JPH01275442A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH01275442A
JPH01275442A JP10502888A JP10502888A JPH01275442A JP H01275442 A JPH01275442 A JP H01275442A JP 10502888 A JP10502888 A JP 10502888A JP 10502888 A JP10502888 A JP 10502888A JP H01275442 A JPH01275442 A JP H01275442A
Authority
JP
Japan
Prior art keywords
furnace
doped
optical fiber
preform
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10502888A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Masahide Kuwabara
正英 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10502888A priority Critical patent/JPH01275442A/en
Publication of JPH01275442A publication Critical patent/JPH01275442A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the title optical fiber preform free of moisture and capable of being doped with a large amt. of fluorine by sintering a porous preform consisting of fine quartz-based glass particles in an atmosphere contg. a reducing gas and gaseous fluoride. CONSTITUTION:The porous preform 1 is inserted into a furnace core tube 2 made of quartz, He and Cl2 are introduced 4 into the tube 2, and the furnace is held at 1,000 deg.C. Under such conditions, the soot 1 is pulled down at a specified velocity, and dehydrated. The tube 2 is then held at the maximum furnace temp. of 1,310 deg.C, He, Cl2, CO as the reducing gas, and SiF4 are passed through the furnace, and the soot 1 is pulled down to obtain a transparent member. When the refractive index difference of the preform thus obtained is examined, the F corresponding to 0.84% based on DELTA<-> can be doped. In addition, when the member is cutted into specified thickness and SiOH absorption is investigated by IR absorptiometric analysis, OH absorption is not detected. When sintering is carried out without CO, the F corresponding to 0.67% based on DELTA<-> is doped.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、光ファイバ母材の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing an optical fiber preform.

〔従来技術〕[Prior art]

近年、光ファイバの製造技術は著しい進歩を遂げ、はぼ
理論限界に近い超低損失のものが得られるようになって
きた。加えて最近では、石英系光ファイバで最も低損失
が得られる1、55μ−帯で分散値を零とする分散シフ
ト光ファイバも製造されており実用に供されつつある。
In recent years, optical fiber manufacturing technology has made remarkable progress, and it has become possible to obtain fibers with ultra-low losses that are close to the theoretical limit. In addition, recently, dispersion-shifted optical fibers with a dispersion value of zero in the 1.55 μ-band, where the lowest loss can be obtained among silica-based optical fibers, have been manufactured and are being put into practical use.

この分散シフト光ファイバでは、一般にコアにゲルマニ
ウムがドープされているため、シー9−散乱係数が太き
くなり0.20dB/に+++程度が低損失の限界値で
あった。そこでさらに低損失な分散シフト光ファイバを
得ようとすると、例えばコアのゲルマニウム含有量を減
らし、クラッドにフッ素を大量にドープ(Δ−0,7%
)したものを作る必要がある。しかしながら従来の技術
ではフッ素を大量に、しかも母材に水分の混入を生ずる
ことなしにドープすることが困難であった 〔発明の目的〕 前記問題に鑑み本発明の目的は、水分の混入がなく、し
かもフッ素を大量にドープできる光ファイバ母材の製造
方法を提供することにある。
In this dispersion-shifted optical fiber, since the core is generally doped with germanium, the C9-scattering coefficient becomes thick, and the limit value for low loss is approximately 0.20 dB/+++. To obtain a dispersion-shifted optical fiber with even lower loss, for example, the germanium content in the core is reduced and the cladding is doped with a large amount of fluorine (Δ-0.7%).
). However, with conventional techniques, it has been difficult to dope a large amount of fluorine without contaminating the base material with moisture. Moreover, it is an object of the present invention to provide a method for manufacturing an optical fiber preform which can be doped with a large amount of fluorine.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明の光ファイバ母材の製造方
法は、石英系ガラス微粒子から成る光ファイバ用の多孔
質母材を少なくとも還元性ガスとフッ化物ガスとを含む
雰囲気中で焼結することを特徴とするものである。
In order to achieve the above object, the method for manufacturing an optical fiber preform of the present invention involves sintering a porous preform for an optical fiber made of silica-based glass particles in an atmosphere containing at least a reducing gas and a fluoride gas. It is characterized by this.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を図を参照して詳細に説明する8
本発明者は種々の実験の結果、本発明に至った。まず、
石英系ガラス微粒子の多孔質母材(以下これをスートと
称す、)lをVAD法にて製造した。これは同心四重管
バーナー(酸−水素火炎)中に5iC14を導入し、火
炎加水分解反応により得たもので、その直径は5011
I111長さは4501m1Mで、かつその密度は0.
2g/cm3であった。このスート1を第1図に示すよ
うな石英製炉心管2内に導入した。ここで符号3は電気
炉、符号4はガス導入管、符号5は排気管を示している
Embodiments of the present invention will be described in detail below with reference to the drawings.
The present inventor has arrived at the present invention as a result of various experiments. first,
A porous base material (hereinafter referred to as soot) of quartz-based glass particles was manufactured by a VAD method. This was obtained by introducing 5iC14 into a concentric quadruple tube burner (acid-hydrogen flame) and performing a flame hydrolysis reaction, and its diameter was 5011.
I111 length is 4501m1M, and its density is 0.
It was 2g/cm3. This soot 1 was introduced into a quartz furnace tube 2 as shown in FIG. Here, reference numeral 3 indicates an electric furnace, reference numeral 4 indicates a gas introduction pipe, and reference numeral 5 indicates an exhaust pipe.

