JPS6096545A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS6096545A
JPS6096545A JP58201081A JP20108183A JPS6096545A JP S6096545 A JPS6096545 A JP S6096545A JP 58201081 A JP58201081 A JP 58201081A JP 20108183 A JP20108183 A JP 20108183A JP S6096545 A JPS6096545 A JP S6096545A
Authority
JP
Japan
Prior art keywords
fluorine
fiber
core
loss
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201081A
Other languages
Japanese (ja)
Inventor
Taiji Murakami
村上 泰司
Kazuhiro Noguchi
一博 野口
Sunao Uesugi
上杉 直
Hiroshi Ishihara
石原 浩志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58201081A priority Critical patent/JPS6096545A/en
Publication of JPS6096545A publication Critical patent/JPS6096545A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions

Abstract

PURPOSE:To produce an optical fiber having little defects in the glass and capable of maintaning the characteristics stably for a long period, by using fluorine as a doping material for the core. CONSTITUTION:An optical fiber having high stability with time can be manufactured by using a quartz glass doped with GeO2 (or P2O5) and fluorine as the core material, and covering the circumference of the core 1 with a clad 2 made of a quartz glass having lower refractive index than the core material. Since the defects of the Si-O-Si bond is filled with the doped fluorine, the intrusion of exterior hydrogen (accordingly the formation of OH groups) is suppressed, and the increase in the loss of the optical fiber with time can be prevented.

Description

【発明の詳細な説明】 本発明はガラス内に欠陥が少なく、長期間安定な特注を
保持する元ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a source fiber that has few defects in the glass and maintains a long-term stable customization.

光ファイバは、光を導波するため屈折率を高くしたコア
部と、その外側にあり、かつ屈、折率がコア部より低い
クラッド部とで通常形成されている。・・・石英ガラス
において屈折率を萬くするドーパントとして、酸化ゲル
マニウム(Ge08)、五酸化リンCP105) 、酸
化アルミ(AJ、O,) 、酸化チタン(T10 s 
)等が知られておシ、コア部のドープ剤として通常よく
用いられている。−万、屈折率を低くするドーパントと
しては、酸化ボロンCB、08)およびフッ素CF)が
知られているのみであり、選択の範囲は狭い。これら屈
折率を低下させるドーパントは、その特性上、当然クラ
ッド部のみに従来ドープされていた。
Optical fibers are usually formed of a core portion with a high refractive index for guiding light, and a cladding portion located outside the core portion and having a lower refractive index than the core portion. ... Germanium oxide (Ge08), phosphorus pentoxide CP105), aluminum oxide (AJ, O,), titanium oxide (T10s) are used as dopants to increase the refractive index in quartz glass.
) etc. are known and are commonly used as doping agents for the core part. As dopants that lower the refractive index, only boron oxide CB, 08) and fluorine CF) are known, and the range of selection is narrow. Due to its characteristics, these dopants that lower the refractive index have traditionally been doped only in the cladding.

コア部にドープされた(1;eog I Pjj06等
の屈折率を旨くする添加剤は、ガラス中に結合欠陥を形
成する特性を持つ。形成された結合欠陥は、ガラス中に
拡散する水素ガスと反応してOH基を形成し、ファイバ
の損失を増加させる。反応は、たとえば次式のようにし
て行われる。
Additives that improve the refractive index such as (1; eog I Pjj06) doped into the core have the property of forming bond defects in the glass. It reacts to form OH groups, increasing fiber loss.The reaction is carried out, for example, as shown in the following equation.

ここで、破線は結合欠陥を示す。結合欠陥はドープ剤の
添7JLI 址が多いほど多くなるので、ドープ量と比
例してOHiの吸収損失は増加する。
Here, dashed lines indicate bonding defects. Since the number of bond defects increases as the amount of dopant added increases, the absorption loss of OHi increases in proportion to the amount of dopant.

