JPS638707A - Dispersion shift type optical fiber - Google Patents

Dispersion shift type optical fiber

Info

Publication number
JPS638707A
JPS638707A JP61153565A JP15356586A JPS638707A JP S638707 A JPS638707 A JP S638707A JP 61153565 A JP61153565 A JP 61153565A JP 15356586 A JP15356586 A JP 15356586A JP S638707 A JPS638707 A JP S638707A
Authority
JP
Japan
Prior art keywords
refractive index
optical fiber
dispersion
core
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61153565A
Other languages
Japanese (ja)
Inventor
Ryozo Yamauchi
良三 山内
Tomio Azebiru
富夫 畔蒜
Suehiro Miyamoto
宮本 末広
Katsuyuki Seto
克之 瀬戸
Kenji Nishide
西出 研二
Tatsuyuki Oohashi
大橋 立行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61153565A priority Critical patent/JPS638707A/en
Publication of JPS638707A publication Critical patent/JPS638707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02276Dispersion shifted fibres, i.e. zero dispersion at 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03688Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 5 or more layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To decrease the chances of the incorporation of an OH group into a fiber in actual production and to obviate the increased absorption loss by the OH group by forming the fiber in such a manner as to have the low- refractive index part where the refractive index is not lower than the refractive index of the pure quartz glass sandwiched by plural high-refractive index parts and to have a clad part where the refractive index is lower than the refractive index of the pure quartz glass enclosing the core part. CONSTITUTION:This fiber has the high-refractive index part 2 doped with germanium in the central part of the core part 1, the low-refractive index part 3 around the same and further the high-refractive index part 4 doped with germanium around the low-refractive index part 3. The clad part 5 of the low refractive index is provided around the core part 1 so as to enclose the same. The low-refractive index part 3 sandwiched by the two high-refractive index parts 2, 4 in the core part 1 consists of the pure quartz glass or the quartz glass doped with a small amt. of the germanium and the refractive index thereof is not lower than the refractive index of the pure quartz glass. The clad part 5 has the refractive index lower than the refractive index of the pure quartz glass by doping fluorine thereto.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、長距離、低損失、広帯域の光フアイバ伝送
系に最適な石英系の光ファイバに関し、特に、1.4.
wm=1.74mという広い波長域にわたって波長分散
を低くした分散シフト光ファイバに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a silica-based optical fiber that is optimal for long-distance, low-loss, broadband optical fiber transmission systems, and particularly relates to 1.4.
This invention relates to a dispersion-shifted optical fiber that has low chromatic dispersion over a wide wavelength range of wm=1.74 m.

従来の技術 従来から良く知られているように、石英系光ファイバの
低損失波長域は1.4μm〜1.フルmの波長域(望ま
しくは1.5μm〜1.6≠mの波長域)にある。すな
わち、長距離無中継光伝送を行なうにはこの波長域が最
も適しており、たとえば光フアイバ伝送系の光源として
10mW程度の出力を有するレーザダイオードを用いて
250km程度の無中継伝送が回走である。
2. Description of the Related Art As is well known in the past, the low loss wavelength range of silica-based optical fibers is from 1.4 μm to 1.4 μm. It is in the full m wavelength range (preferably in the wavelength range of 1.5 μm to 1.6≠m). In other words, this wavelength range is most suitable for long-distance non-repeater optical transmission; for example, non-repeater transmission over a distance of about 250 km can be achieved using a laser diode with an output of about 10 mW as a light source for an optical fiber transmission system. be.

一方、伝送速度に関して、光源の波長が単一スペクトル
でないためにいわゆる波長分散による伝送波形の歪の影
響の問題がある。これまで最も良く使用されてきた第1
1図に示すようなコア径約10μm、コア・クラフト間
の比屈折率差Δ=0.3%の単一モードファイバでは、
波長分散は第12図の実線で示される曲線のようになり
、波長1.3μmで零となるが、それ以外の波長では大
きな値となる。たとえば最も伝送損失が少なくなる波長
1.55μmでの波長分散値は、この従来型単一モード
ファイバでは約17〜20psec/km/nmとなる
。この意味は光源のスペクトル幅1nm、  ファイバ
長さlkm当りの光パルスの広がりが17〜20 ps
ecあるということである。この場合、たとえば光源の
スペクトル幅が4nm(半値全幅)、1100k伝送、
光ファイバの波長分散が20 psec / Km/ 
n mのとき、光パルス幅は8nsecとなり、せいぜ
い60Mbit/sec程度の情報しか送れないことに
なる。
On the other hand, regarding the transmission speed, since the wavelength of the light source is not a single spectrum, there is a problem of distortion of the transmission waveform due to so-called chromatic dispersion. The first most commonly used
In a single mode fiber with a core diameter of about 10 μm and a relative refractive index difference Δ=0.3% between the core and the craft, as shown in Figure 1,
The chromatic dispersion is like the curve shown by the solid line in FIG. 12, and becomes zero at a wavelength of 1.3 μm, but takes a large value at other wavelengths. For example, the chromatic dispersion value at a wavelength of 1.55 μm, where the transmission loss is lowest, is about 17 to 20 psec/km/nm in this conventional single mode fiber. This means that the spectral width of the light source is 1 nm, and the spread of the optical pulse per 1 km of fiber length is 17 to 20 ps.
This means that there is ec. In this case, for example, the spectral width of the light source is 4 nm (full width at half maximum), 1100k transmission,
The wavelength dispersion of optical fiber is 20 psec/Km/
nm, the optical pulse width is 8 nsec, which means that only about 60 Mbit/sec of information can be sent at most.

そこで、これを改善するために考えられたのが波長分散
曲線を第12図の1点鎖線で示すようにシフトさせた分
散シフト光ファイバである。この分散シフト光ファイバ
では、零分散波長を低損失?tFテある1、5JLm帯
にシフトさせるためにその屈折率分布に工夫を要し、た
とえば第13図A〜Dのような屈折率分布としている。
In order to improve this, a dispersion-shifted optical fiber was devised in which the wavelength dispersion curve was shifted as shown by the dashed line in FIG. 12. This dispersion shifted optical fiber has zero dispersion wavelength and low loss? In order to shift the tF to the 1.5 JLm band, the refractive index distribution must be devised, for example, as shown in FIGS. 13A to 13D.

ところで、一般に光ファイバの波長分散は、第14図に
示すように■材料分散と■導波路分散との和で表わされ
るが、■材料分散は光ファイバの屈折率分布にあまり左
右されない。そこで、第14図のように1.55pm付
近において、■導波路分散を、■材料分散と異符号でか
つ絶対値を等しくして1.55μm付近で波長分散を零
としている(第14図の実線)。そのためには、実際に
はΔが小さいと十分大きい導波路分散が得られないので
、Δ=0.65%もしくはそれ以上にする必要があり、
第14図の屈折率分布をとる光ファイバにおいても同様
のパラメータとしている。
By the way, the wavelength dispersion of an optical fiber is generally expressed as the sum of (1) material dispersion and (2) waveguide dispersion, as shown in FIG. 14, but (2) material dispersion is not greatly influenced by the refractive index distribution of the optical fiber. Therefore, as shown in Figure 14, around 1.55 pm, the waveguide dispersion is set to have a different sign and the same absolute value as the material dispersion, and the wavelength dispersion is set to zero around 1.55 μm (see Figure 14). solid line). For this purpose, in reality, if Δ is small, a sufficiently large waveguide dispersion cannot be obtained, so it is necessary to set Δ to 0.65% or more.
Similar parameters are used for the optical fiber having the refractive index distribution shown in FIG.

