JPH01147412A - Single mode optical fiber - Google Patents

Single mode optical fiber

Info

Publication number
JPH01147412A
JPH01147412A JP62306296A JP30629687A JPH01147412A JP H01147412 A JPH01147412 A JP H01147412A JP 62306296 A JP62306296 A JP 62306296A JP 30629687 A JP30629687 A JP 30629687A JP H01147412 A JPH01147412 A JP H01147412A
Authority
JP
Japan
Prior art keywords
jacket
core
transmission loss
optical fiber
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62306296A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Junichi Tamura
順一 田村
Masahide Kuwabara
正英 桑原
Kazuhisa Kashiwabara
一久 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62306296A priority Critical patent/JPH01147412A/en
Publication of JPH01147412A publication Critical patent/JPH01147412A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the stress load on a core at the time of drawing and to lessen the increase in transmission loss by bending by lowering the softening point of a clad to the softening point lower than the softening point of the core and jacket and specifying the thickness of the jacket. CONSTITUTION:The clad 2 is formed to the softening point lower than the softening point of the core 1 and the jacket 3 and the thickness of the jacket 3 is specified to 2.5-10mum. Since the thickness of the jacket 3 is specified to 2.5-10mum, the increase in the transmission loss by bending is suppressed and since the jacket 3 is provided, the stress acting upon the core 1 at the time of drawing is decreased and the transmission loss is lessened even if the jacket is thin. The single mode optical fiber which has a low transmission loss value and lessens the increase in the transmission loss by bending is thereby obtd. at a high yield.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はシングルモード光ファイバの改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to improvements in single mode optical fibers.

〔従来技術〕[Prior art]

昨今、光ファイバは公衆通信のみなす、工場内制御シス
テム、電気機器(コンパクトディスクプレーヤー等)等
多くの分野に応用されている。
In recent years, optical fibers have been applied to many fields such as public communications, factory control systems, and electrical equipment (compact disc players, etc.).

ところで公衆通信に使用される光ファイバには低損失、
高信鯨性等の特性が要求されるが、とりわけ海底ケーブ
ルの如き長距離の情報伝送に使用されるシングルモード
光ファイバにあっては中継距離を大きくし、かつコスト
ダウンを図るべく超低損失のものが求められている。具
体的には1.55μm帯で超低損失のものが希求されて
いる。
By the way, optical fibers used for public communications have low loss.
Characteristics such as high reliability are required, but in particular single mode optical fibers used for long distance information transmission such as submarine cables have ultra-low loss in order to increase relay distance and reduce costs. are in demand. Specifically, ultra-low loss in the 1.55 μm band is desired.

そこで従来から超低損失のシングルモード光ファイバを
得るために、コアの部分に通常の光ファイバにおいてよ
く使用されるドーパントであるゲルマニウムやリン等を
使用せず、該コアを純粋石英ガラスのみで構成してレー
リー散乱を防止し、かつクラッドにフッ素をドープした
もの(第4図に示す)が提案されている。
Therefore, in order to obtain a single-mode optical fiber with ultra-low loss, the core is made only of pure silica glass without using dopants such as germanium or phosphorus, which are commonly used in ordinary optical fibers. A structure in which the cladding is doped with fluorine (shown in FIG. 4) has been proposed to prevent Rayleigh scattering.

しかしながらこの構造のものは、°純粋石英ガラスから
成るコアlと、フッ素をドープして成るクラッド2との
間に200°C〜300 ’C(クラッド2の方が低い
)の軟化点の差が存在するために、光フアイバ母材から
光ファイバを線引する際にコア1に大きな応力が加わっ
てしまい、超低損失の光ファイバを歩留りよく製造する
ことができない、という問題があった。
However, in this structure, there is a difference in softening point of 200°C to 300'C (the cladding 2 is lower) between the core l made of pure silica glass and the cladding 2 doped with fluorine. Due to its presence, a large stress is applied to the core 1 when the optical fiber is drawn from the optical fiber base material, resulting in a problem that it is not possible to manufacture an ultra-low loss optical fiber with a high yield.

そこでかかる応力負荷を低減する目的で第5図に示すよ
うにクラッド2の外側に純粋石英ガラスから成るジャケ
ット3を設けることも提案されている。
In order to reduce this stress load, it has been proposed to provide a jacket 3 made of pure silica glass on the outside of the cladding 2, as shown in FIG.

しかし、このジャケット3を設けたことにより線引時に
コア1に負荷する応力は低減できるものの、逆にジャケ
ット3を設けたことによるリーキーモードのため、曲げ
による損失増加が生じ易くなり、これまでのところ実用
に供することができなかった。
However, although the provision of the jacket 3 can reduce the stress applied to the core 1 during drawing, on the other hand, the leaky mode caused by the provision of the jacket 3 tends to cause an increase in loss due to bending. However, it could not be put to practical use.