GeO2ドープファイバにおける損失増加の一例を第1
図に示す。白丸は、コアドープ剤にcreo2のみを用
いた単一モード元ファイバを水素ガス界囲気中に200
’O14時間暴露したときの損失増力0食であり、損失
値としてGe −OHの第2次高調波吸収がある波長λ
−1,41μmの値を用いた。ドープ量が多くなり、コ
アとクラッドとの比屈折率差が大きくなると急激に損失
増)Ju itは増大する。
The first example of loss increase in GeO2-doped fiber is
As shown in the figure. The white circle shows a single-mode original fiber using only creo2 as the core dopant in a hydrogen gas atmosphere for 200 min.
'O When exposed for 14 hours, there is no loss enhancement, and the loss value is the wavelength λ where the second harmonic absorption of Ge -OH is present.
A value of −1.41 μm was used. When the amount of doping increases and the relative refractive index difference between the core and the cladding increases, the loss (loss) (Juit) increases rapidly.

P2O5ドープファイバにおける損失増加の一例を第2
図に示す。これは外径125μmのファイバに外径40
0μmのシリコーン樹脂、さらにナイロンを破覆し外径
0.911I11とした心線を、200℃に昇温し、被
覆内およびファイバ内から発生する水素カスがカラス内
1−IB (1)B合欠陥と反応して生じた損失増加で
ある。コアドープ剤はGeO□およびP2O。
An example of loss increase in P2O5 doped fiber is shown in the second example.
As shown in the figure. This is a fiber with an outer diameter of 40 μm and a fiber with an outer diameter of 125 μm.
A core wire made of 0 μm silicone resin and nylon with an outer diameter of 0.911I11 is heated to 200°C, and hydrogen scum generated from inside the coating and inside the fiber becomes a 1-IB (1) B bonding defect inside the glass. This is the increase in losses that occurred in response to the increase in losses. Core dopants are GeO□ and P2O.

であり、試料ファイバはコア径50μm1比屈折率差1
%のブレデッド形多モードファイバである。
The sample fiber has a core diameter of 50 μm and a relative refractive index difference of 1
% braided multimode fiber.

第2図の損失値には、P−OHの第2次高調波吸収が存
在する波長λ= 1.55μmでの値を示した。
The loss values in FIG. 2 are shown at a wavelength λ=1.55 μm where the second harmonic absorption of P-OH exists.

P2O5のモル濃度と比例して損失増加量は増大する。The increase in loss increases in proportion to the molar concentration of P2O5.

以上述べたように、Ge0g 、 PstOs等の屈折
率を高くするドーパントをコア部に添加すると、ガラス
内の結合欠陥を増加させる。結合欠陥は水素ガスと反応
して容易にOH基を形成するので、Gem。
As described above, when a dopant that increases the refractive index, such as GeOg or PstOs, is added to the core portion, bonding defects within the glass increase. Gem because bond defects easily react with hydrogen gas to form OH groups.

2g05等をコアにドーグしたファイバでは、損失が経
時的に増加する欠点を有している。
A fiber having a doped core of 2g05 or the like has the disadvantage that loss increases over time.

本発明は以上の欠点を除去するため、コア部にフッ素を
ドープし、経時的に安定な特性を保持するようにした元
ファイバに関するものである。以下図面により本発明の
詳細な説明する。
In order to eliminate the above-mentioned drawbacks, the present invention relates to an original fiber whose core portion is doped with fluorine to maintain stable characteristics over time. The present invention will be explained in detail below with reference to the drawings.

第8図に本発明の一実施例を示し%lt、GeO,。FIG. 8 shows an embodiment of the present invention.%lt,GeO,.

P、0.のいずれか1種類およびフッ素をドーグしたコ
ア部、2扛該コア部よシ屈折率の低いタラッ、ド部であ
る。ドープされたフッ素原子は、5i−0−81結合の
欠陥部分を狸める作用を来たすため、本発明の元ファイ
バは経時的な損失増のなく、長期間安定な特性を有する
P, 0. A core portion containing any one of the following types and fluorine, and two portions having a lower refractive index than the core portion. Since the doped fluorine atoms have the effect of pinching defective portions of 5i-0-81 bonds, the original fiber of the present invention has stable characteristics over a long period of time without increasing loss over time.