しかし、上記のような低損失・低分散光ファイバは、そ
れだけでは実際に使用することはできない。すなわち、
これらの特性に加えて一般の光ファイ/へと同様に、 (1)、安定にケーブル化できること、(2)、低い損
失で接続できること、 が必要である。
However, such a low-loss, low-dispersion optical fiber as described above cannot be used in practice by itself. That is,
In addition to these characteristics, as with general optical fibers, it is necessary to (1) be able to form a cable stably, and (2) be able to connect with low loss.

光ファイバは実際の使用環境に敷設することができるよ
うにする必要があり、そのため、ケーブル化される。す
なわち、光ファイバを他のケーブル構成材料とともに集
合して外被(保護シース)を施し、ケーブルへの引っ張
り力やケーブルへの横方向からの力に対して保護する。
Optical fibers need to be able to be installed in the actual environment of use and are therefore cabled. That is, the optical fibers are assembled together with other cable constituent materials and provided with an outer sheath (protective sheath) to protect against pulling forces on the cable and lateral forces on the cable.

このとき、曲げられることがある。ところが、元来光フ
ァイバは外径も細く、しなやかで、容易に曲がり易い。
At this time, it may be bent. However, optical fibers originally have a small outer diameter, are flexible, and are easily bent.

そのため、ファイバパラメータの設定によっては1曲げ
られたときに光を十分にコアイノくコア内にとじ込めて
おくことができず、放射してしまうことが生じる。定性
的に言えば、分散シフト光ファイ/<では、零分散波長
が一定の場合、コア・クラッド間の比屈折率差が大きい
ほど、同じ曲げ半径に対して曲げに伴う損失増加が小さ
くなる。
Therefore, depending on the settings of the fiber parameters, when the fiber is bent once, the light may not be sufficiently confined within the core and may be emitted. Qualitatively speaking, in a dispersion-shifted optical fiber /<, when the zero dispersion wavelength is constant, the larger the relative refractive index difference between the core and the cladding, the smaller the increase in loss due to bending for the same bending radius.

一方、光フアイバ同士を接続する場合、いわゆるモード
フィールド径が大きい方が有利である。
On the other hand, when connecting optical fibers to each other, it is advantageous to have a larger mode field diameter.

ここで、モードフィールド径と言うのは、光フアイバ断
面内における光エネルギの広がり方を示す指標であるが
、その大きさはコア径とは一致しない。いわゆる単一モ
ードファイバにおいては、伝播するエネルギはコア内の
みを伝播するのではなくて、10%ないし50%のエネ
ルギがクラッド中を伝わるので、分散シフト光ファイバ
のように原理的にコアへの光のとじ込めか弱くなりがち
な光7アイバの場合には、モードフィールド径の方がコ
ア径よりも大きくなる。しかし、分散シフト尤ファイバ
の場合、通常の1.3pm零分散ファイバと比較して最
初からコア径が細めに設定されているので、最終的なモ
ードフィールI”13をそれほど大きくすることができ
ない。光ファイバと光ファイバとの接続において最も聞
届となるのは。
Here, the mode field diameter is an index indicating how light energy spreads within the cross section of an optical fiber, but its size does not match the core diameter. In so-called single-mode fibers, the propagating energy does not propagate only in the core, but 10% to 50% of the energy propagates in the cladding, so in principle, unlike dispersion-shifted optical fibers, the propagating energy does not propagate only in the core. In the case of optical fibers that tend to have weak light confinement, the mode field diameter is larger than the core diameter. However, in the case of a dispersion-shifted fiber, the core diameter is set from the beginning to be smaller than that of a normal 1.3 pm zero-dispersion fiber, so the final mode field I''13 cannot be made that large. What is the most common connection between optical fibers?

コアの偏心であり、その偏心量は、通常、コアの中心が
光ファイバの外径の中心に対してどれだけずれているか
で表わされる。偏心量が大きいと光ファイバと光ファイ
バとの外径を一致させて突き合わせたとき、コアとコア
の中心が一致せず、一方の光ファイバの光が他方の光フ
ァイバに伝達されず外に放射してしまう、これが接続損
失である。また、同じ偏心量であっても、tS続する光
ファイバのモードフィールド径が小さければ相対的に光
の伝達量は減少するので接続損失が大きくなる。すなわ
ち、分散シフト光ファイバを接続するには、同じ零分散
波長の場合、モードフィールド径が大きい方が良いと言
える。同じ零分散波長の場合、モードフィールド径を大
きくするにはコアφクラッド間の比屈折率差を小さくす
ることが有効である。
This is the eccentricity of the core, and the amount of eccentricity is usually expressed by how far the center of the core deviates from the center of the outer diameter of the optical fiber. If the amount of eccentricity is large, when two optical fibers are butted together with the same outer diameter, the centers of the cores will not match, and the light from one optical fiber will not be transmitted to the other optical fiber and will be radiated outside. This is connection loss. Further, even if the amount of eccentricity is the same, if the mode field diameter of the optical fiber that continues for tS is small, the amount of light transmitted will be relatively reduced, resulting in a large splice loss. That is, in order to connect dispersion-shifted optical fibers, it is better to have a larger mode field diameter for the same zero dispersion wavelength. In the case of the same zero dispersion wavelength, it is effective to reduce the relative refractive index difference between the core φ and the cladding in order to increase the mode field diameter.

このように、一方で曲げ損失を小さくするためのはコア
・クラッド間の比屈折率差を大きくする必要があり、他
方でモードフィールド径を大きくして接続損失を小さく
するためにはコア・クラッド間の比屈折率差を小さくす
る必要があるというように、両者は矛盾する。
In this way, on the one hand, in order to reduce bending loss, it is necessary to increase the relative refractive index difference between the core and cladding, and on the other hand, in order to increase the mode field diameter and reduce connection loss, it is necessary to increase the relative refractive index difference between the core and cladding. The two contradict each other, as it is necessary to reduce the relative refractive index difference between them.