〔発明の目的] 前記問題に鑑み本発明は、線引時におけるコアへの応力
負荷を軽減し、かつ曲げによる伝送損失増加の少ないシ
ングルモード光ファイバを提供することを目的とする。
[Object of the Invention] In view of the above-mentioned problems, an object of the present invention is to provide a single-mode optical fiber that reduces the stress load on the core during drawing and has less increase in transmission loss due to bending.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明は、コアと、該コアの周り
に設けられ前記コアより屈折率の小さいクラフトと、該
クラッドの周りに設けられ前記クラッドより屈折率の大
きいジャケットとを有するシングルモード光ファイバに
おいて、前記クラッドの軟化点は前記コア及び前記ジャ
ケットのそれより低く、かつ前記ジャケットの厚さが2
.5 μt〜10μmであることを特徴とするものであ
る。
To achieve the above-mentioned object, the present invention provides a single-mode core, which has a core, a craft provided around the core and having a refractive index smaller than that of the core, and a jacket provided around the cladding and having a larger refractive index than the cladding. In the optical fiber, the softening point of the cladding is lower than that of the core and the jacket, and the thickness of the jacket is 2.
.. It is characterized by having a diameter of 5 μt to 10 μm.

〔発明の実施例〕[Embodiments of the invention]

本発明者は以下の表−1に示すような3種のシングルモ
ード光ファイバを試作、評価することによって本発明に
至ったものである。尚、これらの各試料はすべてVAI
l法にて製造されたものである。
The present inventor arrived at the present invention by prototyping and evaluating three types of single mode optical fibers as shown in Table 1 below. In addition, all of these samples are VAI
It was manufactured using the I method.

ここで各試料の屈折率分布は、各試料番号の下に記した
図面にて示されている。
Here, the refractive index distribution of each sample is shown in the drawing below each sample number.

表−1 屈折率分布 伝送損失  曲げによる伝送損失Ca目、
55μm)増加(atl、55μ潜)No、1    
0.187  dB/lv     0.03dB/m
(第4図)0.220       0.020.20
1        0.03 AV O,203AV O,03 No、2 (第5図)  0.185       1゜200、
162        0.65 0、177        1.90 AV 0.175       AV 1.25No、
3 (第1図)  0.176       0.030、
163        0.03 0、180        0.02 AV 0.173       AV 0.03尚、前
記各試料のコアlとクラッド2の比屈折率差Δ−はすべ
て0.38%、またモードフィールド径は9.7μ園、
カットオフ波長は1.3μmであり、曲げによる伝送損
失増加は直径1cmのマンドレルに試料を巻きつけて測
定した結果である。
Table-1 Refractive index distribution Transmission loss Transmission loss due to bending Ca
55μm) increase (atl, 55μ latent) No. 1
0.187 dB/lv 0.03 dB/m
(Figure 4) 0.220 0.020.20
1 0.03 AV O,203AV O,03 No,2 (Figure 5) 0.185 1°200,
162 0.65 0, 177 1.90 AV 0.175 AV 1.25No,
3 (Figure 1) 0.176 0.030,
163 0.03 0, 180 0.02 AV 0.173 AV 0.03 The relative refractive index difference Δ- between the core 1 and cladding 2 of each sample is all 0.38%, and the mode field diameter is 9. 7μen,
The cutoff wavelength was 1.3 μm, and the increase in transmission loss due to bending was measured by winding the sample around a mandrel with a diameter of 1 cm.

上記表−1が示すように、試料No、 1の光ファイバ
は曲げによる伝送損失増加は小さいが、伝送損失そのも
のが大きい、一方試料No、 2の光ファイバは伝送損
失は小さいものの、曲げによる伝送損失増加が大きい、
これに対して試料No、3は伝送1員失の値も曲げによ
る伝送損失の増加量も共に従来のシングルモード光ファ
イバの代表例であるNO41及びNo、2より小さい。
As shown in Table 1 above, the optical fiber of sample No. 1 has a small increase in transmission loss due to bending, but the transmission loss itself is large, while the optical fiber of sample No. 2 has a small transmission loss, but the transmission loss due to bending is small. Large increase in loss,
On the other hand, in sample No. 3, both the value of transmission loss and the amount of increase in transmission loss due to bending are smaller than those of samples No. 41 and No. 2, which are representative examples of conventional single mode optical fibers.

この結果から本発明者は以下のように推論した。From this result, the present inventor inferred as follows.

