JPH0324415B2 - - Google Patents

Info

Publication number
JPH0324415B2
JPH0324415B2 JP58189284A JP18928483A JPH0324415B2 JP H0324415 B2 JPH0324415 B2 JP H0324415B2 JP 58189284 A JP58189284 A JP 58189284A JP 18928483 A JP18928483 A JP 18928483A JP H0324415 B2 JPH0324415 B2 JP H0324415B2
Authority
JP
Japan
Prior art keywords
glass
tio
present
fluorine
glass body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58189284A
Other languages
Japanese (ja)
Other versions
JPS6081038A (en
Inventor
Gotaro Tanaka
Tsunehisa Kyodo
Keiji Oosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58189284A priority Critical patent/JPS6081038A/en
Publication of JPS6081038A publication Critical patent/JPS6081038A/en
Publication of JPH0324415B2 publication Critical patent/JPH0324415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/60Silica-free oxide glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/60Silica-free oxide glasses
    • C03B2201/78Silica-free oxide glasses containing germanium

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は少くともTiO2を含有するガラス光フ
アイバの製造方法に関し、特にコアとクラツドの
屈折率の差の大きい光フアイバーの製造方法に関
する。 上記の構造をもつ光フアイバーは、光フアイバ
ーをさらに細径にして集合させたイメージフアイ
バ用画素フアイバー或いはバンドルフアイバー等
として用いるのに好適である。 (従来技術) 従来石英ガラスを主体としたガラス光フアイバ
ーにおいて、コアとクラツドの屈折率差が大きい
光フアイバを良好に得ることは、コアとクラツド
それぞれの物性値、特に熱膨張係数及び粘性もそ
の差が大となつてしまい、コア−クラツド構成ガ
ラス体製造時に割れ易くなる、又はコアの寸法精
度が劣下してしまうという点で困難があつた。 屈折率上昇用ドーパントとしてTiO2を添加し
たTiO2含有石英ガラスは石英ガラスとの屈折率
差を比較的大きくとれる割には上記した物性値差
が、純石英ガラスと比べて、より小さいという点
において、組合わせてフアイバを作成する際に好
都合であるが、一方このTiO2添加物により光の
吸収損失は増加し、この吸収損失の低減化は容易
でなかつた。 特開昭49−18909号公報には、主にTiO2をドー
プした光フアイバの吸収損失低域法としてTiO2
をドープした微粒子状ガラス体を低水分含有雰囲
気下で気相処理を行う方法が記載されているが、
この方法では熱処理に長時間を要する(1200℃に
て24時間スス体を保持する)にもかかわらず、実
際にはせいぜいロスが20dB/Km程度の、十分に
低損失とは言えない光フアイバしか得られなかつ
た。 さらに特開昭46−6423号公報にもTiO2をドー
プしたフアイバを酸素雰囲気下で熱処理して損失
を低域させる方法が記載されているが、この方法
でも十分に低損失なフアイバは得られないし、フ
アイバを特別に熱処理する工程が必要で製造工程
が長くなる上に、フアイバ強度が弱くなつてしま
う欠点があつた。 (発明の目的) 本発明は上記に述べたような従来法の欠点を克
服して、コアとクラツドの屈折率差が大きな
TiO2を含有する光フアイバを、従来法に比して
より短時間の熱処理によつて、より低損失なフア
イバを得る方法を提供することを目的とする。 (発明の構成) 本発明の要旨は少なくともTiO2を含有した微
粒子状ガラス体又は多孔質状ガラス体を、少なく
ともフツ素化合物ガスを含有する雰囲気中で、
800℃以上1600℃以下の温度範囲にて加熱処理す
ることを特徴とするTiO2含有ガラス光フアイバ
ーの製造方法を提供するところにある。 以下に本発明を具体的に説明する。 TiO2含有ガラスにおける光吸収損失の主な原
因としては、Ti酸化物の還元された状態である
Ti3+の存在が考えられている。Ti3+の生成量は
主に次の式(1)の化学熱力学的平衡に依存するもの
で、高温でかつO2分圧が低下すると(1)式は右へ
進行してTi3+生成量が増加する。 2TiO2Ti2O3+1/2O2 …(1) すなわち、Ti3+生成量の少い(光吸収損失の
少い)ガラスを得るには、より低温でかつO2
圧の高い状態でTiO2含有ガラス微粒子を合成す
るのが望ましいとわかる。微粒子状ガラス体又は
多孔質ガラス体を加熱することにより溶融透明状
ガラス体を得る方法は、上記のガラス体をより低
温で合成できるためにTi3+生成量を少なく抑え
る点で望ましい製造法である。またこの方法で加
熱焼結する際にも、酸素含有雰囲気中で行うこと
は、よりTi3+の生成が抑制されるので好ましい。
ただし、O2濃度を十分に上げた状態でガラスを
完全に透明化することは難しく、通常このような
方法で得られたガラス母材から作製されたフアイ
バーは波長0.85μmにおける伝送損失は20dB/Km
程度であり、十分に低損失なフアイバとは言えな
い。 ところで本発明者らは、発生期の弗素を微粒子
状態ガラス或いは多孔子状態ガラス等比表面積の
極めて大きい状態のガラス組織に作用させること
により、下記(2)式に示す反応により、Ti3+を従
来法よりもさらに効率的にTi4+へと酸化させう
ることを見出し本発明の目的を達成した。 Ti3+F→Ti4+F- …(2) 本発明の方法に用いる弗素化合物としては
SF6,CF4,CCl2F2等のフロン系ガスが取扱いが
容易な点で好ましいが、その他のSiF4,BF3
OF2,NF3等の弗素化合物を用いることができる
し、F2単体ガスも勿論使用できる。 本発明の方法における加熱焼結温度としては
800℃以上1600℃以下が好ましい。800℃以下の温
度では弗素化合物ガスの分解が十分に行われな
い。温度が高くなる程、弗素化合物ガスの分解は
進み、活性な弗素の発生量が増し、さらに(2)式の
反応速度が増すので好都合であるが、この加熱処
理が十分に行われる前にガラス組織が溶融化する
ことは望ましくない。 該ガラス組織溶融化温度はガラスの成分、組
成、粒度、穴径などの構造状態により異なるが、
通常約1600℃であるため、加熱処理温度はこれ以
下が好ましい。 本発明の方法により、ガラス体にフツ素がドー
プされることは有り得るが、本発明の目的はフツ
素ドープではなく、Ti3+の低減化であるため、
フツ素ドーピングの場合より低濃度のフツ素で効
果がある。ただしフツ素がガラス中に多量に導入
されても本発明の効果には変りがない。 本発明の方法を適用できるガラス成分として
は、SiO2−TiO2系ガラスが、光フアイバ用とし
てはその熱膨張係数、耐熱性、耐候性等に秀れて
いるため好ましいが、さらにGeO2−TiO2系ガラ
ス、Al2O3−TiO2系ガラス等2成分ガラス、また
SiO2−GeO2−TiO2系ガラス等の3成分系ガラス
についても同様に本発明の方法を適用できる。 以下に本発明の実施例を挙げて、その効果を示
す。 実施例 酸水素炎中にガラス合成用原料ガスとして
SiCl4及びTiCl4を導入し、微粒子状ガラスを生成
し、該微粒子状ガラスを、回転する純石英ガラス
出発物質上に回転軸方向に堆積し、堆積体を回転
させつつ引き上げて、TiO2含有SiO2ガラス微粒
子堆積体(プリフオーム)を合成した。 得られたプリフオームを、第1表にまとめて示
すような設定温度及び雰囲気ガス条件に保持した
熱処理炉中につるし2時間保持した後に、昇温速
度5℃/分で炉温を1500℃まで上昇させ1時間保
持した後にガラス体を取り出した。得られたガラ
ス母材は完全に透明化していた。 該ガラス母材を整形加工して、クラツド用石英
ガラス管と組合せてフアイバー化したところ、コ
アとクラツドの屈折率差は2.0%、波長0.85μmに
おける伝送損失は第1表のまとめて示す様な目的
とする光フアイバーを得ることができた。