まず、Heを504!/sin、 C1zを1.51/
minをガス導入管4を介して前記石英製炉心管2中に
流しながら、炉内最高温度を1000″Cに保ち、この
状態で前記スート1を350mm+/hの速度で引き下
げ脱水を行った。上記スート1全体が炉の最高温度部を
通過したら、これを引き上げ、次に石英製炉心管2の炉
内最高温度を1310℃に上げ、He @OA 7!/
sin、 C1zを0.1 it/5in1SiFaを
2j!/winを石英製炉心管2内に流しながらスート
1を250sn/hの速度で引き下げ、フッ素をドープ
しながら透明ガラス化すべく炉内最高温度部を通過せし
めた。この方法で得た透明ガラス化した母材の屈折率差
をプリフォームアナライザで調べると、Δ−で0,67
%に相当するフッ素がドープされていることがわかった
。さらにこの透明母材を10cm厚に切出し、赤外吸光
分析によって2.73μmにおける5iOllの吸収を
調べたところ、OHの吸収は全く見られなかった。この
透明母材をロッドA(比較例)と呼ぶことにする。
First, He is 504! /sin, C1z to 1.51/
The maximum temperature in the furnace was maintained at 1000''C while flowing the soot 1 through the gas introduction pipe 4 into the quartz furnace tube 2, and in this state, the soot 1 was lowered at a speed of 350 mm+/h to perform dehydration. When the entire soot 1 passes through the highest temperature part of the furnace, it is pulled up, and then the maximum temperature in the furnace of the quartz furnace tube 2 is raised to 1310°C, and He @OA 7!/
sin, C1z 0.1 it/5in1SiFa 2j! The soot 1 was drawn down at a speed of 250 sn/h while flowing /win into the quartz furnace tube 2, and was allowed to pass through the highest temperature part of the furnace to achieve transparent vitrification while doping with fluorine. When the refractive index difference of the transparent vitrified base material obtained by this method was examined using a preform analyzer, it was found that Δ- was 0.67.
% of fluorine was doped. Furthermore, when this transparent base material was cut into a 10 cm thick piece and the absorption of 5iOll at 2.73 μm was examined by infrared absorption analysis, no OH absorption was observed. This transparent base material will be referred to as rod A (comparative example).

一方、脱水工程までの条件は全く同一で、フッ素ドープ
および透明ガラス化工程、いわゆる焼結工程における条
件のみ以下のように変えて焼結を行ってみた。すなわち
、石英製炉心管2の炉内最高温度を1310℃に保持し
、かつ炉内にHeを0.117uin、、Chを0.1
 j!/+win、 Co O,1N/+in、SiF
On the other hand, the conditions up to the dehydration step were exactly the same, and only the conditions for the fluorine doping and transparent vitrification steps, the so-called sintering steps, were changed as follows. That is, the maximum temperature in the furnace of the quartz furnace tube 2 was maintained at 1310°C, and He was 0.117 uin and Ch was 0.1 in the furnace.
j! /+win, Co O, 1N/+in, SiF
.

を21/禦in流しながら、スートlを25On+m/
hの速度で引き下げ透明母材を得た。これをロッドB(
実施例)とする、このロッドBの屈折率差をプリフォー
ムアナライザで調べると、Δ−で0.84%に相当する
フッ素がドープされていることがわか−った。さらにこ
のロッドBを10cm厚に切出し、前述dラドAの場合
同様に赤外吸光分析によって2゜73μmにおける5i
OHの吸収を調べたところ、0■の吸収は全く見られな
かった。
While flowing 21/in, suit l is 25On+m/
A transparent base material was obtained by pulling down at a speed of h. Connect this to rod B (
When the refractive index difference of this rod B (Example) was examined using a preform analyzer, it was found that it was doped with fluorine corresponding to 0.84% in Δ-. Furthermore, this rod B was cut to a thickness of 10 cm, and 5i at 2°73 μm was determined by infrared absorption analysis in the same manner as in the case of drad A.
When OH absorption was examined, no 0■ absorption was observed.