フッ素原子が結合欠陥を埋める作用を果たすことを次の
工うな実験で確認した。
The following unconventional experiment confirmed that fluorine atoms fill bond defects.

実験には、フッ素のドープ量が異なる5本の試料ファイ
バを用いた。このうち3本はコア径50μm、ファイバ
外径125μm1比屈折率差1%のグレーデッド形多セ
ード元ファイバである。残シの2本はコア径8μm、比
Jiil折率差0.8%の単一モードファイバである。
Five sample fibers with different amounts of fluorine doping were used in the experiment. Three of them are graded multi-shaded fibers with a core diameter of 50 μm, a fiber outer diameter of 125 μm, and a relative refractive index difference of 1%. The remaining two fibers are single mode fibers with a core diameter of 8 μm and a relative refractive index difference of 0.8%.

5本のファイバは共に、400μm径のノリヨー/ゴム
で扱穏している。
All five fibers are treated with 400 μm diameter Noriyo/rubber.

表1 f′−f7)Jti:11a、e 1.50 −多モー
ドファイハ 2 14.8 1.44 0.15 8 16.1 0.76 0.88 輪−一―−−―曇−−−1瀞胛−−■搏−慟一−−−−
−−−−−−9−−−弄−―−−−―−−−■−■^−
■−一−−単一モードファイバ 4 5・〇 − 55,0−0,80 表1には、これらコアイノくのコア部に含まれる各元素
歌を示す、これらの値はX線マイクロアナライザで測定
した。7アイノ<1および4GこGまフ゛ン累が含まれ
ていない。
Table 1 f'-f7) Jti: 11a, e 1.50 -Multimode Fiffer 2 14.8 1.44 0.15 8 16.1 0.76 0.88 Ring-1---Cloudy--- -1翞胛-■搏-慟一------
−−−−−−9−−−Play−−−−−−−−■−■^−
■-1--Single mode fiber 4 5・〇 - 55,0-0,80 Table 1 shows each element contained in the core of these cores. It was measured. 7 Aino < 1 and 4G small G magnification are not included.

上記5本の試料7アイ1<は以下のようにして製置した
。ガラスの原料となる四塩化硅素(Si044)、四塩
化ゲルマニウム(GeCl4)、三塩化酸化I】ン(P
OCi/8)および四フッ化硅素(SiF4)のガスを
、酸水素バーナにより加熱した出発石英ガラス管内に酸
素とともに送り込む。そして酸化反応により生ずるガラ
ス微粒子を背内壁に付着*f/lさせて、ガラス層(厚
さ数μm)を形成する。プリフォームの屈折率は、態別
組成、流量を時間的に変化させることにより制御でき、
バーナを石英管の軸方向に沿って移!ハリさせる操作を
数十回から自回近く繰り返して、任、乙の屈折率分布の
カラス層を形成した。特にフッ素のドープ1λは四フッ
化硅累のカス流量を変化させて制御した。
The above five samples 7i1< were prepared as follows. The raw materials for glass are silicon tetrachloride (Si044), germanium tetrachloride (GeCl4), trichloride oxide (P
OCi/8) and silicon tetrafluoride (SiF4) are fed together with oxygen into a starting quartz glass tube heated by an oxyhydrogen burner. Then, glass particles produced by the oxidation reaction are adhered to the back inner wall *f/l to form a glass layer (several μm thick). The refractive index of the preform can be controlled by changing the composition and flow rate over time.
Move the burner along the axial direction of the quartz tube! By repeating the firming operation several dozen times, a glass layer with a refractive index distribution of 1 and 2 was formed. In particular, the fluorine dope 1λ was controlled by changing the flow rate of silicon tetrafluoride sludge.