The present invention relates to a method for manufacturing a glass optical fiber containing at least TiO 2 , and more particularly to a method for manufacturing an optical fiber having a large difference in refractive index between the core and the cladding. Optical fibers having the above structure are suitable for use as pixel fibers for image fibers, bundle fibers, etc., which are made of optical fibers made smaller in diameter and assembled together. (Prior art) In order to successfully obtain an optical fiber with a large difference in refractive index between the core and the cladding in conventional glass optical fibers mainly made of silica glass, the physical properties of the core and the cladding, especially the coefficient of thermal expansion and viscosity, have to be adjusted accordingly. The difference becomes large and there are difficulties in that the glass body with the core-clad structure is easily broken or the dimensional accuracy of the core is deteriorated. TiO 2 -containing quartz glass doped with TiO 2 as a dopant to increase the refractive index has a relatively large difference in refractive index with silica glass, but the above-mentioned difference in physical properties is smaller than that of pure silica glass. However, on the other hand, this TiO 2 additive increases light absorption loss, and it has not been easy to reduce this absorption loss. Japanese Patent Application Laid-Open No. 18909/1989 mainly describes TiO 2 as a low-pass absorption loss method for TiO 2 doped optical fibers.
A method is described in which a fine particulate glass body doped with
Although this method requires a long time for heat treatment (maintaining the soot material for 24 hours at 1200℃), in reality, the loss is only about 20 dB/Km at most, which cannot be said to be sufficiently low loss. I couldn't get it. Furthermore, JP-A-46-6423 also describes a method of heat-treating a fiber doped with TiO 2 in an oxygen atmosphere to lower the loss, but even with this method, a fiber with sufficiently low loss cannot be obtained. Moreover, it requires a special heat treatment process for the fiber, which lengthens the manufacturing process, and has the disadvantage that the strength of the fiber is weakened. (Objective of the invention) The present invention overcomes the drawbacks of the conventional method as described above, and solves the problem that the refractive index difference between the core and the cladding is large.
The object of the present invention is to provide a method for obtaining a fiber with lower loss by heat treating an optical fiber containing TiO 2 in a shorter time than in conventional methods. (Structure of the Invention) The gist of the present invention is to prepare a particulate glass body or a porous glass body containing at least TiO 2 in an atmosphere containing at least a fluorine compound gas.
The present invention provides a method for producing a TiO 2 -containing glass optical fiber, which is characterized by heat treatment at a temperature range of 800°C or higher and 1600°C or lower. The present invention will be specifically explained below. The main cause of light absorption loss in TiO2- containing glasses is the reduced state of Ti oxide.
The existence of Ti 3+ is considered. The amount of Ti 3+ produced mainly depends on the chemical thermodynamic equilibrium of the following equation (1). When the temperature is high and the O 2 partial pressure decreases, equation (1) moves to the right and Ti 3+ The amount of production increases. 2TiO 2 Ti 2 O 3 +1/2O 2 ...(1) In other words, in order to obtain a glass with a small amount of Ti 3+ produced (low light absorption loss), it is necessary to obtain a glass with a lower temperature and a higher O 2 partial pressure. It turns out that it is desirable to synthesize TiO 2 -containing glass particles. The method of obtaining a molten transparent glass body by heating a particulate glass body or a porous glass body is a desirable manufacturing method in that the above-mentioned glass body can be synthesized at a lower temperature and the amount of Ti 3+ produced can be kept low. be. Also, when heating and sintering with this method, it is preferable to carry out the heating in an oxygen-containing atmosphere because the formation of Ti 3+ is further suppressed.