以上のごとくロッドAとロッドBでは、フッ素ドープお
よび透明ガラス化の工程、いわゆる焼結工程の雰囲気中
にCOガスが入っていたかどうかのみが相違し、他の条
件は全く同しである。
As described above, rod A and rod B differ only in whether or not CO gas was included in the atmosphere during the fluorine doping and transparent vitrification steps, so-called sintering steps, and the other conditions are exactly the same.

前述ロッドBが示すように、焼結工程の雰囲気中にCO
ガスを混入したことにより母材へのフッ素゛ドープ量を
増大せしめることができた理由は以下のように推定され
る。
As shown by the aforementioned rod B, CO is present in the atmosphere of the sintering process.
The reason why the amount of fluorine doped into the base material could be increased by mixing the gas is estimated as follows.

すなわち、COはきわめて還元性の強いガスであり゛、
SiO□から成るスートと以下のような反応を起こす。
In other words, CO is a highly reducing gas.
The following reaction occurs with the soot made of SiO□.

C6+ミ5i−0−5i三  −−一−ラCO□ 十三
Si  Si三・−−−−一・・・−(1)このときフ
ッ素Fが存在すると、 5iFa−一一一−−−→SiF’、+F、  −・・
・−・−−−−−−(2)=Si  s+=  +h 
 〜−−−−−す三5i−F   F−5i三 −−−
−−(3)゛となり、COが存在しない場合より容易に
Fが反応できる。つまり、COの存在によってフッ素F
のドープ量を増やすことができる、と推定される。尚、
前記(2)式は加熱分解による。
C6+Mi5i-0-5i3--1-RaCO□13SiSi3・----1...-(1) At this time, if fluorine F is present, 5iFa-111---→ SiF', +F, -...
・−・−−−−−−(2)=Si s+= +h
~------ Su35i-F F-5i3 ---
--(3)'', and F can react more easily than in the absence of CO. In other words, due to the presence of CO, fluorine F
It is estimated that the amount of doping can be increased. still,
The above formula (2) is based on thermal decomposition.

前記実施例では、COガスを使用してフッ素ドープ量を
増加せしめているが、還元性ガスであればCOガスに限
定されるものではなく、他のガスでもよい0例えばN0
1NO2,5O1o、 (重水素ガス)等が使用できる
。もちろん還元性ガスということでH2も使用できるが
、このガスを使用すると、母材中に011基が残留する
のであまり好ましくない。この点D2を使用すれば、O
D基による影響は、通常の通信波長帯である1、3μ涌
あるいは1.5μm帯に及ばないので問題はない。
In the above embodiment, CO gas is used to increase the amount of fluorine doped, but this is not limited to CO gas as long as it is a reducing gas, and other gases may also be used, such as NO.
1NO2, 5O1o, (deuterium gas), etc. can be used. Of course, H2 can also be used as it is a reducing gas, but using this gas leaves 011 groups in the base material, which is not very preferable. Using this point D2, O
There is no problem because the influence of the D group does not extend to the 1, 3 μm or 1.5 μm bands, which are normal communication wavelength bands.

また本実施例では焼結工程の前に脱水工程をもってきて
いるが、この脱水工程を省略し、焼結工程だけで、脱水
、フッ素ドープ、透明ガラス化を一挙に行ってもよいこ
とは言うまでもない。
Furthermore, in this example, the dehydration process is performed before the sintering process, but it goes without saying that this dehydration process can be omitted and dehydration, fluorine doping, and transparent vitrification can be performed all at once in the sintering process alone. stomach.

さらにフッ化物ガスとしては、前記実施例で使用した5
iFaの他にSF4 、CCItFz、BF3 、CF
、あるいはSigma等を単独で、あるいはこれらを混
合して使用することもできる。
Furthermore, as the fluoride gas, 5
In addition to iFa, SF4, CCItFz, BF3, CF
, Sigma, etc. may be used alone or in combination.

以上のようにしてなる本発明によれば、フッ素を大量に
ドープでき、しかも水分の混入のない光ファイバ母材を
製造することができる。
According to the present invention as described above, it is possible to manufacture an optical fiber preform that can be doped with a large amount of fluorine and does not contain moisture.