そこで、第15図に示す、コア部において、中心付近に
高屈折率部分を有し、その周囲に低屈折率部分を挟んで
再び高屈折率部分が存在するというような屈折率分布を
持つ構造が提案されている。すなわち、種々の屈折率分
布を有する分散シフト光ファイバの曲げ損失特性とモー
ドフィールド径との関係を調へてみると、いわゆる単峰
型の屈折率分布では、三角形でもステップ型でもほとん
ど同−曲線上にあり、零分散波長が同一でモードフィー
ルド径が同じである限りはたとえピークの屈折率が異な
ろうとも実質的に同じ曲げ損失特性を示すことが分った
(第2図参照)。ここで、モードフィールド径は、「半
径方向にガウス分布状の強度分布を有する光ビームで光
ファイバを励振するとき、最も効率良く光が励振される
ところの光ビームの(1/e)直径」で定義されている
。第2図でαは光ファイバの屈折率分布を決定している
パラメータであって、α=1は三角形屈折上分布、α=
■はいわゆるステップ型屈折率分布に対応している。こ
の図において、光ファイバの曲げ損失特性は、光ファイ
バを直径20mmに曲げたときの光ファイバinあたり
の損失で代表して示しである。発明者らのこれまでの経
験からは、比較的容易にケーブル化できるためには、直
1120mmにおける曲げ損失がおおよそ30dB/m
以下である必要がある。つまり、この第2図の単峰型の
屈折率分布のデータからは、従来、三角形や2乗分布の
ようにコアの中心の屈折率が高くてコア周辺の屈折率が
低い場合にはモードの電磁界分布が広がり、零分散波長
が一定の下においてもモードフィールド径を大きくする
ことが可能であると思われていたものが、事実は、この
直感的な認識に反して単峰型である限りはどれでも五十
歩百歩であることが分ったのである。
Therefore, as shown in FIG. 15, a structure having a refractive index distribution in which the core part has a high refractive index part near the center and a high refractive index part exists around it with a low refractive index part sandwiched therebetween. is proposed. In other words, when we examine the relationship between the bending loss characteristics and mode field diameter of dispersion-shifted optical fibers with various refractive index distributions, we find that in so-called unimodal refractive index distributions, both triangular and step-type refractive index distributions have almost the same curve. It was found that as long as the zero dispersion wavelength is the same and the mode field diameter is the same, the bending loss characteristics are essentially the same even if the peak refractive index is different (see Figure 2). Here, the mode field diameter is "(1/e) diameter of the light beam where the light is excited most efficiently when the optical fiber is excited with a light beam having a Gaussian intensity distribution in the radial direction." is defined in In Figure 2, α is a parameter that determines the refractive index distribution of the optical fiber, α = 1 is a triangular refraction distribution, α =
(2) corresponds to a so-called step-type refractive index distribution. In this figure, the bending loss characteristics of the optical fiber are representatively shown as the loss per optical fiber in when the optical fiber is bent to a diameter of 20 mm. From the inventors' past experience, the bending loss at a straight line of 1120 mm must be approximately 30 dB/m in order to be able to form a cable relatively easily.
Must be below. In other words, from the data of the unimodal refractive index distribution shown in Figure 2, conventionally, when the refractive index at the center of the core is high and the refractive index around the core is low, as in the case of a triangular or square distribution, the mode It was thought that it would be possible to increase the mode field diameter even when the electromagnetic field distribution was widened and the zero dispersion wavelength was constant, but in fact, contrary to this intuitive perception, the mode field diameter is unimodal. It turns out that the limit is 50 steps or 100 steps.

そのため、このような単峰型の屈折率分布ではなくて、
第15図のような複峰型の屈折率分布が提案された訳で
ある。
Therefore, instead of a single-modal refractive index distribution like this,
This is why a bimodal refractive index distribution as shown in FIG. 15 was proposed.

発明が解決しようとする問題点 しかしながら、第15図のような屈折率分布の場合は次
のような問題がある。つまり、このような屈折率分布を
実現するには、■高屈折率部分に挟まれた低屈折率部分
および周囲の低屈折率部分を純粋石英ガラスで構成し、
高屈折率部分はゲルマニウムをドープした石英ガラスで
構成するか、■高屈折率部分に挟まれた低屈折率部分お
よび周囲の低屈折率部分をフッ素をドープした石英ガラ
スで構成し、高屈折率部分はゲルマニウムをドープした
石英ガラスで構成する必要がある。ところが、■の場合
は高屈折率部分に多量のゲルマニウムがドープされるた
め、このドーパントによってガラスの濃度揺らぎが増大
し、レーり散乱が増え、光ファイバの損失の面で不利な
ことになる。
Problems to be Solved by the Invention However, in the case of a refractive index distribution as shown in FIG. 15, there are the following problems. In other words, in order to achieve such a refractive index distribution, the low refractive index part sandwiched between the high refractive index parts and the surrounding low refractive index part are made of pure silica glass,
Either the high refractive index part is made of quartz glass doped with germanium, or the low refractive index part sandwiched between the high refractive index part and the surrounding low refractive index part are made of fluorine-doped quartz glass. The part must consist of germanium-doped quartz glass. However, in case (2), the high refractive index portion is doped with a large amount of germanium, and this dopant increases concentration fluctuations in the glass, increasing Ray scattering, which is disadvantageous in terms of loss in the optical fiber.

また、■の場合はこのようなレーり散乱を減らす子女て
として有効であるが、反面、実際に光コアイノ<を作製
することを考えてみると、各層にゲルマニウムとフッ素
とを交互にドープする必要があリ、これはそれほど簡単
なことではないばかりか、OH基吸収損失の増大を招く
おそれが高い。
In addition, in the case of (2), it is effective as a method to reduce such Ray scattering, but on the other hand, when considering actually producing an optical core ino, it is necessary to dope each layer with germanium and fluorine alternately. Not only is this not so easy, but it is also likely to lead to an increase in OH group absorption loss.

この■の場合について今少し説明すると、まず、各層の
間でフッ素と他のドーパントが混ざり合うと屈折率の増
大と減少とが互いに相殺し合うので、所望の屈折率を得
ることは簡単でない。すなわち、ガラス微粉末を経由し
て光ファイバを作製する場合、ガラス微粉末の中に混入
したフッ素は甚だ不安定で、ガラス微粉末の粒子と粒子
との隙間を比較的簡単に移動する。フッ素が既にゲルマ
ニウムをドープした部分にも移動すると、屈折率を高め
るドーパントであるゲルマニウムと屈折率を低めるドー
パントであるフッ素との作用が互いに相殺するので、最
終的に所望の屈折率差を得ることができなくなってしま
うからである。そこで、考えられる方法は、ドーパント
の種類や濃度の異なるガラスの各層毎に、ガラス微粉末
の堆積およびその透明ガラス化を行なって透明なガラス
棒を作製し、その上に所定のドーパントを含むガラス微
粉末を堆積していき、再びそのガラス微粉末の透明ガラ
ス化を行なうという工程を繰り返すことである。このと
きフッ素のドープは様々な方法で行なうことができる。
To explain this case (2) a little more, first, when fluorine and other dopants are mixed between each layer, the increases and decreases in the refractive index cancel each other out, so it is not easy to obtain the desired refractive index. That is, when producing an optical fiber using fine glass powder, fluorine mixed into the fine glass powder is extremely unstable and moves relatively easily through the gaps between the particles of the fine glass powder. When fluorine moves to areas already doped with germanium, the effects of germanium, which is a dopant that increases the refractive index, and fluorine, which is a dopant that decreases the refractive index, cancel each other out, so that the desired refractive index difference can be finally obtained. This is because it becomes impossible to do so. Therefore, a possible method is to deposit glass fine powder in each layer of glass with different types and concentrations of dopants and make it transparent vitrified to produce a transparent glass rod, and then layer glass containing a specified dopant on top of it. The process of depositing fine powder and turning the fine glass powder into transparent vitrification is repeated. At this time, fluorine doping can be performed by various methods.

