A glass base material having a core / clad is formed by perforating the central part of the transparent glass body for cladding, inserting the glass body for core obtained in the above into the inner space of the glass body for cladding, and heating and integrating both. Obtained.

更に上で得られたガラス母材を延伸したのち、該ガラス
母材上にVAD法で純粋SiO2スス体を堆積させた後、加熱
脱水、F添加透明化処理を行ない、プリフオームを得
た。得られたプリフオームの屈折率分布を第1−B図に
示す。なお、プリフオーム外径は70mmφ、内側コア径1.
6mmφ、外側コア径4.5mmφであつた。
Further, the glass base material obtained above was stretched, and pure SiO 2 soot body was deposited on the glass base material by the VAD method, followed by heat dehydration and F addition clarification treatment to obtain a preform. The refractive index distribution of the obtained preform is shown in FIG. 1-B. The outer diameter of the preform is 70 mm and the inner core diameter is 1.
It was 6 mmφ and the outer core diameter was 4.5 mmφ.

このプリフオームを外径23mmφに延伸した後、外径125
μmφに紡糸した。
After stretching this preform to an outer diameter of 23 mmφ, an outer diameter of 125
It was spun to a diameter of μmφ.

第4図に本発明で得られた分散シフトフアイバの伝送損
失スペクトルを実線イで示し、また比較例として第6図
の構造の従来フアイバのスペクトルを破線ロで示す。
In FIG. 4, the transmission loss spectrum of the dispersion shift fiber obtained by the present invention is shown by the solid line a, and as a comparative example, the spectrum of the conventional fiber having the structure of FIG. 6 is shown by the broken line b.

第1−B図及び第6図の比較から明らかなように本発明
フアイバは純粋SiO2屈折率レベルからのGeO2による屈折
率増加分が0.5%であるのに対して、従来フアイバのそ
れは0.8%である。
As is clear from the comparison between FIG. 1-B and FIG. 6, the fiber of the present invention has an increase of 0.5% in refractive index due to GeO 2 from the pure SiO 2 refractive index level, whereas that of the conventional fiber is 0.8%. %.

また、第4図から明らかなように従来フアイバの伝送損
失(ロ)も波長1.55μmで0.22dB/kmと比較的低ロスで
あるが、本発明品フアイバのそれ(イ)は波長1.55μm
で0.20dB/kmの低損失化が達成されている。
Further, as is clear from FIG. 4, the transmission loss (b) of the conventional fiber is 0.22 dB / km at a wavelength of 1.55 μm, which is a relatively low loss, but that of the fiber of the present invention (a) is a wavelength of 1.55 μm.
A low loss of 0.20 dB / km has been achieved.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したようにGeO2−SiO2からなる内側
コアへのFの拡散を極力防止し、外側コアにFを添加す
ることによつてGeO2−SiO2内側コア/F−SiO2外側コア/F
−SiO2クラツドの構造を実現できて、GeO2量を低減して
充分に比屈折率差をとれるので、GeO2に起因するレーリ
ー散乱損失及びGeO2が還元されることに起因する紫外吸
収を低減でき、さらに外側コアへの張力集中を抑えて曲
げ損失増を防ぎうるので、分散シフトフアイバの低損失
化に非常に効果がある方法である。また本発明は同様の
フアイバ構造を得る従来法に比して、工程が簡略である
ので製造コスト低減も可能で経済的効果も大きい。
As described above, the present invention prevents diffusion of F into the inner core made of GeO 2 —SiO 2 as much as possible, and by adding F to the outer core, GeO 2 —SiO 2 inner core / F—SiO. 2 outer core / F
Can be realized a structure of -SiO 2 Kuratsudo, since take a sufficiently relative refractive index difference by reducing the GeO 2 content, ultraviolet absorption due to the Rayleigh scattering loss and GeO 2 due to GeO 2 is reduced This is a method that is extremely effective in reducing the loss of the dispersion shift fiber, because it can be reduced and the concentration of tension on the outer core can be suppressed to prevent an increase in bending loss. Further, in the present invention, the manufacturing process can be reduced and the economical effect is large as compared with the conventional method for obtaining the same fiber structure.