初めにタラツドノ?り、引@続いてコア層を作製した後
、バーナの温度を上げて中空部をつぶしくコラプスと呼
ばれ−Cいる〕、ツCファイバ用母材を製造した。母相
はカーボン抵抗炉などで2uoo〜2200’0に加熱
浴融し、100〜150 ttmの太さの糸に引き、上
記元ファイバヲ製造した。
Taratatsudono first? Then, after producing a core layer, the temperature of the burner was raised to collapse the hollow part (called collapse) to produce a base material for a C fiber. The matrix was melted in a carbon resistance furnace to a temperature of 2 mm to 2,200 mm and drawn into a thread having a thickness of 100 mm to 150 mm to produce the above-mentioned original fiber.

ガラス内におけるフッ素の結合状態を調査するため、試
料ファイバのラマン分光を行った。励起光源には、51
4..5 nmで発振するアルゴンレーザを用いた。
In order to investigate the bonding state of fluorine in the glass, we performed Raman spectroscopy on the sample fiber. The excitation light source includes 51
4. .. An argon laser oscillating at 5 nm was used.

第4図お上び8!5図に谷試料ファイバの700〜L5
00oa のラマンスペクトルを示す。第4図よシ、フ
ァイバ中にフッ素をドープすることにより、98Qll
f1に新しいピークが認められる。
Figure 4 and Figure 8 and Figure 5 and 700 to L5 of the sample fiber.
00oa Raman spectrum is shown. As shown in Figure 4, by doping fluorine into the fiber, 98Qll
A new peak is observed at f1.

また第5図よ、り 、Pg05を含まない元ファイバに
おいても、939 cm−”にピークが認められる。
Furthermore, from FIG. 5, a peak is observed at 939 cm-'' even in the original fiber that does not contain Pg05.

従ってコ(7)980cm−”ノピークは5i−F結合
によるラマン散乱を示す。すなわちフッ素はシリコンと
結合してSi −F結合を形成する。
Therefore, the Co(7)980cm-'' peak shows Raman scattering due to 5i-F bonds. That is, fluorine combines with silicon to form Si-F bonds.

一般に石英ガラスを水素ガス雰囲気中で熱すると、カラ
ス中の5i−0結合の欠陥部とガラス中に拡散した水素
ガスが化学的に反応してOH基を形成する。これらの実
験報告には、たとえばCharlesM、HartWi
gの論文(The Journal of Cthem
icalphysics 、 VOI、66、41 、
 pp、227〜288 。
Generally, when quartz glass is heated in a hydrogen gas atmosphere, the defective portion of the 5i-0 bond in the glass and the hydrogen gas diffused into the glass chemically react to form OH groups. These experimental reports include, for example, Charles M., HartWi.
The Journal of Cthem
icalphysics, VOI, 66, 41,
pp, 227-288.

1977 )およびS、P、Faileとり、M、Ro
yの論文(Mat、Res、Bull、Vol、 5 
、 Pp、 885−’190 。
(1977) and S, P, Failetori, M, Ro.
y paper (Mat, Res, Bull, Vol. 5
, Pp, 885-'190.

