JPS61222940A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS61222940A
JPS61222940A JP60065888A JP6588885A JPS61222940A JP S61222940 A JPS61222940 A JP S61222940A JP 60065888 A JP60065888 A JP 60065888A JP 6588885 A JP6588885 A JP 6588885A JP S61222940 A JPS61222940 A JP S61222940A
Authority
JP
Japan
Prior art keywords
optical fiber
core
fluorine
doped
geo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60065888A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Katsumi Orimo
折茂 勝已
Mikio Kokayu
小粥 幹夫
Junichi Tamura
順一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60065888A priority Critical patent/JPS61222940A/en
Publication of JPS61222940A publication Critical patent/JPS61222940A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:At least one of the core and the clad of an optical fiber in which at least the core is composed of quartz is doped with GeO2 and F to improve the hydrogen resistance and radiation resistance of the optical fiber. CONSTITUTION:In the above-mentioned doping, the concentration of GeO2 is lower than 12mol% and the concentration molar ratio of GeO2 to F is more than 4. The effect cited above is similarly obtained in an optical fiber which is composed of quartz in both the core and the clad.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は耐水素性及び耐放射線性に優れた光ファイバに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical fiber having excellent hydrogen resistance and radiation resistance.

〔従来技術〕[Prior art]

近年、光フアイバケーブルの導入が急ピッチで行われて
いる。このケーブルに使用されている光ファイバとして
は、石英ガラス製のものが一般的であり、この代表的な
ものとしてSS10t−G1110コア/ Si0gク
ラッドのものと5iftコア/ SiOg−Fクラッド
のものがある。ところ1前者の5iO1−GeOzコア
/ Si0gクラッドのものは耐放射線性はよいが耐水
素性に劣る。逆にSingコア/ 5iOx−Fクラフ
トのものは耐水素性はよいが耐放射線性が悪いという欠
点がある。すなわち、耐水素性及び耐放射線性共に優れ
た石英ガラス製光ファイバは現在のところ得られていな
い。
In recent years, optical fiber cables have been introduced at a rapid pace. The optical fibers used in this cable are generally made of quartz glass, and representative examples include those with SS10t-G1110 core/Si0g cladding and those with 5ift core/SiOg-F cladding. . However, the former 5iO1-GeOz core/Si0g cladding has good radiation resistance but poor hydrogen resistance. On the other hand, Sing core/5iOx-F craft has good hydrogen resistance but poor radiation resistance. That is, a silica glass optical fiber with excellent hydrogen resistance and radiation resistance has not yet been obtained.

〔発明の目的〕[Purpose of the invention]

前記問題に鑑み本発明の目的は、耐水素性及び耐放射線
性共に優れた光ファイバを提供することにある。
In view of the above problems, an object of the present invention is to provide an optical fiber having excellent hydrogen resistance and radiation resistance.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明の光ファイバは、少なくと
もコアが石英ガラスからなる光ファイバのコア及びクラ
ッドの少な(とも一方にGeOよとFとをドープしたこ
とを特徴とするものである。
In order to achieve the above object, the optical fiber of the present invention is characterized in that at least the core of the optical fiber is made of quartz glass and the cladding is small (both of which are doped with GeO or F).

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

本発明者らはまず従来一般的である5iOz−Gem、
コア/5iOzクラフト構造の光ファイバにフッ素Fを
〜1mol %ドープすると水素による伝送損失増加が
抑制できるが(第4図参照)、耐放射線性は下表に示す
如く劣化することを確認した。
The present inventors first developed a conventionally common 5iOz-Gem,
It was confirmed that when an optical fiber having a core/5iOz kraft structure is doped with ~1 mol % of fluorine F, the increase in transmission loss due to hydrogen can be suppressed (see Fig. 4), but the radiation resistance deteriorates as shown in the table below.

表−1(at 1.3μm) 尚、前記耐放射線性はγ線を1.8 x 10’ r*
++を照射後の値である。
Table 1 (at 1.3 μm) The radiation resistance is γ-ray 1.8 x 10' r*
++ is the value after irradiation.