第1に、ガラスの原料中にフッ素含有ガスを含ませる、
第2に、ガラス微粉末中に混入した水分を除去するため
に行なう脱水工程中にフッ素を含むガスを用いる(これ
に用いるガスとしてはCF 4、SF、などがあり、こ
れらのガスを含む雰囲気中でガラス微粉末プリフォーム
を熱処理を行ない、その温度は通常、ガラス微粉末プリ
フォームの透明ガラス化が始まらない程度の温度に設定
される)、第3にガラス微粉末の透明ガラス化をフッ素
含有雰囲気中で行なう、等々である。
First, a fluorine-containing gas is included in the glass raw material.
Second, a gas containing fluorine is used during the dehydration process to remove moisture mixed into the fine glass powder (gases used for this include CF4, SF, etc., and an atmosphere containing these gases is used). The fine glass powder preform is heat-treated in a heat treatment chamber, and the temperature is usually set at a temperature that does not cause the fine glass powder preform to become transparent vitrified). and so on.

つぎにOH基による吸収損失の増大の点であるが、この
ような、一旦透明化したガラス棒の上にガラス微粉末を
堆積させる工程を何度も鰻り返して光ファイバを作製す
る方法は、光ファイバの損失の増大の大きな危険性をは
らんでいる。すなわち、上述のように、一旦透明化され
たガラスをフン素含有雰囲気中に置いても実質的に屈折
率分布に影響を与えるような量のフッ素が透明ガラスの
中に侵入することはないが、OH基の混入の危険がある
からである。そして、このOH基に関しては、非常に微
量であっても損失増加を招きやすい。つまり、第16図
に示すように石英ガラスの屈折率を0.1%低下させる
のに必要なフッ素の量は0.3モル程度であるのに対し
て、ガラス中に1  ppmのOH基が混入しても波長
1.38舊mの吸収損失は約50dB/kmに増大し、
その吸収損失の裾部が、光通信にとって需要な1.3用
mや1.55μmの波長に対して数dB/kmの損失増
加をもたらす。たとえば参考例として、第15図のよう
な屈折率分布のコア作製のため透明ガラス棒の上にカラ
ス微粉末を堆積し、透明ガラス化するという一連の工程
を3回繰り返したところ、第17図に示すような損失波
長特性が得られた。この第17図に示すように波長1.
38pmでの損失は約15dB/kmと大きなものとな
っている。これは、コアの各層毎にガラス微粉末堆積・
透明ガラス化の工程を3回繰り返したため、その際に用
いる加熱源や透明ガラス棒の周囲の雰囲気からのOH基
の汚染が累精して上記のような大きな損失になったもの
と思われる。このような損失増加は、現在必要とされて
いるこの波長域での光ファイバの損失が0.5 dB/
km以下であることを考えると、非常に大きいと言わざ
るを得ない。
Next, regarding the increase in absorption loss due to OH groups, there is no method for manufacturing optical fibers by repeating the process of depositing fine glass powder on a glass rod that has been made transparent many times. , there is a great risk of increased optical fiber loss. In other words, as mentioned above, even if a transparent glass is placed in a fluorine-containing atmosphere, fluorine will not penetrate into the transparent glass in an amount that would substantially affect the refractive index distribution. This is because there is a risk of contamination with OH groups. As for this OH group, even a very small amount tends to cause an increase in loss. In other words, as shown in Figure 16, the amount of fluorine required to lower the refractive index of silica glass by 0.1% is about 0.3 moles, whereas 1 ppm of OH groups in the glass Even if it is mixed, the absorption loss at a wavelength of 1.38 yen increases to about 50 dB/km,
The tail of the absorption loss causes an increase in loss of several dB/km for wavelengths of 1.3 m and 1.55 μm, which are required for optical communications. For example, as a reference example, in order to create a core with the refractive index distribution as shown in Figure 15, the series of steps of depositing glass fine powder on a transparent glass rod and turning it into transparent glass was repeated three times, as shown in Figure 17. The loss wavelength characteristics shown in Figure 1 were obtained. As shown in FIG. 17, wavelength 1.
The loss at 38 pm is as large as approximately 15 dB/km. This is done by depositing fine glass powder on each layer of the core.
Because the transparent vitrification process was repeated three times, it is thought that the contamination of OH groups from the heating source used at that time and the atmosphere around the transparent glass rod accumulated, resulting in the large loss as described above. This increase in loss means that the currently required optical fiber loss in this wavelength range is 0.5 dB/
Considering that it is less than km, it must be said that it is extremely large.

この発明は、OH基吸収損失の増大を招くことなく、曲
げ損失を小さく抑え、且つ接続損失を小さくするために
モードフィールド径を大きくすることを達成する分散シ
フト光ファイバを提供することを目的とする。
An object of the present invention is to provide a dispersion-shifted optical fiber that achieves minimizing bending loss and increasing the mode field diameter in order to reduce splicing loss without increasing OH group absorption loss. do.

問題点を解決するための手段 この発明の分散シフト光ファイバは、石英ガラスを主成
分とし、その半径方向の屈折重分41が、コア部分にお
いて2つ以上の高屈折率部分を有するとともにこの複数
の高屈折率部分に挟まれた純粋な石英ガラスの屈折率よ
りも低くない屈折率の低屈折率部分を有し、且つ該コア
部をとり囲む純粋な石英ガラスの屈折率よりも低い屈折
率のクラッド部を持つように形成されており、しかも実
質的に単一のモードが伝播し且つ波長分散が1.4濤m
以上の波長になるようコア径および屈折率差が調整され
ている。
Means for Solving the Problems The dispersion-shifted optical fiber of the present invention has quartz glass as its main component, and its radial refractive index 41 has two or more high refractive index portions in the core portion and the plurality of high refractive index portions. has a low refractive index part with a refractive index not lower than the refractive index of pure silica glass sandwiched between high refractive index parts of the core part, and has a refractive index lower than the refractive index of the pure silica glass surrounding the core part. It is formed to have a cladding part of
The core diameter and refractive index difference are adjusted so that the wavelength is greater than or equal to the wavelength.