However, it is difficult to make glass completely transparent with a sufficiently high O 2 concentration, and fibers made from glass base materials obtained by this method usually have a transmission loss of 20 dB/2 at a wavelength of 0.85 μm. Km
It cannot be said that the fiber has a sufficiently low loss. By the way, the present inventors have shown that by applying nascent fluorine to a glass structure in a state where the specific surface area is extremely large, such as fine particle state glass or porous state glass, Ti 3+ can be produced by the reaction shown in the following equation (2). The object of the present invention has been achieved by discovering that Ti 4+ can be oxidized more efficiently than conventional methods. Ti 3 +F→Ti 4 +F - …(2) The fluorine compound used in the method of the present invention is
Freon-based gases such as SF 6 , CF 4 , CCl 2 F 2 are preferred because they are easy to handle, but other gases such as SiF 4 , BF 3 ,
Fluorine compounds such as OF 2 and NF 3 can be used, and of course F 2 simple gas can also be used. The heating sintering temperature in the method of the present invention is
The temperature is preferably 800°C or higher and 1600°C or lower. At temperatures below 800°C, fluorine compound gas is not sufficiently decomposed. The higher the temperature, the more decomposition of the fluorine compound gas progresses, the more active fluorine is generated, and the reaction rate of equation (2) increases, which is advantageous. Melting of the tissue is undesirable. The glass structure melting temperature varies depending on the structural state such as glass components, composition, particle size, hole diameter, etc.
Since it is usually about 1600°C, the heat treatment temperature is preferably lower than this. Although it is possible that the glass body is doped with fluorine by the method of the present invention, the purpose of the present invention is not to dope fluorine but to reduce Ti 3+ .
It is effective with a lower concentration of fluorine than in the case of fluorine doping. However, even if a large amount of fluorine is introduced into the glass, the effects of the present invention remain unchanged. As the glass component to which the method of the present invention can be applied, SiO 2 -TiO 2 -based glass is preferable for use in optical fibers because of its excellent thermal expansion coefficient, heat resistance, weather resistance, etc., but GeO 2 - Bicomponent glasses such as TiO 2 glass, Al 2 O 3 −TiO 2 glass, and
The method of the present invention can be similarly applied to three-component glasses such as SiO 2 -GeO 2 -TiO 2 glasses. Examples of the present invention will be given below to demonstrate its effects. Example: As raw material gas for glass synthesis in oxyhydrogen flame
SiCl 4 and TiCl 4 are introduced to produce particulate glass, which is deposited on a rotating pure silica glass starting material in the direction of the rotation axis, and pulled up while rotating the deposit to form a TiO 2 -containing particulate glass. A SiO 2 glass particle deposit (preform) was synthesized. The obtained preform was suspended in a heat treatment furnace maintained at the set temperature and atmospheric gas conditions as summarized in Table 1 and held for 2 hours, and then the furnace temperature was increased to 1500°C at a heating rate of 5°C/min. After holding for 1 hour, the glass body was taken out. The obtained glass base material was completely transparent. When the glass base material was shaped and combined with a silica glass tube for the cladding to form a fiber, the refractive index difference between the core and the cladding was 2.0%, and the transmission loss at a wavelength of 0.85 μm was summarized in Table 1. We were able to obtain the desired optical fiber.