次に5iftコア/SiO□クラツド構造の光ファイバ
にフッ素Fをドープすると耐水素性はよいものの、やは
り前表−1の最下段の値が示すように耐放射線性は劣化
する。そこで本発明者らは前記結果をもとに、石英ガラ
ス製のコア(外径125μm)、シリコーン製のクラッ
ド(外径380μm、屈折率1.41)からなる光ファ
イバにGeOxとFとをそのドープ量を種々変えながら
特性を評価した。これら一連の実験により第1図乃至第
3図に示す結果を見出した。
Next, when an optical fiber having a 5ift core/SiO□ clad structure is doped with fluorine F, the hydrogen resistance is good, but the radiation resistance is also deteriorated, as shown by the values at the bottom of Table 1 above. Based on the above results, the present inventors added GeOx and F to an optical fiber consisting of a quartz glass core (outer diameter 125 μm) and a silicone cladding (outer diameter 380 μm, refractive index 1.41). Characteristics were evaluated while varying the doping amount. Through this series of experiments, the results shown in FIGS. 1 to 3 were found.

まず、前記石英ガラス製のコア(外径125μm)、シ
リコーン製のクラッド(外径380μm、屈折率1.4
1)の光ファイバを水素雰囲気内で200 ’Cに加熱
しFをドープした後、1.44μm及び1.55μm帯
で伝送損失量を測定したところ第3図に示すようになっ
た。すなわち、フッ素Fの含有量が増加すると伝送損失
が減少する。しかもその値が0゜4+mol%以上では
安定しそれ以上ドープしても効果に差はない。
First, the quartz glass core (outer diameter 125 μm) and the silicone cladding (outer diameter 380 μm, refractive index 1.4
After heating the optical fiber of 1) to 200'C in a hydrogen atmosphere and doping it with F, the transmission loss amount was measured in the 1.44 μm and 1.55 μm bands, and the results were as shown in FIG. That is, as the content of fluorine F increases, the transmission loss decreases. Moreover, when the value is 0°4+mol% or more, it is stable, and there is no difference in the effect even if the doping is done more than that.

次に5iO1製光フアイバと、Sing製光ファイバに
GeO□を3.6so1%ドープしてなる光ファイバと
に対して各々フッ素FをO〜I 、 0slo 1%ド
ープして、そのときの耐放射線性を試験した。照射した
放射線は1 xlO’ r*+tt/ h rのγ線で
、照射量が6×10r@Rtになったところで、光ファ
イバの伝送損失を測定した。この結果を第2図に示す0
本図が示6         すように5iO2−Fガ
ラス製光ファイバは、フッ素Fのドープ量に比例して伝
送損失も増加する。しかし、GeO□をドープしたもの
にあっては曲線Bが示すように伝送損失増加を著しく低
減できる。しかも該伝送損失はフッ素Fのドープ量が約
0.8no1%に至るまで、該フッ素Fをドープしない
場合より少ない。すなわち、Ge01をドープしたこと
により耐放射線性は格段に向上し、しかもフッ素Fのド
ープ量が約0 、8mo 1%に至るまで、該フッ素F
による耐放射線性劣化作用を封するという効果がある。
Next, the 5iO1 optical fiber and the Sing optical fiber doped with 3.6so1% of GeO□ were each doped with fluorine F at O to I, 0slo 1%, and the radiation resistance at that time was determined. tested for sex. The irradiated radiation was a gamma ray of 1 x lO'r*+tt/hr, and when the irradiation dose reached 6 x 10 r@Rt, the transmission loss of the optical fiber was measured. This result is shown in Figure 2.
As shown in this figure, the transmission loss of the 5iO2-F glass optical fiber increases in proportion to the amount of fluorine F doped. However, in the case of a material doped with GeO□, as shown by curve B, the increase in transmission loss can be significantly reduced. Furthermore, the transmission loss is smaller than when the fluorine F is not doped until the fluorine F doping amount reaches about 0.801%. That is, by doping with Ge01, the radiation resistance is significantly improved, and the fluorine F doping amount reaches approximately 0.8mol%.
This has the effect of suppressing the deterioration of radiation resistance caused by.

次に第3図が示すようにフッ素Fはガラス中に0.4m
ol%程度存在すれば水素による伝送損失増加の抑制に
は充分である。そこで、フッ素Fを0.4n+o1%に
固定してGe0tのドープ量を変化させた場合の耐放射
線性を調べた。測定結果を第1図に示す。
Next, as shown in Figure 3, 0.4 m of fluorine F is contained in the glass.
The presence of about 1.0 ol % is sufficient to suppress the increase in transmission loss due to hydrogen. Therefore, the radiation resistance was investigated when the amount of fluorine F was fixed at 0.4n+o1% and the amount of Ge0t doped was varied. The measurement results are shown in Figure 1.