第4図に示す屈折率分布を有する、いわゆるマンチドク
ラッド型である試料No、1のものは、前述したように
、純粋石英ガラスよりなるコア1とフッ素をドープして
なるクラッド2との間の軟化点の差が大きいため、光フ
アイバ母材からこの光ファイバを線引する際、コア1に
大きな応力がかかる。具体的に試料No、 1を張力1
0gで線引したところ1.6 xlO” g/μl11
2もの応力がコア1にかかってしまった。この応力によ
りガラス構造が変化して光が散乱し、伝送損失が大きく
なってしまうと考えられる。但し、マツチドクラッド型
であるため°ノーキーモードは無く、それ放向げによる
伝送(置火の増加は小さい。
Sample No. 1, which is a so-called mantid clad type having the refractive index distribution shown in FIG. Since the difference in the softening points of the optical fibers is large, a large stress is applied to the core 1 when this optical fiber is drawn from the optical fiber base material. Specifically, sample No. 1 has a tension of 1.
When drawn at 0g, it is 1.6 xlO” g/μl11
Two stresses were applied to core 1. It is thought that this stress changes the glass structure, scattering light, and increasing transmission loss. However, since it is a matte clad type, there is no no-key mode, and the transmission is by letting it go (the increase in setting fire is small).

第5図に示す屈折率分布を有する、いわゆるデイブレト
ス型である試料No、2のものは、クラッド2の外側に
純粋石英ガラスからなるジャケット3を設けたことによ
り前述したように、該ジャケット3により線引時にコア
1に負荷する応力は緩和される。例えばこの試料を張力
10gで線引したところ1.7 Xl0−’ g/ μ
m ”となり、前記No、1のものよりも二指も小さい
値になることが確認された。
Sample No. 2, which has the refractive index distribution shown in FIG. The stress applied to the core 1 during wire drawing is relaxed. For example, when this sample is drawn with a tension of 10 g, the result is 1.7 Xl0-' g/μ
m'', and it was confirmed that the value was two fingers smaller than that of No. 1 above.

これが伝送損失を小さくできる理由と考える。しかしな
がら、リーキーモードのため前記純粋石英ガラスよりな
るジャケット3に光が洩れるので、曲げによる伝送損失
の増加量が大きくなってしまう欠点がある。
We believe that this is the reason why transmission loss can be reduced. However, since light leaks into the jacket 3 made of pure silica glass due to the leaky mode, there is a drawback that the amount of increase in transmission loss due to bending becomes large.

しかるに第1図に示す本願発明の一実施例に相当する試
料No、3のものは、No、2のものに比較してジャケ
ット3の厚さを5μ糟としてNo、2の17.5μmに
比較して約173にしていることから、曲げによる伝送
損失増加を抑えることができたものと推定される。しか
も薄いとは言いながらジャケット3を設けたことにより
線引時にコア1にかかる応力も低減でき伝送損失も小さ
い、具体的にこの試料No、3において、光フアイバ母
材を張力10gで線引したところコア1に負荷する応力
は5.I Xl0−”g/μm2であった。すなわち、
ジャケット3を薄くしたにもかかわらず、線引時にコア
lに負荷する応力をかなり小さくできることがわかった
However, in sample No. 3, which corresponds to an embodiment of the present invention shown in FIG. 1, the thickness of the jacket 3 is 5 μm, compared to 17.5 μm in No. It is estimated that the increase in transmission loss due to bending could be suppressed since the curve was set to about 173. Moreover, although it is said to be thin, the provision of the jacket 3 reduces the stress applied to the core 1 during drawing, and the transmission loss is also small. Specifically, in this sample No. 3, the optical fiber base material was drawn with a tension of 10 g. However, the stress applied to core 1 is 5. I Xl0−”g/μm2, i.e.
It has been found that even though the jacket 3 is made thinner, the stress applied to the core 1 during drawing can be considerably reduced.

この関係を第3図に示す。This relationship is shown in FIG.

第3図に示すように、ジャケット3の厚さに対して、コ
ア1にかかる応力値と曲げによる伝送損失増加は相反す
る関係にあるが、コア1にかがる応力を約1桁下げるこ
とができれば、伝送損失を効果的に下げることができ、
また曲げによる伝送損失の増加も試料No、2のものよ
り約1桁小さければ実用上問題がないことから、ジャケ
ット3の厚さを2.5μm〜10μmに設定すれば良い
ことが確認できた。
As shown in Figure 3, the stress value applied to the core 1 and the increase in transmission loss due to bending have a contradictory relationship with respect to the thickness of the jacket 3, but it is possible to reduce the stress applied to the core 1 by about one order of magnitude. If possible, transmission loss can be effectively lowered,
Moreover, since there is no practical problem as long as the increase in transmission loss due to bending is about one order of magnitude smaller than that of sample No. 2, it was confirmed that the thickness of the jacket 3 should be set to 2.5 μm to 10 μm.