【表】 以上気相軸付け法(VAD)法の場合について
述べたが、本発明の方法はVAD法のみならず外
付け法等により作製したTiO2含有微粒子状ガラ
ス体あるいは分相法、ゾルゲン法等により作製し
たTiO2含有多孔質ガラス体等の加熱透明ガラス
化工程に適用でき良好な結果を得るものである。 (発明の効果) 本発明の方法は、発生期の弗素をTiO2を含有
する微粒子状ガラス体又は多孔質状ガラス体に作
用させることにより、Ti3+を効率的にTi4+とす
ることにより、Ti3+を低減することで、TiO2
有フアイバの伝送損失を低減できる方法である。
[Table] The case of the vapor phase axial deposition (VAD) method has been described above, but the method of the present invention can be applied not only to the VAD method but also to TiO 2 -containing particulate glass bodies produced by the external deposition method, phase splitting method, solgen This method can be applied to the heating transparent vitrification process of TiO 2 -containing porous glass bodies prepared by the method, etc., and good results can be obtained. (Effects of the Invention) The method of the present invention allows Ti 3+ to be efficiently converted to Ti 4+ by causing nascent fluorine to act on a particulate glass body or a porous glass body containing TiO 2 . This is a method that can reduce the transmission loss of TiO 2 -containing fibers by reducing Ti 3+ .