本図から、最初はGe01量が増加するに従い、放射線
による伝送損失は減少するが、GeO□が0 、5mo
 1%以上になると逆に増大すること、さらにGeO□
が12111o1 %以上になると、該GeO2をドー
プしない場合より耐放射線性は劣化すること、の2点が
見出された。
From this figure, it can be seen that initially as the amount of Ge01 increases, the transmission loss due to radiation decreases, but when GeO□ is 0 and 5 mo
On the contrary, it increases when it exceeds 1%, and furthermore, GeO□
Two points were found: when the GeO2 content exceeds 12111o1%, the radiation resistance deteriorates compared to the case where the GeO2 is not doped.

ところで前記第1図乃至第2図に示す結果がどのような
機構で起こっているかを以下に推論する。
By the way, the mechanism by which the results shown in FIGS. 1 and 2 are produced will be inferred below.

(A)      (B)       (C)光フア
イバ中には前記(A)に示すような構造欠陥が存在し、
この欠陥の近傍は正に荷電している。従って、この近く
に水素分子が存在すると分極し反応しやすい構造になる
。この結果以下のような反応が起こり、水素による伝送
損失増加が発生する。
(A) (B) (C) There are structural defects as shown in (A) above in the optical fiber,
The vicinity of this defect is positively charged. Therefore, if a hydrogen molecule exists near this point, the structure becomes polarized and easily reacts. As a result, the following reaction occurs, and an increase in transmission loss due to hydrogen occurs.

しかしこれにフッ素Fをドープすると前記(B)の如く
、正に荷電している部分がF−によって中和され、構造
欠陥が消滅する。すなわち、フッ素Fをドープすると水
素の分極が押さえられ、これがために水素による伝送損
失が抑制できるのである。しかしながら逆に前記フッ素
Fのドープにより通常の5t−0の結合が弱められる部
分が発生する。これはF−のイオン半径が1.36人、
Oトのそれが1.40人とほぼ等しいにもかかわらず価
数が異なるため、SiとFの結合が生ずると本来F原子
の存在するスペースに入るべき0原子が、前記(B)に
示す如くある方向へ押しやられてしまう、すなわち、結
合角が変化したり、Siと0の原子間距離が太き(なっ
て結合が弱(なり、その結果放射線被爆によりこの結合
が(C)に示すように破られ伝送損失が増加する。
However, when this is doped with fluorine F, as shown in (B) above, the positively charged portions are neutralized by F- and the structural defects disappear. That is, doping with fluorine F suppresses the polarization of hydrogen, thereby suppressing transmission loss due to hydrogen. However, conversely, due to the fluorine F doping, a portion occurs where the normal 5t-0 bond is weakened. This means that the ionic radius of F- is 1.36 people,
Although the valence of O is almost equal to 1.40, the valence is different, so when a bond between Si and F occurs, the 0 atom that should originally enter the space where the F atom exists is shown in (B) above. In other words, the bond angle changes, or the distance between Si and 0 becomes thicker, making the bond weaker (as shown in (C)) due to radiation exposure. As a result, transmission loss increases.

一方、フッ素ドープ石英ガラスにGe0tをドープする
と耐放射線性が向上することを示したが、この理由は、
Si”のイオン半径は0.41人、・Ge’°のそれは
0.53人であり、約2割Ge”の方が大きい。従って
GeO2をドープするとガラスの網目が押し広げられの
で(Gs−0間距離は5i−0間距離より大)、前記(
B)に示した如くフッ素Fをドープしたことによる5t
−0結合の歪みを緩和吸収できるのである。
On the other hand, we showed that doping fluorine-doped quartz glass with Ge0t improves its radiation resistance, and the reason for this is
The ionic radius of Si" is 0.41 arc, and that of Ge'° is 0.53 arc, which is about 20% larger for Ge". Therefore, when GeO2 is doped, the glass network is expanded (the distance between Gs and 0 is larger than the distance between 5i and 0).
5t due to doping with fluorine F as shown in B)
-0 bond distortion can be relaxed and absorbed.

しかし、G e 4 *とSi0は前述の如くイオン半
径が異なるためGeO□を多量にドープし過ぎると5i
−0とGe−0結合の繋がり (Si−0−Geと考え
られる)がずれ、その結果放射線被爆により結合が切れ
やすくなり、第1図に示すようにGe01が5wo1%
以上では逆に耐放射線性が悪化する。
However, as mentioned above, G e 4 * and Si0 have different ionic radii, so if too much GeO□ is doped, 5i
The connection between -0 and Ge-0 bonds (considered to be Si-0-Ge) is shifted, and as a result, the bonds are easily broken due to radiation exposure, and as shown in Figure 1, Ge01 is 5wo1%
Above that, the radiation resistance will be adversely affected.