作    用 コア部分において、複数の高屈折率部分に挟まれた低屈
折率部分は純粋な石英ガラスの屈折率よりも低くない屈
折率となっているので、この部分にフッ素をドープする
必要がなく、1回のガラス微粉末堆積工程でコア部分を
作製することができて簡単である。そればかりでなく、
1回のガラス微粉末堆積・透明ガラス工程でコア部分を
作製してしまい、こうして作製したコア部分のガラス棒
に対して、クラッド部分をなすガラス微粉末を堆積すれ
ばよいので、そのガラス微粉末堆積工程でOH基が混入
したとしてもコア部分の中にはほとんど入り込まず、O
H基吸収損失は増えない。
In the working core part, the low refractive index part sandwiched between multiple high refractive index parts has a refractive index that is not lower than that of pure silica glass, so there is no need to dope this part with fluorine. , the core part can be easily produced in one glass fine powder deposition process. Not only that, but
The core part is produced in one glass fine powder deposition/transparent glass process, and the fine glass powder forming the cladding part can be deposited on the glass rod of the core part thus produced. Even if OH groups are mixed in during the deposition process, they hardly enter the core, and O
H group absorption loss does not increase.

実施例 この発明の一実施例にかかる分散シフト光ファイバは、
石英ガラスを主成分とし、その半径方向の屈折率分布が
第1図に示すように形成されている。すなわち、コア部
1において中心部にゲルマニウムをドープした高屈折率
部分2を有し、その周囲に低屈折率部分3を有し、さら
に、この低屈折率部分3の周囲にゲルマニウムをドープ
した高屈折率部分4を有する。そしてこのコア部1をと
り囲むようにその周囲に低屈折率のクラッド部5が設け
られている。コア部1において2つの高屈折率部分2.
4に挟まれた低屈折率部分3は、純粋な石英ガラスか少
量のゲルマニウムがドープされている石英ガラスからな
り、純粋な石英ガラスの屈折率よりも低くない屈折率を
有している。クラッド部5は、フッ素をドープすること
により純粋な石英ガラスの屈折率よりも低い屈折率を持
つように形成されている。しかも実質的に単一のモード
が伝播し且つ波長分散が1.4μm以上の波長になるよ
うコア径および屈折率差が調整されている。すなわち、
実験によれば、第1図に示す屈折率差Δ1、Δ2、Δ3
のパラメータおよび直径2a、2b、2cのパラメータ
は、 Δ3/Δl=0.1〜0.6 Δ2/Δl=0.1〜0.4 b/a=1.3〜2.5 c/a=1.5〜4 が有効であった。
Embodiment A dispersion-shifted optical fiber according to an embodiment of the present invention is as follows:
The main component is quartz glass, and the refractive index distribution in the radial direction is formed as shown in FIG. That is, the core part 1 has a germanium-doped high refractive index part 2 in the center, a low refractive index part 3 around it, and a germanium-doped high refractive index part 3 around the low refractive index part 3. It has a refractive index portion 4. A cladding portion 5 having a low refractive index is provided around the core portion 1 so as to surround it. Two high refractive index portions 2 in the core portion 1.
The low refractive index portion 3 sandwiched between the two portions 4 is made of pure quartz glass or quartz glass doped with a small amount of germanium, and has a refractive index not lower than that of pure quartz glass. The cladding portion 5 is doped with fluorine so as to have a refractive index lower than that of pure silica glass. Moreover, the core diameter and the refractive index difference are adjusted so that substantially a single mode propagates and the wavelength dispersion becomes a wavelength of 1.4 μm or more. That is,
According to experiments, the refractive index differences Δ1, Δ2, Δ3 shown in FIG.
The parameters of and the parameters of diameters 2a, 2b, and 2c are: Δ3/Δl=0.1~0.6 Δ2/Δl=0.1~0.4 b/a=1.3~2.5 c/a= 1.5 to 4 was effective.

そして、この発明の一実施例の分散シフト光ファイバの
曲げ損失特性とモードフィールド径との関係を調べてみ
たところ、第2図のような結果が得られた。この第2図
から分るように、第1図に示すような屈折率分布の分散
シフト光ファイバによれば、零分散波長が1.55μm
、モードフィールド径が8μmのとき、ステップ型と比
べて曲げ損失が約115に改善されている。このような
曲げ損失特性の改善は、屈折率分布に複数の峰を設ける
とともに伝播するモードの伝播定数がそれほど低下しな
い状態を保ったままで、モードフィールド径を広げる効
果が得られたためと思われる。前述のように単峰型の屈
折率分布では、かなり大きく分布を変化させてもモード
フィールド径に影響が生じないことを考えるとこの複数
味の分布の効果は大きなものがある。また、この屈折率
分布全体として、高屈折率ドーパントの量を少なくでき
るので、第15図の屈折率分布と比較してレーり散乱損
失の低下が期待できる。
When the relationship between the bending loss characteristics and the mode field diameter of the dispersion-shifted optical fiber according to an embodiment of the present invention was investigated, the results shown in FIG. 2 were obtained. As can be seen from Fig. 2, according to the dispersion-shifted optical fiber with the refractive index distribution shown in Fig. 1, the zero dispersion wavelength is 1.55 μm.
When the mode field diameter is 8 μm, the bending loss is improved to about 115 compared to the step type. This improvement in bending loss characteristics is thought to be due to the provision of multiple peaks in the refractive index distribution and the effect of widening the mode field diameter while maintaining a state in which the propagation constant of the propagating mode does not decrease significantly. Considering that, as mentioned above, in a single-modal refractive index distribution, the mode field diameter is not affected even if the distribution is changed considerably, the effect of this multi-flavored distribution is significant. Further, since the amount of high refractive index dopant can be reduced in this refractive index distribution as a whole, it is expected that Ley scattering loss will be reduced compared to the refractive index distribution shown in FIG.

なお、基本的には第1図の分布パターンでありながら、
それを若干変形したものとして、第3図A−Hのような
ものが考えられる。すなわち、第3図Aのように中心部
の屈折率が凹型になっていてもよいし、第3図B、C,
Dのように中心部の屈折率が三角型、ガウス型、台形型
等全部もしくは一部がグレーデッド型になっていてもよ
い、さらに各層の境界が明確でなく、若干のだれを生じ
ていてもよいしく第3図E)、高屈折率部分が3層以上
あってもよく(第3図F)、また第3図G、Hのような
分布でもよい。
Although the distribution pattern is basically as shown in Figure 1,
As a slightly modified version of this, the one shown in FIGS. 3A to 3H can be considered. That is, the refractive index at the center may be concave as shown in FIG. 3A, or as shown in FIGS. 3B, C,
As shown in D, the refractive index at the center may be entirely or partially graded, such as triangular, Gaussian, or trapezoidal. Furthermore, the boundaries between each layer may not be clear and there may be some sag. Alternatively, there may be three or more layers of high refractive index portions (FIG. 3F), or the distribution as shown in FIGS. 3G and H may be used.