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともTiO2を含有した微粒子状ガラス
体又は多孔質状ガラス体を、少なくともフツ素化
合物ガスを含有する雰囲気中で、800℃以上1600
℃以下の温度範囲にて加熱処理することを特徴と
するTiO2含有ガラス光フアイバーの製造方法。
1 A particulate glass body or a porous glass body containing at least TiO 2 is heated at 800°C or higher at 1600°C in an atmosphere containing at least a fluorine compound gas.
1. A method for producing a TiO 2 -containing glass optical fiber, which is characterized by heat treatment at a temperature range below ℃.
JP58189284A 1983-10-12 1983-10-12 Manufacture of optical glass fiber containing tio2 Granted JPS6081038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58189284A JPS6081038A (en) 1983-10-12 1983-10-12 Manufacture of optical glass fiber containing tio2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58189284A JPS6081038A (en) 1983-10-12 1983-10-12 Manufacture of optical glass fiber containing tio2

Publications (2)

Publication Number Publication Date
JPS6081038A JPS6081038A (en) 1985-05-09
JPH0324415B2 true JPH0324415B2 (en) 1991-04-03

Family

ID=16238743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58189284A Granted JPS6081038A (en) 1983-10-12 1983-10-12 Manufacture of optical glass fiber containing tio2

Country Status (1)

Country Link
JP (1) JPS6081038A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096545A (en) * 1983-10-28 1985-05-30 Nippon Telegr & Teleph Corp <Ntt> Optical fiber
JPS60176945A (en) * 1984-02-23 1985-09-11 Sumitomo Electric Ind Ltd Optical fiber
JPS60176944A (en) * 1984-02-23 1985-09-11 Sumitomo Electric Ind Ltd Fiber for optical transmission
JPH0776092B2 (en) * 1985-10-09 1995-08-16 住友電気工業株式会社 Glass manufacturing method
NZ231769A (en) * 1988-12-20 1991-01-29 Univ Melbourne Production of tif 4 from ore containing tio 2

Also Published As

Publication number Publication date
JPS6081038A (en) 1985-05-09

Similar Documents

Publication Publication Date Title
KR900008503B1 (en) Manufacture of preform for glass fibres
US3933454A (en) Method of making optical waveguides
US4082420A (en) An optical transmission fiber containing fluorine
US4161505A (en) Process for producing optical transmission fiber
US4295869A (en) Process for producing optical transmission fiber
US4165152A (en) Process for producing optical transmission fiber
JPH05350B2 (en)
JPH0717396B2 (en) Making high silicate glass articles
KR20060087570A (en) High-purity pyrogenically prepared silicon dioxide
JPH0314789B2 (en)
JPH0324415B2 (en)
JP2004509829A (en) Process for drying porous glass preforms
JPS6289B2 (en)
JPH0479981B2 (en)
JPS6143290B2 (en)
JPS6090843A (en) Manufacture of glass base material for optical fiber
JPS63139028A (en) Production of optical fiber glass base material
JPH01145346A (en) Production of optical fiber preform
JPS632902B2 (en)
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPH0776092B2 (en) Glass manufacturing method
JPH0327491B2 (en)
JPS6144823B2 (en)
JPH0233657B2 (en) TIO2GANJUHIKARIFUAIBANOSEIZOHOHO
JPS61168544A (en) Production of glass tube mainly composed of quartz