1970)等がある。そこで前記試料ファイバを水素ガ
ス中で昇温し、生成したOH基の電とフッ素ドープ量と
の関係をめ、フッ素が欠陥部に与える影響について検討
した。加熱温度、加熱時間は各々200℃、4時間であ
り、圧力は1気圧である。・第6図に試料lのファイバ
で測定した加熱前後のラマンスペクトルを示す。加熱後
には2,200tIrL−1に新たな散乱ピークが生成
される。このピークは5i−H結合の振動モードによる
散乱ピークである。従って加熱により、前記の式(1)
および式(2)で表わされる反応が起き、5i−11結
合が発生していることがわかる。同様な測定を試料2か
ら試料5のファイバで行った。その結果、試料lのよう
に散乱ピークがあると思われるが、2.26gcm−1
での顕著な変化は測定精度内で認められなかった。
1970) etc. Therefore, the temperature of the sample fiber was raised in hydrogen gas, and the relationship between the charge of the generated OH groups and the amount of fluorine doped was determined, and the influence of fluorine on the defective portion was studied. The heating temperature and heating time were 200° C. and 4 hours, respectively, and the pressure was 1 atmosphere.・Figure 6 shows the Raman spectra measured with the fiber of sample 1 before and after heating. After heating, a new scattering peak is generated at 2,200tIrL-1. This peak is a scattering peak due to the vibrational mode of the 5i-H bond. Therefore, by heating, the above equation (1)
It can be seen that the reaction represented by formula (2) occurs and a 5i-11 bond is generated. Similar measurements were performed on the fibers of samples 2 through 5. As a result, it seems that there is a scattering peak like sample 1, but at 2.26 gcm-1
No significant changes were observed within the measurement accuracy.

第7図に試料1.2および8のファイバを用いて測定し
た1、55μmでの損失増力17景とフッ素ドーグ量と
の関係を示す。第2図で示すように、1.55μmでの
損失増加量はP2O,ドープ量と比例するので、第7図
の縦軸はP、0.ドープ量で規格化した。
FIG. 7 shows the relationship between loss enhancement at 1.55 μm measured using fibers of samples 1.2 and 8 and the amount of fluorine dope. As shown in FIG. 2, the increase in loss at 1.55 μm is proportional to the amount of P2O doped, so the vertical axis in FIG. 7 is P, 0. It was normalized by the amount of doping.

第7図よりフッ素のドープ量を大きくすれば、OH基生
成麓が低下することが理解される。
It is understood from FIG. 7 that increasing the amount of fluorine doped reduces the amount of OH group formation.

第1図にはフッ素ドープの単一モード元ファイバに対す
る損失増加量を黒丸で示す。フッ素ドーグ量は0.8w
t%である。損失増加量はドープなしのファイバと比較
して約1/、の値である。損失増加量をドープなしの場
合の半分とするためには、フッ素ドープ量を0.15 
wt%以上としなければならない。
In FIG. 1, the amount of loss increase for a fluorine-doped single mode original fiber is shown by black circles. Fluoride amount is 0.8w
t%. The loss increase is approximately 1/1 compared to an undoped fiber. In order to reduce the loss increase to half of that without doping, the amount of fluorine doped should be 0.15.
Must be at least wt%.

以上の結果は、ドープされたフッ素原子がSi−〇結合
欠陥を埋める作用をするため生じる。従ってコア部にフ
ッ素をドープしたファイバにおいては、結合欠陥が少な
いので、外部から拡散してきた水素ガスとの反応が少な
く、反応の結果生成されるOH基も少ない。このように
して、経時的に損失増加のない安定なファイバが形成さ
れる。
The above results occur because the doped fluorine atoms act to fill Si-- bond defects. Therefore, in a fiber whose core portion is doped with fluorine, there are fewer bond defects, so there is less reaction with hydrogen gas diffused from the outside, and fewer OH groups are generated as a result of the reaction. In this way, a stable fiber is formed with no loss increase over time.

