JPH0239457B2 - - Google Patents
Info
- Publication number
- JPH0239457B2 JPH0239457B2 JP57131192A JP13119282A JPH0239457B2 JP H0239457 B2 JPH0239457 B2 JP H0239457B2 JP 57131192 A JP57131192 A JP 57131192A JP 13119282 A JP13119282 A JP 13119282A JP H0239457 B2 JPH0239457 B2 JP H0239457B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- base material
- porous
- core
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 29
- 239000013307 optical fiber Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 10
- 238000005253 cladding Methods 0.000 claims description 9
- 239000005373 porous glass Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000002585 base Substances 0.000 description 25
- 239000011162 core material Substances 0.000 description 19
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000004017 vitrification Methods 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000004071 soot Substances 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- 229910005793 GeO 2 Inorganic materials 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PIYVNGWKHNMMAU-UHFFFAOYSA-N [O].O Chemical compound [O].O PIYVNGWKHNMMAU-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明はスートプロセスにより、低損失な光フ
アイバ用母材を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a low-loss optical fiber base material by a soot process.
スートプロセスによる光フアイバ用母材の製造
方法として、従来GeO2・P2O5等のドーパントを
添加した多孔質の石英ガラス(コア部)と、その
コア用多孔質母材の周辺にコア用酸化物ガラスの
屈折率より低い屈折率を有する多孔質酸化物ガラ
ス焼結体(クラツド部)を合成した光フアイバ用
多孔質母材を高温(1400〜1600℃)に加熱して透
明な光フアイバ用母材を得る方法が知られてい
る。この方法では高品質な光フアイバ用母材を作
製するため、塩素ガスまたは塩化チオニル等で脱
水する必要があるので、炉芯管を使つた電気炉で
透明ガラス化を行つていた。このため、ガラス化
工程で光フアイバ用母材の冷却速度を上げること
が困難で、結晶化し易いドーパント(アルカリ金
属、アルカリ土類等の酸化物、Al2O3、ZrO2等)
を添加した光フアイバ用母材を作製できないとい
う欠点があつた。 Conventionally, the soot process is used to manufacture optical fiber base materials using porous quartz glass (core) doped with dopants such as GeO 2 and P 2 O 5 , and a core layer around the porous base material for the core. A porous optical fiber base material made of a porous oxide glass sintered body (cladding part) having a refractive index lower than that of oxide glass is heated to a high temperature (1400 to 1600°C) to create a transparent optical fiber. There are known methods for obtaining base materials for use. This method requires dehydration using chlorine gas or thionyl chloride in order to produce a high-quality optical fiber base material, so transparent vitrification was performed in an electric furnace using a furnace core tube. For this reason, it is difficult to increase the cooling rate of the optical fiber base material during the vitrification process, and dopants that easily crystallize (oxides of alkali metals, alkaline earths, etc., Al 2 O 3 , ZrO 2, etc.)
The disadvantage was that it was not possible to produce an optical fiber base material containing .
すなわち従来のスートプロセスによる光フアイ
バ用母材の製造方法で、OH基含有量の少ない光
フアイバ用母材に使用できるガラス用原料は網目
形成酸化物に限定され、修飾酸化物を使用できな
いという欠点があつた。 In other words, in the conventional method for producing optical fiber base materials using the soot process, the glass raw materials that can be used for optical fiber base materials with a low OH group content are limited to network-forming oxides, and modified oxides cannot be used. It was hot.
本発明はこれらの欠点を除去するため、脱水効
果を失わないで、コア用多孔質母材のガラス化時
における冷却速度を上げるため、クラツド部とコ
ア部とのガラス化工程を分離したことを特徴と
し、その目的は、スートプロセスにおいて使用で
きる光フアイバ用ガラス原料の拡張にある。以下
図面により本発明を詳細に説明する。 In order to eliminate these drawbacks, the present invention separates the vitrification process of the cladding part and the core part in order to increase the cooling rate during vitrification of the porous base material for the core without losing the dehydration effect. Its purpose is to expand the range of glass raw materials for optical fibers that can be used in the soot process. The present invention will be explained in detail below with reference to the drawings.
第1図a,bは本発明による光フアイバ用多孔
質母材の構造と、従来法の光フアイバ用多孔質母
材の構造を示す。本発明ではクラツド部分がコア
用多孔質母材を完全に包む形状をしている。その
結果、本発明による2段階のガラス化工程でコア
部にOH基の混入を防止できる。第1図に示す多
孔質母材を塩素ガス雰囲気で、電気炉によりクラ
ツド部のみガラス化を行う。この工程で十分脱水
を行い、多孔質母材中に含まれるOH基を完全に
除去する。次いで酸水素炎、プラズマ炎等の高温
熱源(約2000℃〜3000℃)で半透明光フアイバ用
母材の下端から加熱、急冷(空冷または水冷)を
行いながら、コア部を透明ガラス化して、光フア
イバ用透明母材を作製する。 FIGS. 1a and 1b show the structure of a porous preform for optical fiber according to the present invention and the structure of a porous preform for optical fiber according to a conventional method. In the present invention, the clad portion has a shape that completely surrounds the porous base material for the core. As a result, the two-step vitrification process according to the present invention can prevent OH groups from entering the core. The porous base material shown in FIG. 1 is vitrified only at the cladding portion in an electric furnace in a chlorine gas atmosphere. In this step, sufficient dehydration is performed to completely remove the OH groups contained in the porous matrix. Next, the core part is made into transparent glass by heating from the lower end of the base material for translucent optical fiber with a high-temperature heat source (approximately 2000°C to 3000°C) such as oxyhydrogen flame or plasma flame, and rapidly cooling (air cooling or water cooling). Fabricate a transparent base material for optical fiber.