このような屈折率分布の分散シフト光ファイバを製造す
るには、いわゆるMCVD法や外付は法のほか、VAD
法が考えられる。MCVD法の場合、光ファイバの半径
方向の屈折率分布の制御が半径方向に行なわれるため特
に格別の配慮がなくても上記のような祖師型分布を容易
に作製できる。特に、従来、ガラス微粉末の堆積を行な
う際にマンドレルを使用している外付は法の場合、マン
ドレルの代りに純粋な石英ガラス棒を用い、このマンド
レルをガラス微粉末堆積工程の後に引き抜かずおけば、
第3図Aのような中心部で凹型となっている分布を容易
に作製でき、有利である。
In order to manufacture a dispersion-shifted optical fiber with such a refractive index distribution, in addition to the so-called MCVD method and the external method, VAD
Law is considered. In the case of the MCVD method, since the refractive index distribution in the radial direction of the optical fiber is controlled in the radial direction, the above-mentioned Soshi type distribution can be easily produced without special consideration. In particular, in the case of the external method that conventionally uses a mandrel to deposit fine glass powder, a pure quartz glass rod is used instead of the mandrel, and this mandrel is not pulled out after the glass fine powder deposition process. If you keep it,
This is advantageous because it is possible to easily create a distribution having a concave shape at the center as shown in FIG. 3A.

次にVAD法を用いて実際に第1図の屈折率分布を有す
る分散シフト光ファイバを作製してみた。このような屈
折率分布の光ファイバを低損失で作るには、コア部分を
1度のガラス微粉末堆積工程で作製することが有利であ
る。そこで、第4図に示すような、一般的な多数本バー
ナを備えるVAD単一モードファイバ用母材製造装置を
用いた。この第4図では3木のバーナ41〜43により
ガラス微粉末を発生し、これを軸方向に堆積させてガラ
ス微粉末焼結体44を形成する。不要なガス等は排気管
45により排気される。最下部に配したバーナ41には
ドーパントガスとしてゲルマニウムを含む原料ガスを流
すとともに、四塩化珪素のような酸化もしくは加水分解
により石英ガラスの微粉末を発生する主原料ガスを供給
する。
Next, a dispersion-shifted optical fiber having the refractive index distribution shown in FIG. 1 was actually fabricated using the VAD method. In order to produce an optical fiber having such a refractive index distribution with low loss, it is advantageous to produce the core portion in one step of depositing fine glass powder. Therefore, a general VAD single mode fiber base material manufacturing apparatus equipped with multiple burners as shown in FIG. 4 was used. In FIG. 4, three burners 41 to 43 generate fine glass powder, which is deposited in the axial direction to form a fine glass powder sintered body 44. Unnecessary gas and the like are exhausted through the exhaust pipe 45. A raw material gas containing germanium as a dopant gas is passed through the burner 41 disposed at the bottom, and a main raw material gas such as silicon tetrachloride that generates fine powder of silica glass through oxidation or hydrolysis is supplied.

バーナ42にはドーパントガスを流さず主原料ガスのみ
を流し、バーナ43にはドーパントを含む原料ガスを流
す、具体的には1次表に示すような流量で、八−す41
〜43の各バーナに原料ガスおよび燃焼/加熱ガスであ
るところの酸素/水素     ・ガスをArガス(キ
ャリアガス)とともに供給した(流量の単位;cc/分
)。
Only the main raw material gas is supplied to the burner 42 without the dopant gas, and the raw material gas containing the dopant is supplied to the burner 43. Specifically, at the flow rates shown in the first table,
Oxygen/hydrogen gas, which is a raw material gas and a combustion/heating gas, was supplied to each of the burners No. 43 to 43 together with Ar gas (carrier gas) (flow rate unit: cc/min).

バーナ Ar  5iCI 4  GeC14酸素  
水素こうして作製したガラス微粉末焼結体44を、塩素
ガスを含有するヘリウムガス雰囲気内で、約800℃ 
の温度でもって脱水処理を行ない、さらに1640℃の
温度を有するヘリウム雰囲気で透明ガラス化してコア用
プリフォームを作った。
Burner Ar 5iCI 4 GeC14 Oxygen
Hydrogen The thus produced glass fine powder sintered body 44 is heated at approximately 800°C in a helium gas atmosphere containing chlorine gas.
Dehydration treatment was performed at a temperature of 1,640° C., and transparent vitrification was performed in a helium atmosphere at a temperature of 1,640° C. to produce a core preform.

このコア用プリフォームの屈折率分布は第5図のように
なった0次にこのコア用プリフォームを約10mmの直
径に引き延ばして、その上に、ドーパントを含まない純
粋石英からなるガラス微粉末を堆積した。その堆積条件
は次のようなものとした。
The refractive index distribution of this core preform is as shown in Figure 5.This core preform is stretched to a diameter of about 10 mm, and a fine glass powder made of pure quartz containing no dopants is placed on top of it. was deposited. The deposition conditions were as follows.

キャリアガス(A r)   250 secmSil
l 4         230 secmシールガス
(A r)    400 sccm酸素      
   40ooscc11水素         40
00 secmこうして得た複合プリフォームを、CF
4が4容積%含まれるヘリウムガス雰囲気中で加熱して
、ガラス微粉末堆積層中の01(基を除去するとともに
透明化しつつあるガラス微粉末中にフッ素をドーピング
した。こうして全体が透明化された第2段階のプリフォ
ームを得、これの屈折率分布を測定したところ第6図の
ようになった。ここで得られたプリフォームの外径とコ
ア径との比率はおおよそ4であり、このプリフォームを
加熱炉で線引きして標準的な光フアイバ外径である12
5pmとしたのでは零分散波長を所定の1.44m以上
にすることができない、そこで、もう1度、プリフォー
ムを延伸し、その上に純粋石英ガラス微粉末を堆積し、
これをフッ素含有雰囲気下で透明ガラス化するという工
程を繰り返した。その結果、プリフォームの外径とコア
径との比は適正な範囲内となった。このようにして得ら
れたプリフォームを約2000℃の炉内で線引きしてフ
ァイバ化し、光ファイバを得た。
Carrier gas (Ar) 250 secmSil
l 4 230 secm Seal gas (A r) 400 sccm Oxygen
40ooscc11 hydrogen 40
00 secThe thus obtained composite preform was CF
By heating in a helium gas atmosphere containing 4% by volume of 4, the 01 group in the deposited layer of fine glass powder was removed and fluorine was doped into the glass fine powder, which was becoming transparent. In this way, the entire glass powder became transparent. A second-stage preform was obtained, and its refractive index distribution was measured, as shown in Figure 6.The ratio of the outer diameter to the core diameter of the preform obtained here was approximately 4, This preform is drawn in a heating furnace and has a standard optical fiber outer diameter of 12
5 pm, the zero dispersion wavelength could not be made greater than the predetermined value of 1.44 m, so the preform was stretched once more and pure silica glass fine powder was deposited on it.
The process of turning this into transparent glass in a fluorine-containing atmosphere was repeated. As a result, the ratio of the outer diameter of the preform to the core diameter was within an appropriate range. The thus obtained preform was drawn into a fiber in a furnace at about 2000° C. to obtain an optical fiber.