以上説明したように、本発明の光ファイバは元を導波す
るコア部において、5i−00結合欠陥が少ないので、
経時的な損失増がなく、長期間安定な特性を保持する利
点がある。
As explained above, since the optical fiber of the present invention has few 5i-00 coupling defects in the core portion that guides the original wave,
It has the advantage of not increasing loss over time and maintaining stable characteristics for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はGe!O,ドーグ量と損失増加量との関係を示
す図、第2図はP、0.ドープ量と損失増加量との関係
を示す図、第8図は本発明の元ファイバの一実施例図、
第4図は多モー・ドファイバのラマ・ン散跣強度を示す
図、第5図は単一モードファイバのラマン散乱強度を示
す図、第6図は水素ガス雰囲気中での昇温試験前後のラ
マン散乱強度を示す図、第7図はフッ素0度に対する損
失増加電を示す図である。 l・・フッ素全ドープしたコア部、2・・・クラッド部
。 特許出願人 日本電信電話公社 代理人弁理士 杉 村 暁 秀 同 弁理士 杉 村 興 作 第1図 比尿#牢1%) 第2図 /’2θ5 JJ (No1 %) 第3図 第4図 πυ Fニア/ 1500 X枚 (cmす 第5図 第6図
Figure 1 shows Ge! A diagram showing the relationship between the amount of O, Dawg and the amount of increase in loss, Figure 2 is P, 0. A diagram showing the relationship between doping amount and loss increase amount, FIG. 8 is an example diagram of the original fiber of the present invention,
Figure 4 shows the Raman scattering intensity of a multimode fiber, Figure 5 shows the Raman scattering intensity of a single mode fiber, and Figure 6 shows before and after a heating test in a hydrogen gas atmosphere. FIG. 7 is a diagram showing the Raman scattering intensity, and is a diagram showing the increased charge loss for 0 degrees of fluorine. 1...Core part fully doped with fluorine, 2...Clad part. Patent Applicant Nippon Telegraph and Telephone Public Corporation Representative Patent Attorney Hideto Sugimura Akira Sugimura Patent Attorney Kou Sugimura Figure 1 (1%) Figure 2/'2θ5 JJ (No1 %) Figure 3 Figure 4 πυ F Near / 1500 x sheets (cm) Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】 L 光を導波し、かつ屈折率が周囲より高く、かつ石英
系カラスより構成されたコア部および該コア部の周囲に
該コア部と密着して存在し、かつ石英系ガラスより構成
されたクラッド部を有する元ファイバにおいて、コア部
がドープ材料の一種類としてフッ素を含むことを特徴と
する元ファイバ。 ?、 特許請求の範囲第1項に記載の元ファイバにおい
て、コア部のフッ素ドープ揄が0.15wt%以上であ
ることを特徴とする光ファイバ。
[Scope of Claims] L A core portion that guides light, has a higher refractive index than its surroundings, and is made of quartz glass, and is present around the core portion in close contact with the core portion, and is made of quartz What is claimed is: 1. A source fiber having a cladding portion made of glass, wherein the core portion contains fluorine as a type of doping material. ? An optical fiber according to claim 1, characterized in that the core portion has a fluorine doping content of 0.15 wt% or more.
JP58201081A 1983-10-28 1983-10-28 Optical fiber Pending JPS6096545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201081A JPS6096545A (en) 1983-10-28 1983-10-28 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201081A JPS6096545A (en) 1983-10-28 1983-10-28 Optical fiber

Publications (1)

Publication Number Publication Date
JPS6096545A true JPS6096545A (en) 1985-05-30

Family

ID=16435073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201081A Pending JPS6096545A (en) 1983-10-28 1983-10-28 Optical fiber

Country Status (1)