なお第1図aの本発明の方法による構造例で
は、クラツド用多孔質ガラスがコア用多孔質母材
を完全に包む形状を示しているが、完全に包むの
ではなく、ほぼ完全に近く包む形状となつていて
もよい。 In the structure example shown in FIG. 1a according to the method of the present invention, the porous glass for the cladding completely wraps the porous base material for the core, but it does not wrap it completely, but almost completely wraps it. It may be in a shape.
以下に本発明によるAl2O3を添加した光フアイ
バ用母材の作製の実施例について説明するが、本
発明で使用できるコア用材料はAl2O3のみに限定
されるものではない。 Examples of manufacturing an optical fiber base material doped with Al 2 O 3 according to the present invention will be described below, but the core material that can be used in the present invention is not limited to Al 2 O 3 only.
実施例
AlCl3とSiCl4をコア用原料として使用し、火炎
加水分解反応によるAl2O3−SiO2系コア用多孔質
を種棒の一端から成長させる。このコア用多孔質
の周辺にSiO2多孔質ガラス(クラツド部)を合
成する(VAD法)。約300mm多孔質母材が成長し
た時点で、コア用原料をSiCl4のみにしてAl2O3−
SiO2形コア用多孔質母材の下端をSiO2多孔質ガ
ラスで包むようにして第1図aで示した光フアイ
バ用多孔質母材を得た。次いで塩素100c.c./min、
He5/minを炉芯管内に流し、炉内温度約1500
℃で母材の引き下げ速度400mm/時でクラツド部
のみを透明ガラス化した。このガラス化工程での
冷却速度は約10℃/minであつた。次いで酸素水
バーナにより、半透明光フアイバの下端から約
2000℃に加熱し、コア部を透明ガラス化した。こ
のガラス化工程での冷却速度は約100℃/minで
あつた。第2図に本発明で作製した光フアイバの
損失特性Aを示す。OH基による吸収損失ピーク
が現われる波長1.24μm、1.39μmでの損失値は従
来法で作製できたGeO2−SiO2系のほぼ同じくら
い低減されている。また構造不完全性による損失
も小さく、本発明で低損失光フアイバが作製でき
ていることがわかる。Example Using AlCl 3 and SiCl 4 as raw materials for the core, an Al 2 O 3 —SiO 2 based porous material for the core is grown from one end of a seed rod by a flame hydrolysis reaction. SiO 2 porous glass (cladding part) is synthesized around this porous core (VAD method). When a porous base material of approximately 300 mm has grown, SiCl 4 is used as the core material and Al 2 O 3 −
The lower end of the SiO 2 type porous base material for the core was wrapped with SiO 2 porous glass to obtain the porous base material for the optical fiber shown in FIG. 1a. Then chlorine 100c.c./min,
Flow He5/min into the furnace core tube, and the temperature inside the furnace is approximately 1500.
Only the cladding part was made into transparent glass at a temperature of 400mm/hour while pulling down the base material at 400mm/hour. The cooling rate in this vitrification step was approximately 10° C./min. An oxygen-water burner is then used to remove approximately
The core was heated to 2000°C and turned into transparent glass. The cooling rate in this vitrification step was about 100°C/min. FIG. 2 shows the loss characteristic A of the optical fiber produced according to the present invention. The loss value at wavelengths of 1.24 μm and 1.39 μm, where the absorption loss peak due to OH groups appears, is reduced to almost the same level as that of the GeO 2 —SiO 2 system produced by the conventional method. Furthermore, the loss due to structural imperfections is also small, indicating that the present invention can produce a low-loss optical fiber.
従来法でAl2O3−SiO2系光フアイバ用母材を作
製した場合は、コア部が結晶化した。また酸水素
バーナにより光フアイバ用多孔質母材を、一度で
ガラス化した場合の損失特性Bを比較するため第
2図に示した。この方法では結晶化を防止するこ
とができるが、構造不完全性損失、OH基による
吸収損失とも大きく、低損失な光フアイバ用母材
を作製することができなかつた。 When a base material for an Al 2 O 3 -SiO 2 optical fiber was produced using the conventional method, the core portion was crystallized. Furthermore, the loss characteristic B is shown in FIG. 2 for comparison when the porous base material for optical fiber is vitrified at once using an oxyhydrogen burner. Although crystallization can be prevented by this method, both structural imperfection loss and absorption loss due to OH groups are large, making it impossible to produce a low-loss optical fiber base material.