こうして得た光ファイバの屈折率分布は第7図のように
なった。また、光ファイバの損失波長特性と波長分散特
性は、それぞれ第8図および第9図のようになった。波
長1.55μmにおける損失は0.21dB/kmと低
く、lookm以上の長距離無中継伝送に充分に適した
値となっている。また波長1.38μmでの損失は約3
dB/kmであり、1.5pLm帯での伝送にはOH基
の吸収損失の影響が現われない値となっている。これに
対し、従来の第15図のような屈折率分布を形成するた
めコアの各層毎にガラス微粉末堆積・透明ガラス化を3
回繰り返した参考例では、前述のとうり、第17図に示
すように波長1.38゜mでの損失は約15dB/km
と大きなものとなっており、この参考例と比較すると、
この発明の分散シフト光ファイバは非常に低損失である
ことが分る。もちろん、この分散シフト光ファイバを1
.3μmなどの他の波長で使うこともできる。さらに、
波長1.55pmにおける波長分散値は約1 psec
 /km/nmと小さく、200km 、 400 M
 bit/ sea伝送に耐えられる特性となっている
。また、曲げ損失を測定したところ、1.55濤mの波
長において10dB/mと比較的低いものであった。モ
ードフィールド直径は、このように曲げ損失が低いもの
であるにもかかわらず、計算通り8.5ルm−と大きい
ものとなった。
The refractive index distribution of the optical fiber thus obtained was as shown in FIG. Furthermore, the loss wavelength characteristics and wavelength dispersion characteristics of the optical fiber were as shown in FIGS. 8 and 9, respectively. The loss at a wavelength of 1.55 μm is as low as 0.21 dB/km, which is a value sufficiently suitable for long-distance non-repeater transmission of look or more. Also, the loss at a wavelength of 1.38 μm is approximately 3
dB/km, which is a value at which the influence of absorption loss of OH groups does not appear in transmission in the 1.5 pLm band. In contrast, in order to form the conventional refractive index distribution as shown in Figure 15, fine glass powder was deposited and transparent vitrified for each layer of the core three times.
In the reference example that was repeated twice, the loss at a wavelength of 1.38° was approximately 15 dB/km, as shown in Figure 17, as described above.
This is a large number, and when compared with this reference example,
It can be seen that the dispersion shifted optical fiber of this invention has very low loss. Of course, this dispersion-shifted optical fiber is
.. Other wavelengths such as 3 μm can also be used. moreover,
The wavelength dispersion value at a wavelength of 1.55 pm is approximately 1 psec
/km/nm, small, 200km, 400M
It has characteristics that can withstand bit/sea transmission. Further, when the bending loss was measured, it was found to be relatively low at 10 dB/m at a wavelength of 1.55 m. Despite the low bending loss, the mode field diameter was as large as 8.5 m as calculated.

なお、VAD法の場合上記のように多数の/ヘーナを用
いるのでなく、第10図に示すように、1本の往復する
バーナ51を使用して、その位置により混入するゲルマ
ニウムの量を変化させてコア部の屈折率分布を形成しな
がら、ガラス微粉末プリフォーム52を作るようにして
もよい、この場合、得られたガラス微粉末プリフォーム
52を偏置透明ガラス化し、必要に応じて適当な外径に
延伸した後、その上に純粋な石英ガラスからなるガラス
微粉末を堆積する0次に、こうして得られた透明ガラス
棒−ガラス微粉末堆積層の複合プリフォームを加熱炉で
処理してガラス微粉末堆8a層の部分の透明ガラス化を
行なうとともにフッ素をクラッド中にドープする。クラ
ッド/コア径の比率が不十分なときは、上記の延伸、ガ
ラス微粉末堆積、加熱処理の工程を繰り返す、第3図H
のような屈折率分布を形成する場合は、この工程の繰り
返しを行なう代りに、上記の加熱処理の工程を終了して
得た中間製品である透明ガラスプリフォームの上に、適
当な外径と肉厚を有するガラス管を被覆してもよい。
In addition, in the case of the VAD method, instead of using a large number of burners as described above, a single reciprocating burner 51 is used, as shown in FIG. The fine glass powder preform 52 may be made while forming the refractive index distribution of the core part by using the same method. After stretching to a desired outer diameter, fine glass powder made of pure quartz glass is deposited thereon.Next, the composite preform of the transparent glass rod and the deposited layer of fine glass powder is treated in a heating furnace. Then, the layer of fine glass powder 8a is made transparent and vitrified, and fluorine is doped into the cladding. If the cladding/core diameter ratio is insufficient, repeat the above steps of stretching, glass fine powder deposition, and heat treatment, as shown in Figure 3H.
When forming a refractive index distribution like A thick-walled glass tube may also be coated.

発明の効果 この発明による分散シフト光ファイバでは、曲げ損失が
小さく抑えられており、且つモードフィールド径が大き
くなっていて接続損失が小さくなっている。しかも、実
際の製造上、OH基の混入の機会が少なく、OH基によ
る吸収損失の増大を招くことがない。
Effects of the Invention In the dispersion-shifted optical fiber according to the present invention, the bending loss is suppressed to a low level, and the mode field diameter is increased, so that the splice loss is decreased. Moreover, in actual production, there is little chance of OH groups being mixed in, and an increase in absorption loss due to OH groups does not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にかかる分散シフト光ファ
イバの屈折率分布を表わすグラフ、第2図はモードフィ
ールド径と曲げ損失との関係を表わすグラフ、第3図A
、B、C,D、E、F、G、Hは変形例の屈折率分布を
それぞれ表わすグラフ、第4図は実施例のVAD法によ
る作製方法を示す模式図、第5図は実施例において実際
に得られたコア用プリフォームの屈折率分布を示すグラ
フ、第6図はコア用プリフォームにガラス微粉末を堆積
したのちこれを透明ガラス化して得たプリフォームの屈
折率分布を表わすグラフ、第7図は最終的に得られた分
散シフト光ファイバの屈折率分布を表わすグラフ、第8
図および第9図はこの実施例で得た光ファイバの損失波
長特性および波長分散特性をそれぞれ示すグラフ、第1
0図は他の製造方法の例を示すための模式図、第11図
は従来の典型的な単一モードファイバの屈折率分布図、
第12図は伝送損失特性および波長分散特性の従来例を
表わすグラフ、第13図A、B、C,Dは従来の分散シ
フト光ファイバの屈折率分布を表わすグラフ、第14図
は導波路分散と材料分散を説明するための波長分散特性
図、第15図は他の従来の分散シフト光ファイバの屈折
率分布を表わすグラフ、第16図は石英ガラス中のフッ
素濃度と屈折率との関係を表わすグラフ、第17図は参
考例の分散シフト光ファイバの損失波長特性を表わすグ
ラフである。 1・・・コア部      ?、4・・・高屈折率部3
・・・低屈折率部    5・・・クラッド部41〜4
3.51・・・バーナ 44.52・・・ガラス微粉末焼結体 45・・・排気管
FIG. 1 is a graph showing the refractive index distribution of a dispersion-shifted optical fiber according to an embodiment of the present invention, FIG. 2 is a graph showing the relationship between mode field diameter and bending loss, and FIG. 3 is a graph showing the relationship between mode field diameter and bending loss.
, B, C, D, E, F, G, and H are graphs representing the refractive index distributions of modified examples, FIG. 4 is a schematic diagram showing the manufacturing method by the VAD method of the example, and FIG. A graph showing the refractive index distribution of the actually obtained core preform. Figure 6 is a graph showing the refractive index distribution of the preform obtained by depositing glass fine powder on the core preform and then converting it into transparent glass. , FIG. 7 is a graph showing the refractive index distribution of the finally obtained dispersion-shifted optical fiber, and FIG.
9 and 9 are graphs showing the loss wavelength characteristics and wavelength dispersion characteristics of the optical fiber obtained in this example, respectively.
Figure 0 is a schematic diagram showing an example of another manufacturing method, Figure 11 is a refractive index distribution diagram of a typical conventional single mode fiber,
Figure 12 is a graph showing conventional examples of transmission loss characteristics and wavelength dispersion characteristics. Figure 13 A, B, C, and D are graphs representing refractive index distribution of conventional dispersion-shifted optical fibers. Figure 14 is waveguide dispersion. Fig. 15 is a graph showing the refractive index distribution of another conventional dispersion-shifted optical fiber, and Fig. 16 shows the relationship between the fluorine concentration in silica glass and the refractive index. FIG. 17 is a graph showing the loss wavelength characteristics of a dispersion-shifted optical fiber of a reference example. 1... Core part? , 4...high refractive index section 3
...Low refractive index part 5...Clad part 41-4
3.51...Burner 44.52...Glass fine powder sintered body 45...Exhaust pipe