【図面の簡単な説明】[Brief description of drawings]

第1−A図は階段型の分散シフトフアイバ用母材の屈折
率分布を示す図、第1−B図は本発明に係わる分散シフ
トフアイバ用母材の屈折率分布とガラス組成構造を示す
図、 第2図は本発明におけるコア用スート体作製の実施態様
を示す図、 第3図は、本発明の実施例で製造したコア用透明ガラス
体の屈折率分布と元素濃度(Ge,F)分布の関係を示す
図、 第4図は本発明による分散シフトフアイバ及び従来品の
伝送損失スペクトルを比較して示した図、 第5図はF添加量(△)とスートのカサ密度(ρ)と
の関係を示す図、 第6図は従来の分散シフトフアイバ用母材の屈折率分布
とガラス組成構造を示す図である。
FIG. 1-A is a diagram showing the refractive index distribution of a step-type dispersion shift fiber base material, and FIG. 1-B is a diagram showing the refractive index distribution and glass composition structure of the dispersion shift fiber base material according to the present invention. FIG. 2 is a diagram showing an embodiment of making a soot body for a core in the present invention, and FIG. 3 is a refractive index distribution and element concentration (Ge, F) of a transparent glass body for a core produced in an example of the present invention. diagram showing the relationship between distribution, Fig. 4 shows compares the transmission loss spectrum of the dispersion Shifutofuaiba and conventional product according to the invention Fig, Fig. 5 F amount (△ -) and soot bulk density ([rho ), And FIG. 6 is a view showing the refractive index distribution and the glass composition structure of the conventional base material for dispersion shift fibers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 豪太郎 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (56)参考文献 特開 昭62−108746(JP,A) 特開 昭61−31324(JP,A) 特開 昭63−222042(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Gotaro Tanaka, No. 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (56) Reference JP-A-62-108746 (JP, A) Kai 61-31324 (JP, A) JP-A-63-222042 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】GeO2を添加したSiO2からなる内側コア部と
Fを添加したSiO2からなる外側コア部を有するコア用透
明ガラス体外周にFを添加したSiO2からなるクラツド部
を形成して光フアイバ母材を製造する方法において、VA
D法により複数のガラス微粒子合成用バーナを用いて、G
eO2を添加したSiO2からなる内側コアスート体と純粋SiO
2からなる外側コアスート体を有してなるコア用スート
体を作製し、該コア用スート体を加熱脱水処理した後
に、Fの存在しない雰囲気で該コアスート体の透明化温
度より低温で加熱し、然る後Fを含有する雰囲気で該コ
ア用スート体が透明化する温度で加熱することにより外
側コアスート体にFを添加するとともに該コア用スート
体を透明化して上記コア用透明ガラス体を作製すること
を特徴とする分散シフトフアイバ用母材の製造方法。
1. A form Kuratsudo portion made of SiO 2 with the addition of F to the transparent glass body outer peripheral core having an outer core portion made of SiO 2 added with the inner core portion and F made of SiO 2 with the addition of GeO 2 In the method for producing optical fiber preform by
By using multiple burners for synthesizing glass particles by method D, G
Inner core soot body consisting of SiO 2 with eO 2 added and pure SiO 2
A core soot body having an outer core soot body consisting of 2 is produced, and the core soot body is heated and dehydrated, and then heated at a temperature lower than the clearing temperature of the core soot body in an atmosphere in which F does not exist, Then, by heating in an atmosphere containing F at a temperature at which the soot body for core becomes transparent, F is added to the outer core soot body and the soot body for core is made transparent to produce the transparent glass body for core. A method for manufacturing a base material for a dispersion shift fiber, which comprises:
【請求項2】内側コア部へのGeO2の添加量を比屈折率差
で0.1〜0.8%とし、かつ内側コア径と外側コア径の径比
を0.2〜1.0とする特許請求の範囲第1項に記載される分
散シフトフアイバ用母材の製造方法。
2. The amount of GeO 2 added to the inner core portion is 0.1 to 0.8% in terms of relative refractive index difference, and the diameter ratio of the inner core diameter and the outer core diameter is 0.2 to 1.0. A method for producing a base material for a dispersion shift fiber according to the item.
【請求項3】Fの存在しない雰囲気での加熱を1300〜16
00℃の範囲内の温度で行なう特許請求の範囲第1項に記
載の分散シフトフアイバ用母材の製造方法。
3. Heating in an atmosphere free of F is 1300 to 16
The method for producing a base material for a dispersion shift fiber according to claim 1, which is carried out at a temperature within the range of 00 ° C.
JP62179118A 1987-07-20 1987-07-20 Manufacturing method of base material for dispersion shift fiber Expired - Lifetime JPH0717395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62179118A JPH0717395B2 (en) 1987-07-20 1987-07-20 Manufacturing method of base material for dispersion shift fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62179118A JPH0717395B2 (en) 1987-07-20 1987-07-20 Manufacturing method of base material for dispersion shift fiber

