JPS61132531A - Production of optical fiber - Google Patents
Production of optical fiberInfo
- Publication number
- JPS61132531A JPS61132531A JP25173984A JP25173984A JPS61132531A JP S61132531 A JPS61132531 A JP S61132531A JP 25173984 A JP25173984 A JP 25173984A JP 25173984 A JP25173984 A JP 25173984A JP S61132531 A JPS61132531 A JP S61132531A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- fluorine
- sio2
- fiber
- ultraviolet absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/22—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with deuterium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光ファイバの製造方法に関し、詳しくは5iO
z k 1成分とし弗素を添加したファイバの製造方法
に関するもので、本発明によるファイバは通信用光ファ
イバおよびイメージファイバ等に有利に利用できる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an optical fiber, and more specifically, to a method for manufacturing an optical fiber.
The present invention relates to a method of manufacturing a fiber containing z k 1 component and doped with fluorine, and the fiber according to the present invention can be advantageously used for communication optical fibers, image fibers, and the like.
近年光ファイバは軽量、低損失、無誘導等の多くの特長
があるため急激に利用が増大している。光ファイバの構
造はコアと呼ばれる屈折率の高い部分が中心部にあり、
その外周部のクラッドと呼ばれる屈折率の低い部分から
成り立っている。現在広く便われているファイバはsl
o。In recent years, the use of optical fibers has rapidly increased due to their many features such as light weight, low loss, and non-induction. The structure of an optical fiber has a part with a high refractive index called the core in the center.
It consists of a part with a low refractive index called the cladding on its outer periphery. The currently widely used fiber is SL
o.
金主成分とし屈折率′1kvI4整するために種々のガ
ラス成分が添加される。このうち弗素は最近広く使われ
る二うになった屈折率を下げる成分であり、王にクラッ
ドに使われる。The main component is gold, and various glass components are added to adjust the refractive index '1kvI4. Among these, fluorine is a component that lowers the refractive index and has recently become widely used, and is commonly used in cladding.
従来弗素を添加したファイバは特に耐水素特性が改善さ
れるため、OH吸収、”l吸収の影響のある長波長例え
ば1.50μm、1.55μm用として使われてきたが
、元ファイバの応用範囲が広がるにつれ、α85μmか
ら短波長においても利用されるようになった。Conventionally, fluorine-doped fibers have particularly improved hydrogen resistance properties, and have therefore been used for long wavelengths such as 1.50 μm and 1.55 μm, which are affected by OH absorption and ``L absorption.'' However, the application range of the original fiber is With the expansion of wavelengths, wavelengths as short as α85 μm have come to be used.
sho、を主成分とし弗素を添加する従来の製法として
は、例えばプラズマトーチに81(z、。As a conventional manufacturing method in which fluorine is added to sho as a main component, for example, 81(z,) is added to a plasma torch.
CC&’* # Os f供給し、プラズマテE11c
4 t−酸化、弗素と反応させ+310xFy ガラス
を製造する方法がらる。CC&'* #Os f supply, plasmate E11c
4 A method for producing +310xFy glass by reacting with t-oxidation and fluorine.
しかしながら従来法にエフs1o、を主成分とし弗素を
添加したファイバを製造すると、製造条件に二つては、
紫外域に吸収ピークが存在し、α4μm付近では吸収に
よる損失増は100 aBAm以上にもなることが明ら
かになった。However, when manufacturing a fiber containing F-s1O as the main component and doped with fluorine using the conventional method, there are two manufacturing conditions:
It has become clear that an absorption peak exists in the ultraviolet region, and that the increase in loss due to absorption is over 100 aBAm near α4 μm.
本発明の目的は弗素添加にぶって生じる紫外吸収ピーク
を低減化することにある。この紫外吸収低減化は極低損
失の長波長用ファイバを製造するためにも効果がるる。An object of the present invention is to reduce the ultraviolet absorption peak that occurs due to fluorine addition. This reduction in ultraviolet absorption is also effective for manufacturing long wavelength fibers with extremely low loss.
本発明者らは弗素添加に工って生じる紫外吸収の発生の
メカニズムにつき、研究、検討の結果、本発明に到達し
た。The present inventors have arrived at the present invention as a result of research and study on the mechanism of ultraviolet absorption caused by fluorine addition.