以上の推論から、Ge01とフッ素Fとを一定の比以上
でドープしてフッ素Fドープによる耐水素性を維持しつ
つ、5i−0の結合の歪みを除去すると共に、GeO!
の最大値を規制することにより5i−0結合より弱いG
e−0結合の増大を防止し、もって耐放射線性をも向上
せしめることができる、と考えられる。
From the above reasoning, GeO1 and fluorine F are doped at a certain ratio or higher to maintain the hydrogen resistance due to fluorine F doping and remove the strain in the 5i-0 bond, while GeO!
G weaker than the 5i-0 bond by regulating the maximum value of
It is thought that it is possible to prevent an increase in e-0 bonding and thereby improve radiation resistance.

そこで第1図から、GeOz濃度が約12no1%以下
のときStow−F系ガラスより放射線被爆損失が小さ
くなりGe0tドープの意味がでてくることから、Ge
01の濃度は12+wo1%以下とする。また、第2図
より、フッ素Fの濃度が約0.8Ilo1%以下のとき
Sing−Ge0g系ガラスより放射線被爆損失が小さ
くなりフッ素Fをドープする意味が生じ、しかもこのと
きのGe0tとFの濃度比GeO1mol %/Fll
o1%が、(GeOt/ F ) =3.610.8≧
4となる。よって、少なくともコアが石英ガラスからな
る光ファイバのコア及びクラッドの少なくとも一方に、
Ge0zとFとをドープしたことを特徴とする光ファイ
バであって、特に前記Ge0tとFの濃度比Ge01a
+o1%/PIlo1%が4以上で、かつGeO2濃度
が12mol%以下のとき耐水素性及び耐放射線性に最
も優れた光ファイバを得ることが可能となる。尚、本発
明の実験では試験が容易であることから、コアが石英ガ
ラスで、クラッドがシリコーン製の光ファイバを使用し
ているが、コア及びクラッドが共に石英ガラス製光ファ
イバでも同様の結果を得ることができる。
Therefore, from Fig. 1, when the GeOz concentration is about 12no1% or less, the radiation exposure loss is smaller than that of the Stow-F glass, and the meaning of GeOt doping comes out.
The concentration of 01 is 12+wo1% or less. Also, from Figure 2, when the concentration of fluorine F is about 0.8Ilo1% or less, the radiation exposure loss is smaller than that of Sing-Ge0g glass, so it makes sense to dope fluorine F. Ratio GeO1mol%/Fll
o1% is (GeOt/F) = 3.610.8≧
It becomes 4. Therefore, at least one of the core and cladding of an optical fiber whose core is made of silica glass,
An optical fiber characterized in that it is doped with Ge0z and F, in particular, the concentration ratio Ge01a of Ge0t and F is
When +o1%/PIlo1% is 4 or more and the GeO2 concentration is 12 mol% or less, it is possible to obtain an optical fiber with the best hydrogen resistance and radiation resistance. In the experiments of the present invention, an optical fiber whose core is made of quartz glass and whose cladding is made of silicone is used for ease of testing, but similar results could be obtained with an optical fiber whose core and cladding are both made of silica glass. Obtainable.

〔発明の効果〕〔Effect of the invention〕

前述の如(本発明によれば、GeとFとをドープするこ
とにより耐水素性及び耐放射線性共に優れた光ファイバ
を得ることができる。
As described above (according to the present invention), by doping with Ge and F, an optical fiber having excellent hydrogen resistance and radiation resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は耐放射線性を示すグラフ、第3図、第
4図は耐水素性を示すグラフである。 第2図 FIL亀((2)1%) 第3図
FIGS. 1 and 2 are graphs showing radiation resistance, and FIGS. 3 and 4 are graphs showing hydrogen resistance. Figure 2 FIL turtle ((2) 1%) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)少なくともコアが石英ガラスからなる光フアイバ
のコア及びクラッドの少なくとも一方にGeO_2とフ
ッ素Fとをドープしたことを特徴とする光フアイバ。
(1) An optical fiber characterized in that at least one of the core and cladding of an optical fiber whose core is made of silica glass is doped with GeO_2 and fluorine F.
(2)前記GeO_2とFの濃度比GeO_2mol%
/Fmol%が4以上であることを特徴とする特許請求
の範囲第1項記載の光フアイバ。
(2) Concentration ratio of GeO_2 and F above GeO_2 mol%
The optical fiber according to claim 1, wherein /Fmol% is 4 or more.
(3)前記GeO_2濃度は12mol%以下でGeO
_2とFの濃度比GeO_2mol%/Fmol%が4
以上であることを特徴とする特許請求の範囲第1項記載
の光フアイバ。
(3) The GeO_2 concentration is 12 mol% or less and GeO
The concentration ratio of _2 and F GeO_2 mol%/F mol% is 4
An optical fiber according to claim 1, characterized in that the above is the case.
JP60065888A 1985-03-29 1985-03-29 Optical fiber Pending JPS61222940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065888A JPS61222940A (en) 1985-03-29 1985-03-29 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065888A JPS61222940A (en) 1985-03-29 1985-03-29 Optical fiber