Publications (2)

Publication Number Publication Date
JPS6424041A JPS6424041A (en) 1989-01-26
JPH0717395B2 true JPH0717395B2 (en) 1995-03-01

Family

ID=16060322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62179118A Expired - Lifetime JPH0717395B2 (en) 1987-07-20 1987-07-20 Manufacturing method of base material for dispersion shift fiber

Country Status (1)

Country Link
JP (1) JPH0717395B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462603A (en) * 1987-09-02 1989-03-09 Furukawa Electric Co Ltd Optical transmission fiber
JP2959877B2 (en) * 1991-06-24 1999-10-06 古河電気工業株式会社 Optical fiber manufacturing method
JPH10260330A (en) 1997-03-18 1998-09-29 Furukawa Electric Co Ltd:The Dispersion shift optical fiber
US6802191B2 (en) * 2001-04-19 2004-10-12 Lucent Technologies Inc. Controlled collapse of depressed index optical fiber preforms

Also Published As

Publication number Publication date
JPS6424041A (en) 1989-01-26

Similar Documents

Publication Publication Date Title
EP1663890B1 (en) Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US20040240814A1 (en) Optical fiber having reduced viscosity mismatch
US4846867A (en) Method for producing glass preform for optical fiber
US20070297735A1 (en) Optical fiber containing alkali metal oxide
JPS6113203A (en) Single mode optical fiber
WO2000042458A1 (en) Optical fiber and method of manufacture thereof
JP2959877B2 (en) Optical fiber manufacturing method
US4880452A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JP3098828B2 (en) Dispersion shifted fiber and method of manufacturing the same
EP0181595A2 (en) Dielectric waveguide with chlorine dopant
JP3738510B2 (en) Optical fiber and manufacturing method thereof
JPH0717395B2 (en) Manufacturing method of base material for dispersion shift fiber
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPH0784330B2 (en) Manufacturing method of base material for dispersion shift fiber
JPS638707A (en) Dispersion shift type optical fiber
JPS63222031A (en) Production of preform for optical fiber
JP2001192233A (en) Optical fiber and method for manufacturing the same
JP2645709B2 (en) Preform for optical fiber and method of manufacturing the same
JPH01242432A (en) Production of base material for optical fiber
JP2000159531A (en) Production of optical fiber preform
JP2645710B2 (en) Preform for optical fiber and method of manufacturing the same
JPH05286735A (en) Production of dispersion-shift optical fiber
JP4419339B2 (en) Optical fiber preform manufacturing method
JPH0239457B2 (en)
JP2001240424A (en) Manufacturing method of base material of optical fiber