すなわち本発明は、コアがslo、を主成分とする石英
系ガラス、クラッドが8109 Th主成分とし弗素を
amした、コアエフ屈折率の低いガラス、の少なくとも
2種のガラスから成る光ファイバの製造において、前記
元ファイバ用の母材又は光ファイバもしくは両方全重水
素ガスで処理することを特徴とする元ファーイバの製造
方法全提供する。That is, the present invention relates to the production of an optical fiber made of at least two kinds of glasses: a core of silica-based glass mainly composed of slo, and a cladding of glass having a low core-F refractive index containing 8109 Th as a main component and containing am fluorine. , provides a method for manufacturing a source fiber, characterized in that the base material for the source fiber or the optical fiber or both are treated with full deuterium gas.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
弗素添加による紫外吸収の発生は、弗素にL9810、
のネットワークが切断され、8iF4として81 が
揮散してできた欠陥であると考えられる。The generation of ultraviolet absorption due to the addition of fluorine is due to the addition of L9810 to fluorine.
This is thought to be a defect caused by the network being disconnected and 81 being volatilized as 8iF4.
8101+2F、 −420+81F4 ・−・II
(1)上記(1)式の工うに弗素ガスがSin、のネッ
トワークと反応した後には、非架橋酸素が発生し、この
非架橋酸素の存在が紫外吸収の原因と考え゛られる。し
たがって、この非架橋酸素を消失させれば↓いことがわ
かる。本発明は重水素ガス処理にL D 、非架橋酸素
の発生による紫外吸収全低減できることを見出したによ
るものである。8101+2F, -420+81F4 ・-・II
(1) In the above formula (1), after the fluorine gas reacts with the Sin network, non-bridging oxygen is generated, and the presence of this non-bridging oxygen is considered to be the cause of ultraviolet absorption. Therefore, it can be seen that if this non-bridging oxygen is eliminated, the result will be ↓. The present invention is based on the discovery that deuterium gas treatment can completely reduce ultraviolet absorption due to the generation of L D and non-bridging oxygen.
上記のLうに非架a−酸素が発生し次ガラスを水素ガス
中で処理すると、非架橋酸素は下記(2)式のように水
素と反応し、OH基を形成するものと考えられる。It is thought that when non-bridging a-oxygen is generated and the glass is then treated in hydrogen gas, the non-bridging oxygen reacts with hydrogen as shown in formula (2) below to form an OH group.
20+H鵞→20H・・−−−+2)
非架橋酸素の濃度が下がる是め紫外吸収の濃度が下がる
。しかし長波長用のファイバでは、水素処理によりOH
基の吸収が増加することがある。20+H → 20H...---+2) As the concentration of non-bridging oxygen decreases, the concentration of ultraviolet absorption decreases. However, in long-wavelength fibers, hydrogen treatment results in OH
Absorption of groups may increase.
従って水素を重水素にかえて吸収を光源波長から、さら
に長波長側へ移動させる。このときは、下記(3)の反
応による
20 + D鵞 → 20D
・ ・ II Φ ・ (31上記(2)及
び(3)の反応は温度を上げると布速されるので高温下
ですすめられることが好ましい。Therefore, by replacing hydrogen with deuterium, the absorption is shifted from the light source wavelength to the longer wavelength side. In this case, 20 + D goose → 20D due to the reaction (3) below
・ ・ II Φ ・ (31 The reactions in (2) and (3) above are speeded up by increasing the temperature, so it is preferable to proceed at a high temperature.
重水素ガス処理は母材の段階でも可能であるが線引後フ
ァイバ化した後でめれば短時間で重水素ガスがファイバ
内部に拡散する。しかしファイバは通常高分子物質で被
覆されているので通例300℃以上に加熱することは困
難である。Although deuterium gas treatment is possible at the base material stage, if it is done after drawing and forming into a fiber, deuterium gas will diffuse into the fiber within a short time. However, since fibers are usually coated with polymeric materials, it is difficult to heat them above 300°C.
したがって、ファイバ構造や被覆材料に従って処理段階
や処理条件が選定される。Therefore, processing steps and processing conditions are selected according to the fiber structure and coating material.
以下実施例に=9本発明の方法及びその効果を説明する
。In the following Examples, the method of the present invention and its effects will be explained.
実施例1゜
vAD法で作成した純シリカの棒に、プラズマ外付法で
、シリカニジ屈折率が1.0%低いBLOxlPyガラ
スをクラッドとして形成した。得られたコア/クラッド
の2層構造から成るプリフォーム(母材)t−電気炉中
の容器に入れ、重水素ガスを117分流しながら、温度
aoocで8時間加熱した。その後プリフォームをと9
出し、線引きして素線を得た。素線は長さ50crRに
切断し、約5万本金束ね、直径55cfItの石英管に
入れて加熱一体化し、再度線引して3万画素のイメージ
ファイバA トL7?、。Example 1 A pure silica rod prepared by vAD method was clad with BLOxlPy glass having a 1.0% lower silica refractive index by plasma external deposition method. The obtained preform (base material) consisting of a core/clad two-layer structure was placed in a container in a T-electric furnace and heated at a temperature of aooc for 8 hours while flowing deuterium gas for 117 minutes. Then the preform and 9
A bare wire was obtained by drawing the wire. The bare wires were cut to a length of 50crR, tied into bundles of approximately 50,000 pieces, placed in a quartz tube with a diameter of 55cfIt, heated and integrated, and drawn again to form a 30,000 pixel image fiber A to L7? ,.