Claims (2)

【特許請求の範囲】[Claims] (1)石英ガラスを主成分とし、コア部分において2つ
以上の高屈折率部分を有するとともにこの複数の高屈折
率部分に挟まれた純粋な石英ガラスの屈折率よりも低く
ない屈折率の低屈折率部分を有し、且つ該コア部をとり
囲む純粋な石英ガラスの屈折率よりも低い屈折率のクラ
ッド部を持つように、半径方向の屈折率分布が形成され
ており、しかも実質的に単一のモードが伝播し且つ波長
分散が1.4μm以上の波長になるようコア径および屈
折率差が調整されていることを特徴とする分散シフト光
ファイバ。
(1) Mainly composed of silica glass, with two or more high refractive index parts in the core part, and a low refractive index that is not lower than the refractive index of pure silica glass sandwiched between the multiple high refractive index parts. The refractive index distribution in the radial direction is formed so as to have a refractive index portion and a cladding portion having a refractive index lower than the refractive index of pure silica glass surrounding the core portion. A dispersion-shifted optical fiber characterized in that a core diameter and a refractive index difference are adjusted so that a single mode propagates and the wavelength dispersion becomes a wavelength of 1.4 μm or more.
(2)コア部の主たるドーパントとしてゲルマニウム、
クラッド部のドーパントとしてフッ素を、それぞれ用い
たことを特徴とする特許請求の範囲第1項記載の分散シ
フト光ファイバ。
(2) Germanium as the main dopant in the core,
2. The dispersion-shifted optical fiber according to claim 1, wherein fluorine is used as a dopant in the cladding portion.
JP61153565A 1986-06-30 1986-06-30 Dispersion shift type optical fiber Pending JPS638707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153565A JPS638707A (en) 1986-06-30 1986-06-30 Dispersion shift type optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153565A JPS638707A (en) 1986-06-30 1986-06-30 Dispersion shift type optical fiber

Publications (1)

Publication Number Publication Date
JPS638707A true JPS638707A (en) 1988-01-14

Family

ID=15565275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153565A Pending JPS638707A (en) 1986-06-30 1986-06-30 Dispersion shift type optical fiber

Country Status (1)

Country Link
JP (1) JPS638707A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161311A (en) * 1991-11-29 1993-06-25 Sawafuji Electric Co Ltd Liquid-cooled retarder
EP0851544A1 (en) * 1996-12-27 1998-07-01 Fujitsu Limited Optical amplifying fiber and process of producing the same
EP0851245A2 (en) * 1996-12-27 1998-07-01 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
EP1209496A1 (en) * 2000-11-22 2002-05-29 Corning Incorporated Waveguide optical fiber for parametric amplification within S-band optical range
JP2008020919A (en) * 2006-07-14 2008-01-31 Furukawa Electric North America Inc Fiber structure with improved bend resistance
JPWO2006049279A1 (en) * 2004-11-05 2008-05-29 株式会社フジクラ Optical fiber and transmission system and wavelength division multiplexing transmission system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161311A (en) * 1991-11-29 1993-06-25 Sawafuji Electric Co Ltd Liquid-cooled retarder
EP0851544A1 (en) * 1996-12-27 1998-07-01 Fujitsu Limited Optical amplifying fiber and process of producing the same
EP0851245A2 (en) * 1996-12-27 1998-07-01 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
EP0851245A3 (en) * 1996-12-27 2000-03-15 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
EP1233287A2 (en) * 1996-12-27 2002-08-21 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
EP1233287A3 (en) * 1996-12-27 2002-10-09 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
EP1209496A1 (en) * 2000-11-22 2002-05-29 Corning Incorporated Waveguide optical fiber for parametric amplification within S-band optical range
JPWO2006049279A1 (en) * 2004-11-05 2008-05-29 株式会社フジクラ Optical fiber and transmission system and wavelength division multiplexing transmission system
JP2008020919A (en) * 2006-07-14 2008-01-31 Furukawa Electric North America Inc Fiber structure with improved bend resistance
JP4612019B2 (en) * 2006-07-14 2011-01-12 フルカワ エレクトリック ノース アメリカ インコーポレーテッド Fiber structure with improved resistance to bending

Similar Documents

Publication Publication Date Title
US9802858B2 (en) Low loss optical fibers with fluorine and chlorine codoped core regions
US8295668B2 (en) Low loss optical fiber designs and methods for their manufacture
EP3166899B1 (en) High chlorine content low attenuation optical fiber
JPH0727443Y2 (en) Silica-based single-mode optical fiber waveguide
US10571628B2 (en) Low loss optical fiber with core codoped with two or more halogens
JP5881213B2 (en) Single mode optical fiber
US8230702B2 (en) Glass-tube extended-baking process
WO2008136929A1 (en) Optical fiber containing alkali metal oxide
WO2002096817A1 (en) Method of manufacture of an optical waveguide article including a zone with an elevated fluorine-containing
JP2007536580A5 (en)
WO2014199922A1 (en) Optical fiber
JP2012078804A (en) Optical fiber, optical fiber preform, and manufacturing method thereof
WO2010035397A1 (en) Optical fiber and method for manufacturing the same
US10723650B2 (en) Optical fiber preform
US6904213B2 (en) Step index optical fiber with doped cladding and core, a preform, and a method of fabricating such a fiber
JPS638707A (en) Dispersion shift type optical fiber
JP2668677B2 (en) Dispersion shift optical fiber
JPS61219009A (en) Single mode light waveguide comprising quartz glass and manufacture thereof
JPS62116902A (en) Wide-band low dispersion optical fiber
WO2022264937A1 (en) Optical fiber
JPH0672967B2 (en) Zero-dispersion single-mode optical fiber
JPH01270534A (en) Production of optical fiber preform