〔発明の効果〕〔Effect of the invention〕

前述の如く本発明の光ファイバ母材の製造方法によれば
、水の混入が極めて少なく、かつフッ素を大量にドープ
した光ファイバ母材を得ることができる。
As described above, according to the method for producing an optical fiber preform of the present invention, it is possible to obtain an optical fiber preform that contains very little water and is doped with a large amount of fluorine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる光ファイバ母材の焼結装置の一
実施例を示す概略図である。 1〜スート 2〜石英製炉心管 3〜電気炉特許出願人
   古河電気工業株式会社第1図
FIG. 1 is a schematic diagram showing an embodiment of an optical fiber preform sintering apparatus according to the present invention. 1 ~ Soot 2 ~ Quartz furnace core tube 3 ~ Electric furnace patent applicant Furukawa Electric Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 石英系ガラス微粒子から成る光ファイバ用の多孔質母材
を少なくとも還元性ガスとフッ化物ガスとを含む雰囲気
中で焼結することを特徴とする光ファイバ母材の製造方
法。
A method for producing an optical fiber preform, comprising sintering a porous preform for an optical fiber made of silica-based glass fine particles in an atmosphere containing at least a reducing gas and a fluoride gas.
JP10502888A 1988-04-27 1988-04-27 Production of optical fiber preform Pending JPH01275442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10502888A JPH01275442A (en) 1988-04-27 1988-04-27 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10502888A JPH01275442A (en) 1988-04-27 1988-04-27 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH01275442A true JPH01275442A (en) 1989-11-06

Family

ID=14396578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10502888A Pending JPH01275442A (en) 1988-04-27 1988-04-27 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH01275442A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090980A (en) * 1989-04-11 1992-02-25 U.S. Philips Corp. Method of producing glass bodies with simultaneous doping and sintering
EP0747327A1 (en) * 1995-06-07 1996-12-11 Corning Incorporated Method of thermally treating and consolidating silica preforms for reducing laser-induced optical damage in silica
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
KR100346112B1 (en) * 1999-12-22 2002-08-01 삼성전자 주식회사 Apparatus and method for sintering over-jacketting tube in zone sintering process of optical fiber preform fabrication process using sol-gel process
JP2004523454A (en) * 2000-12-22 2004-08-05 コーニング インコーポレイテッド Processing of soot and preforms using reducing agents

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090980A (en) * 1989-04-11 1992-02-25 U.S. Philips Corp. Method of producing glass bodies with simultaneous doping and sintering
EP0747327A1 (en) * 1995-06-07 1996-12-11 Corning Incorporated Method of thermally treating and consolidating silica preforms for reducing laser-induced optical damage in silica
KR100346112B1 (en) * 1999-12-22 2002-08-01 삼성전자 주식회사 Apparatus and method for sintering over-jacketting tube in zone sintering process of optical fiber preform fabrication process using sol-gel process
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
WO2002026646A3 (en) * 2000-09-27 2002-10-31 Corning Inc Process for drying porous glass preforms
JP2004523454A (en) * 2000-12-22 2004-08-05 コーニング インコーポレイテッド Processing of soot and preforms using reducing agents

Similar Documents

Publication Publication Date Title
US4650511A (en) Method for the preparation of a dehydrated quartz glass material for light transmission
EP0249230B1 (en) Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
Schultz Fabrication of optical waveguides by the outside vapor deposition process
EP0311080A2 (en) Method for producing glass preform for optical fiber
US20050000253A1 (en) Method of manufacture of low water peak single mode optical fiber
EP0198510A1 (en) Method of producing glass preform for optical fiber
JPH05351B2 (en)
EP0164103B1 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPH01275442A (en) Production of optical fiber preform
CN112062460A (en) Low-loss G.652.D optical fiber and manufacturing method thereof
JPS61122137A (en) Optical waveguide tube
EP0164127B1 (en) Method for producing glass preform for optical fibers
EP1270522B1 (en) Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration
CN1022681C (en) Method for mfg. fiber preform for single-mode fibers
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPH0477327A (en) Production of optical fiber
EDAHIRO et al. OH-ion reduction in the optical fibers fabricated by the vapor phase axial deposition method
JPS6131324A (en) Production of base material for optical fiber
JPS63230533A (en) Production of optical fiber preform
JPH0813689B2 (en) Manufacturing method of optical fiber preform
JPS6183639A (en) Production of quartz pipe of high purity
JPS61251539A (en) Optical fiber
JPS62292647A (en) Production of decentralized-shift single-mode optical fiber
GB2148875A (en) Optical fibre preform manufacture
JPH01212245A (en) Production of base material for optical fiber