上記と全く同様のプリフォームについて、比較のため重
水素処理をしiい以外は同様に行ったものをイメージ7
アイパB トt、l。Image 7 shows a preform that is exactly the same as above, except that it is treated with deuterium for comparison.
Aipah B tot, l.
以上で得られ次イメージファイバAお工びBの伝送損失
(aB/km )−波長(μm)特性t−第1図に示す
。第1図から明らかな=うに、水素処理のない場合(B
)は、α40μmにおいて250dB/kmの損失でめ
ったが、本発明方法によるもの(A)では、80 aB
/km’4大巾に低減化された。The transmission loss (aB/km) vs. wavelength (μm) characteristic t of the image fiber A and fabricated fiber B obtained above is shown in FIG. It is clear from Figure 1 that = sea urchin, without hydrogen treatment (B
) rarely had a loss of 250 dB/km at α40 μm, but in the method of the present invention (A), the loss was 80 aB
/km'4 width.
実施例2
VAD法で作成した純シリカの棒にプラズマ外付法でシ
リカエフ屈折率が(19%低い5IO1Fyガラスをク
ラッドとして形成しプリフォームとした。このプリフォ
ームを線引して素線とし、素線を電気炉内の容器に入れ
重水素ガスt−1115+流しながら500℃で4時間
加熱し九。素mを容器からと9出した後長さ40−に切
断し、1.5万本束ねた後石英管に入れ、加熱一体化し
た後線引きしイメージファイバとした。Example 2 A preform was prepared by forming a cladding of 5IO1Fy glass with a 19% lower refractive index on a pure silica rod prepared by the VAD method using a plasma external deposition method.This preform was drawn to form a wire. The strands were placed in a container in an electric furnace and heated at 500°C for 4 hours while flowing deuterium gas t-1115+. After taking out the strands from the container, they were cut into 40-length pieces and 15,000 pieces were made. After bundling, they were placed in a quartz tube, heated and integrated, and then drawn to form an image fiber.
比較のため重水素処理?しない以外は同条件にて得たイ
メージファイバーの伝送損失は、140μmにおいて2
50 dB/kmであったが、本実施例によるものは2
5 dE/kmにまで低減化できた。Deuterium treatment for comparison? The transmission loss of the image fiber obtained under the same conditions except that
50 dB/km, but the one according to this example was 2
It was possible to reduce it to 5 dE/km.
実施例3
VAD法で作成した純シリカの棒に火炎加水分解法で純
シリカのスート金外付し、脱水後、Heとact、p、
ガス雰囲気で透明イヒした。このガラス俸をさらに石英
管に挿入し、加熱一体化した後線引きした。この素線を
容器に入れ200℃に加熱した後、重水素ガスを満たし
4時間放置した。その後容器からと9出し、損失−波長
特性を測定Qたところ、1.50μmで(15dB/k
mの極低損失ファイバを得た。Example 3 Pure silica soot gold was applied externally to a pure silica rod prepared by the VAD method using a flame hydrolysis method, and after dehydration, He, act, p,
It became transparent in the gas atmosphere. This glass barrel was further inserted into a quartz tube, heated and integrated, and then wire-drawn. This wire was placed in a container and heated to 200° C., then filled with deuterium gas and left for 4 hours. After that, I took it out of the container and measured the loss-wavelength characteristics, and found that it was 1.50μm (15dB/k
An ultra-low loss fiber of m was obtained.
本発明は、alo、を主成分とし弗素を添加した光ファ
イバの、紫外吸収全低減化できる効果が大きい。このよ
うな本発明の効果は、可視域の伝送損失が重要なイメー
ジファイバにおいて特に有効である。イメージファイバ
はコア径が細いためクラッドの伝送損失の影響が大きい
が、この伝送損失は本発明による重水素処理条件を最適
化すれば1ケタ低減化される。したがって従来法による
↓り1ケタ長尺のファイバが使用可能となる。また、極
低損失が要求される長波長用シングルモードファイバに
おいても有効である。The present invention has a great effect of completely reducing the ultraviolet absorption of an optical fiber containing alo as a main component and doped with fluorine. Such effects of the present invention are particularly effective in image fibers where transmission loss in the visible range is important. Since the image fiber has a small core diameter, the transmission loss of the cladding has a large influence, but this transmission loss can be reduced by one order of magnitude by optimizing the deuterium treatment conditions according to the present invention. Therefore, it is possible to use a single-digit long fiber according to the conventional method. It is also effective in long wavelength single mode fibers that require extremely low loss.
w、1図はイメージファイバの伝送損失波長特性を示す
グラフで、図中Aは実施例1にて本発明に19重水素処
理を行ったもの、またBは重水素処理のない場合の伝送
損失を示す。w, Figure 1 is a graph showing the transmission loss wavelength characteristics of the image fiber, in which A shows the transmission loss of the fiber treated with 19 deuterium according to the present invention in Example 1, and B shows the transmission loss without deuterium treatment. shows.