Country Link
JP (1) JPS6096545A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176944A (en) * 1984-02-23 1985-09-11 Sumitomo Electric Ind Ltd Fiber for optical transmission
JPS60176945A (en) * 1984-02-23 1985-09-11 Sumitomo Electric Ind Ltd Optical fiber
JPS61222940A (en) * 1985-03-29 1986-10-03 Furukawa Electric Co Ltd:The Optical fiber
JPH038743A (en) * 1989-06-06 1991-01-16 Shin Etsu Chem Co Ltd Optical fiber preform and preparation thereof
NL2005220C2 (en) * 2010-08-12 2012-02-14 Draka Comteq Bv Depressed graded index multi-mode optical fiber.
US8542967B2 (en) 2010-08-12 2013-09-24 Draka Comteq, B.V. Depressed graded index multi-mode optical fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135744A (en) * 1980-12-16 1982-08-21 Karuto E Shirisu Sa Optical waveguide cable
JPS607407A (en) * 1983-06-28 1985-01-16 Sumitomo Electric Ind Ltd Optical fiber and its manufacture
JPS6011250A (en) * 1983-06-28 1985-01-21 Sumitomo Electric Ind Ltd Fiber for optical transmission and its manufacture
JPS6081038A (en) * 1983-10-12 1985-05-09 Sumitomo Electric Ind Ltd Manufacture of optical glass fiber containing tio2
JPS6086049A (en) * 1983-09-26 1985-05-15 コーニング グラス ワークス Manufacture of glass products
JPS6052938B2 (en) * 1980-02-26 1985-11-22 大日本印刷株式会社 Laminated material for packaging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052938B2 (en) * 1980-02-26 1985-11-22 大日本印刷株式会社 Laminated material for packaging
JPS57135744A (en) * 1980-12-16 1982-08-21 Karuto E Shirisu Sa Optical waveguide cable
JPS607407A (en) * 1983-06-28 1985-01-16 Sumitomo Electric Ind Ltd Optical fiber and its manufacture
JPS6011250A (en) * 1983-06-28 1985-01-21 Sumitomo Electric Ind Ltd Fiber for optical transmission and its manufacture
JPS6086049A (en) * 1983-09-26 1985-05-15 コーニング グラス ワークス Manufacture of glass products
JPS6081038A (en) * 1983-10-12 1985-05-09 Sumitomo Electric Ind Ltd Manufacture of optical glass fiber containing tio2

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176944A (en) * 1984-02-23 1985-09-11 Sumitomo Electric Ind Ltd Fiber for optical transmission
JPS60176945A (en) * 1984-02-23 1985-09-11 Sumitomo Electric Ind Ltd Optical fiber
JPS61222940A (en) * 1985-03-29 1986-10-03 Furukawa Electric Co Ltd:The Optical fiber
JPH038743A (en) * 1989-06-06 1991-01-16 Shin Etsu Chem Co Ltd Optical fiber preform and preparation thereof
NL2005220C2 (en) * 2010-08-12 2012-02-14 Draka Comteq Bv Depressed graded index multi-mode optical fiber.
US8542967B2 (en) 2010-08-12 2013-09-24 Draka Comteq, B.V. Depressed graded index multi-mode optical fiber

Similar Documents

Publication Publication Date Title
CA2630557C (en) Single mode optical fiber with improved bend performance
RU2706849C2 (en) Optical fibre with high content of chlorine and low coefficient of attenuation
US4125388A (en) Method of making optical waveguides
US4360250A (en) Optical waveguides
EP0044712A2 (en) Improvements in and relating to glass fibres for optical communication
US4335934A (en) Single mode fibre and method of making
US4206968A (en) Optical fiber and method for producing the same
US4327965A (en) Single mode fibre and method of manufacture
US20040011081A1 (en) Method and apparatus for fabricating optical fiber using deuterium exposure
US4874416A (en) Base material of optical fibers and a method for the preparation thereof
JP3764040B2 (en) Optical fiber
JPS6096545A (en) Optical fiber
WO1993018420A1 (en) Silica germania glass compositions
US4747663A (en) Monomode quartz glass light waveguide and method for producing it
JPS6340744A (en) Optical fiber
JP2024502564A (en) Microstructured optical fiber and its preform
Chida et al. Fabrication of OH-free multimode fiber by vapor phase axial deposition
JP4459875B2 (en) Optical fiber preform and manufacturing method thereof, and optical fiber manufacturing method
CN114779394B (en) Normal dispersion thulium-doped single-mode optical fiber, preparation method thereof and laser
JPS5838368B2 (en) Optical fiber manufacturing method
US20240043313A1 (en) Alkali doped optical fiber with reduced attenuation
EP0185975A1 (en) Process for fabricating a glass preform
JPS6313946B2 (en)
JPS61132531A (en) Production of optical fiber
JPH02201403A (en) Optical fiber and production of base material thereof as well as production of optical fiber