Publications (1)

Publication Number Publication Date
JPS61222940A true JPS61222940A (en) 1986-10-03

Family

ID=13299958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065888A Pending JPS61222940A (en) 1985-03-29 1985-03-29 Optical fiber

Country Status (1)

Country Link
JP (1) JPS61222940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247536A (en) * 1990-02-27 1991-11-05 Furukawa Electric Co Ltd:The Entirely fluorine-doped optical fiber
JPH04349147A (en) * 1991-05-22 1992-12-03 Fujikura Ltd Radiation-resistant optical fiber and its production
US6690868B2 (en) 2001-05-30 2004-02-10 3M Innovative Properties Company Optical waveguide article including a fluorine-containing zone
US6742939B2 (en) 2001-05-30 2004-06-01 3M Innovative Properties Company Optical fiber fusion splice having a controlled mode field diameter expansion match

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711848A (en) * 1980-06-24 1982-01-21 Nippon Telegr & Teleph Corp <Ntt> Fiber for optical communication
JPS5831304A (en) * 1981-08-19 1983-02-24 Hitachi Cable Ltd Constant polarization type optical fiber
JPS6011250A (en) * 1983-06-28 1985-01-21 Sumitomo Electric Ind Ltd Fiber for optical transmission and its manufacture
JPS6096545A (en) * 1983-10-28 1985-05-30 Nippon Telegr & Teleph Corp <Ntt> Optical fiber
JPS6163543A (en) * 1984-09-01 1986-04-01 Showa Electric Wire & Cable Co Ltd Quartz-based optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711848A (en) * 1980-06-24 1982-01-21 Nippon Telegr & Teleph Corp <Ntt> Fiber for optical communication
JPS5831304A (en) * 1981-08-19 1983-02-24 Hitachi Cable Ltd Constant polarization type optical fiber
JPS6011250A (en) * 1983-06-28 1985-01-21 Sumitomo Electric Ind Ltd Fiber for optical transmission and its manufacture
JPS6096545A (en) * 1983-10-28 1985-05-30 Nippon Telegr & Teleph Corp <Ntt> Optical fiber
JPS6163543A (en) * 1984-09-01 1986-04-01 Showa Electric Wire & Cable Co Ltd Quartz-based optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247536A (en) * 1990-02-27 1991-11-05 Furukawa Electric Co Ltd:The Entirely fluorine-doped optical fiber
JPH04349147A (en) * 1991-05-22 1992-12-03 Fujikura Ltd Radiation-resistant optical fiber and its production
US6690868B2 (en) 2001-05-30 2004-02-10 3M Innovative Properties Company Optical waveguide article including a fluorine-containing zone
US6742939B2 (en) 2001-05-30 2004-06-01 3M Innovative Properties Company Optical fiber fusion splice having a controlled mode field diameter expansion match

Similar Documents

Publication Publication Date Title
US7440673B2 (en) Radiation resistant single-mode optical fiber and method of manufacturing thereof
Kanamori et al. Transmission characteristics and reliability of pure-silica-core single-mode fibers
US4877306A (en) Coated optical waveguide fibers
US5681365A (en) Radiation resistant optical waveguide fiber
TW483204B (en) Optical fiber with absorbing overclad glass layer
JPH0214850A (en) Radiation-resistant multiple fiber
JPH044988B2 (en)
AU601263B2 (en) Optical fiber
US6351588B1 (en) Fiber Bragg grating with cladding mode suppression
JPS61222940A (en) Optical fiber
JPH0416427B2 (en)
JPH0250063B2 (en)
JPS6280606A (en) Single mode optical fiber
JP2008209603A (en) Optical fiber
JPS6259543A (en) Quartz glass tube
JPH0425682Y2 (en)
JPS6163543A (en) Quartz-based optical fiber
JPH01147412A (en) Single mode optical fiber
JPS6050503A (en) Optical fiber
JPS6096545A (en) Optical fiber
KR830001299B1 (en) Optical fiber
JPS6150105A (en) Radiation resistant multiple optical fiber
JP2721260B2 (en) Perfluorinated optical fiber
JPS6140842A (en) Optical fiber
JPS61167907A (en) Optical fiber for radiation resistance