Claims (1)
ラッドがSiO_2を主成分とし弗素を添加した、コア
より屈折率の低いガラス、の少なくとも2種のガラスか
ら成る光ファイバの製造において、前記光ファイバ用の
母材又は光ファイバもしくは両方を重水素ガスで処理す
ることを特徴とする光ファイバの製造方法。1. In the production of an optical fiber made of at least two kinds of glasses: a silica-based glass whose core is mainly composed of SiO_2, and a cladding whose refractive index is lower than that of the core and whose main constituent is SiO_2 and doped with fluorine, A method for manufacturing an optical fiber, which comprises treating a fiber base material, an optical fiber, or both with deuterium gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25173984A JPS61132531A (en) | 1984-11-30 | 1984-11-30 | Production of optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25173984A JPS61132531A (en) | 1984-11-30 | 1984-11-30 | Production of optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61132531A true JPS61132531A (en) | 1986-06-20 |
Family
ID=17227214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25173984A Pending JPS61132531A (en) | 1984-11-30 | 1984-11-30 | Production of optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61132531A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1182176A1 (en) * | 2000-08-25 | 2002-02-27 | Alcatel | Method for reducing the hydrogen sensitivity of optical fibers at 1380nm-1410nm |
US6856739B2 (en) | 2001-11-07 | 2005-02-15 | Jds Uniphase Corporation | Optical fiber for resisting hydrogen-induced loss |
CN106604899A (en) * | 2015-07-15 | 2017-04-26 | 株式会社藤仓 | Optical fiber preform, optical fiber, and method for producing optical fiber |
-
1984
- 1984-11-30 JP JP25173984A patent/JPS61132531A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1182176A1 (en) * | 2000-08-25 | 2002-02-27 | Alcatel | Method for reducing the hydrogen sensitivity of optical fibers at 1380nm-1410nm |
US6856739B2 (en) | 2001-11-07 | 2005-02-15 | Jds Uniphase Corporation | Optical fiber for resisting hydrogen-induced loss |
CN106604899A (en) * | 2015-07-15 | 2017-04-26 | 株式会社藤仓 | Optical fiber preform, optical fiber, and method for producing optical fiber |
CN106604899B (en) * | 2015-07-15 | 2020-06-19 | 株式会社藤仓 | Optical fiber preform, optical fiber and method for manufacturing optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970028622A (en) | Single-Mode Optical Waveguide Fibers and Manufacturing Method Thereof | |
JPH11513141A (en) | Optical waveguide fiber containing titania and germania | |
US6776012B2 (en) | Method of making an optical fiber using preform dehydration in an environment of chlorine-containing gas, fluorine-containing gases and carbon monoxide | |
RU2335465C2 (en) | Method of uncovered optical fibre extract, optical fibre production method and optical fibre | |
JPS62176941A (en) | Optical fiber | |
JP4001930B2 (en) | Glass with artificial isotope distribution for waveguides | |
JPS61122137A (en) | Optical waveguide tube | |
JPS61219009A (en) | Single mode light waveguide comprising quartz glass and manufacture thereof | |
KR100878709B1 (en) | A method for fabricating optical fiber using adjustment of oxygen stoichiometry | |
JPS61132531A (en) | Production of optical fiber | |
JPH01224706A (en) | Optical fiber | |
Nelson et al. | The fabrication and performance of long lengths of silica core fiber | |
JPH05249329A (en) | High-input optical fiber and production of its base material | |
JPH0820574B2 (en) | Dispersion shift fiber and manufacturing method thereof | |
JPS638707A (en) | Dispersion shift type optical fiber | |
JPS62116902A (en) | Wide-band low dispersion optical fiber | |
JP3315786B2 (en) | Optical amplifier type optical fiber | |
CN103382084A (en) | Optical fiber preform manufacturing method | |
JPS6313946B2 (en) | ||
JP2005181414A (en) | Method for manufacturing optical fiber | |
JPS61251539A (en) | Optical fiber | |
JPH03229223A (en) | Quartz system optical fiber | |
JPS60112635A (en) | Manufacture of glass optical fiber preform | |
JPS6131328A (en) | Optical fiber | |
JPH02145448A (en) | Production of preform of optical fiber |