以上説明したように、本発明の光フアイバ用母
材の製造方法によれば、光フアイバ用母材に使用
できるガラス原料を拡長できる。また低価格なガ
ラス原料を使用できるということから、本発明は
光フアイバが低価格になるという利点もある。 As explained above, according to the method for manufacturing an optical fiber preform of the present invention, the glass raw materials that can be used for the optical fiber preform can be expanded. Furthermore, since inexpensive glass raw materials can be used, the present invention also has the advantage that the optical fiber can be produced at a low price.
第1図a,bは本発明の方法および従来法によ
る多孔質母材の構造例を示す図、第2図は本発明
の方法および従来法によるAl2O3−SiO2系光フア
イバの損失特性を示す図である。
1……種棒、2……コア部、3……クラツド
部。
Figures 1a and b are diagrams showing structural examples of porous base materials according to the method of the present invention and the conventional method, and Figure 2 is loss of Al 2 O 3 -SiO 2 optical fibers according to the method of the present invention and the conventional method. FIG. 3 is a diagram showing characteristics. 1... Seed rod, 2... Core part, 3... Clad part.
Claims (1)
ラス体を透明ガラス化する方法において、クラツ
ド用多孔質ガラスがコア用多孔質母材をほぼ完全
に近く包む形状となし、最初にクラツド部のみを
透明ガラス化し、コア部は多孔質ガラス体の半透
明光フアイバ用母材を作製し、次いでその半透明
光フアイバ用母材のコア部を透明ガラス化するこ
とを特徴とする光フアイバ用母材の製造方法。1. In a method of converting a porous glass body consisting of a core part and a cladding part into transparent glass, the porous glass for the cladding is shaped to almost completely envelop the porous base material for the core, and only the cladding part is first A base material for an optical fiber, which is characterized in that a base material for a translucent optical fiber is made into transparent glass and the core part is a porous glass body, and then the core part of the base material for the semitransparent optical fiber is made into transparent glass. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13119282A JPS5921536A (en) | 1982-07-29 | 1982-07-29 | Manufacture of base material for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13119282A JPS5921536A (en) | 1982-07-29 | 1982-07-29 | Manufacture of base material for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5921536A JPS5921536A (en) | 1984-02-03 |
JPH0239457B2 true JPH0239457B2 (en) | 1990-09-05 |
Family
ID=15052168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13119282A Granted JPS5921536A (en) | 1982-07-29 | 1982-07-29 | Manufacture of base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5921536A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033226A (en) * | 1983-07-30 | 1985-02-20 | Dainichi Nippon Cables Ltd | Preparation of glass body from sintered soot |
EP0216338A3 (en) * | 1985-09-26 | 1989-03-08 | Polaroid Corporation | Method of employing plasma for finishing start rods |
DE102009024267B4 (en) * | 2009-06-05 | 2015-12-10 | Heraeus Quarzglas Gmbh & Co. Kg | Method for producing a cylinder of synthetic quartz glass |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58115033A (en) * | 1981-12-26 | 1983-07-08 | Nippon Telegr & Teleph Corp <Ntt> | Sintering method of porous glass material |
-
1982
- 1982-07-29 JP JP13119282A patent/JPS5921536A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58115033A (en) * | 1981-12-26 | 1983-07-08 | Nippon Telegr & Teleph Corp <Ntt> | Sintering method of porous glass material |
Also Published As
Publication number | Publication date |
---|---|
JPS5921536A (en) | 1984-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4165152A (en) | Process for producing optical transmission fiber | |
US4880452A (en) | Method for producing glass preform for optical fiber containing fluorine in cladding | |
JPH0239457B2 (en) | ||
JP2565712B2 (en) | Optical fiber manufacturing method | |
JP2521186B2 (en) | Glass body manufacturing method | |
JPH0820574B2 (en) | Dispersion shift fiber and manufacturing method thereof | |
JPS6131324A (en) | Production of base material for optical fiber | |
JPS63315530A (en) | Production of optical fiber preform | |
JP2640745B2 (en) | Method for manufacturing opaque glass preform | |
JPH0791081B2 (en) | Method for manufacturing glass base material for single mode fiber | |
JPH01275442A (en) | Production of optical fiber preform | |
JPH0324415B2 (en) | ||
JPH0717395B2 (en) | Manufacturing method of base material for dispersion shift fiber | |
JPS62292647A (en) | Production of decentralized-shift single-mode optical fiber | |
JPS63230533A (en) | Production of optical fiber preform | |
JP2635563B2 (en) | Manufacturing method of glass material for optical transmission body | |
JP2831842B2 (en) | Manufacturing method of optical fiber base material | |
JPH0233657B2 (en) | TIO2GANJUHIKARIFUAIBANOSEIZOHOHO | |
JPS59232928A (en) | Treatment of porous base material for optical fiber | |
JP2657726B2 (en) | Radiation-resistant optical fiber and image fiber | |
JPH0324420B2 (en) | ||
JPH0333660B2 (en) | ||
JPH05352B2 (en) | ||
JPS60231432A (en) | Manufacture of quartz series optical fiber base material | |
JPS63285128A (en) | Production of optical fiber preform |