また第2図は第1図に示す本発明のシングルモード光フ
ァイバの他の実施例で、この光ファイバにおいてはコア
1にもフン素をドープしてジャケット3以外はすべてフ
ッ素ドープ石英ガラスにて構成したものである。実験の
結果このタイプのものにおいても第1図に示すものと実
質的に同様の効果を得ることができた。
FIG. 2 shows another embodiment of the single mode optical fiber of the present invention shown in FIG. 1. In this optical fiber, the core 1 is also doped with fluorine, and everything except the jacket 3 is made of fluorine-doped quartz glass. It is composed of As a result of experiments, substantially the same effect as shown in FIG. 1 could be obtained with this type of device.

また前記ジャケット3としてはクラッド2よりも軟化点
が高ければ前述と同様の効果を得られると予想される。
Further, if the jacket 3 has a higher softening point than the cladding 2, it is expected that the same effect as described above can be obtained.

そこでこのジャケット3を5402−TiO□系ガラス
または5iOz  Zr0z系ガラスで構成したところ
、線引時にコア1にかかる応力を10−”g/μm g
オーダーに下げることができ、ジャケット3が純粋石英
ガラスからなる場合とほぼ同様の効果が得られた。
Therefore, when the jacket 3 was constructed of 5402-TiO□-based glass or 5iOz Zr0z-based glass, the stress applied to the core 1 during wire drawing was reduced to 10-''g/μm g
The thickness of the jacket 3 could be lowered to an order of magnitude, and almost the same effect as when the jacket 3 was made of pure silica glass was obtained.

以上の結果から線引時にコアに負荷する応力を10−”
g/μm2オーダーにできれば類似の構造のマルチモー
ド光ファイバでも同様の効果が期待できる。さらに伝送
損失を小さくできる以外に、コア内に残存する構造欠陥
濃度を減少させることができるので、耐放射線特性の向
上も期待できる。
From the above results, the stress applied to the core during drawing is 10-"
A similar effect can be expected with a multi-mode optical fiber having a similar structure if it can be made on the order of g/μm2. Furthermore, in addition to reducing transmission loss, it is also possible to reduce the concentration of structural defects remaining in the core, so it is expected that radiation resistance characteristics will be improved.

〔発明の効果] 前述の如く本発明によれば、伝送損失値が小さく、かつ
曲げによる伝送損失の増加も少ないシングルモード光フ
ァイバを歩留り良く得ることができる。
[Effects of the Invention] As described above, according to the present invention, a single mode optical fiber having a small transmission loss value and a small increase in transmission loss due to bending can be obtained with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明のシングルモード光ファイバの
一実施例及び他の実施例の屈折率分布を示す。また第3
図はジャケットの厚さによるコアにかかる応力の変化及
び曲げによる伝送損失の増加の変化を示すグラフであり
、第4図、第5図は従来のシングルモード光ファイバの
屈折率分布を示している。 1〜コア 2〜クラッド 3〜ジャケット特許出願人 
  古河電気工業株式会社第2図 ジャケットの厚さ(Pm) 第3図
FIGS. 1 and 2 show refractive index distributions of one embodiment and other embodiments of the single mode optical fiber of the present invention. Also the third
The figure is a graph showing changes in the stress applied to the core depending on the thickness of the jacket and changes in the increase in transmission loss due to bending. Figures 4 and 5 show the refractive index distribution of a conventional single mode optical fiber. . 1~Core 2~Clad 3~Jacket Patent Applicant
Furukawa Electric Co., Ltd. Figure 2 Jacket thickness (Pm) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)コアと、該コアの周りに設けられ前記コアより屈
折率の小さいクラッドと、該クラッドの周りに設けられ
前記クラッドより屈折率の大きいジャケットとを有する
光ファイバにおいて、前記クラッドの軟化点は前記コア
及び前記ジャケットのそれより低く、かつ前記ジャケッ
トの厚さが2.5μm〜10μmであることを特徴とす
るシングルモード光ファイバ。
(1) In an optical fiber having a core, a cladding provided around the core and having a smaller refractive index than the core, and a jacket provided around the cladding and having a larger refractive index than the cladding, the softening point of the cladding is lower than that of the core and the jacket, and the thickness of the jacket is 2.5 μm to 10 μm.
(2)前記コア及びクラッドの少なくとも一方は、ドー
パントとしてフッ素を含んでいることを特徴とする特許
請求の範囲第1項記載のシングルモード光ファイバ。
(2) The single mode optical fiber according to claim 1, wherein at least one of the core and the cladding contains fluorine as a dopant.
(3)前記ジャケットは純粋石英ガラス、SiO_2−
TiO_2系ガラスまたはSiO_2−ZrO_2系ガ
ラスのいずれかから成ることを特徴とする特許請求の範
囲第1項記載のシングルモード光ファイバ。
(3) The jacket is made of pure silica glass, SiO_2-
The single mode optical fiber according to claim 1, characterized in that it is made of either TiO_2-based glass or SiO_2-ZrO_2-based glass.
JP62306296A 1987-12-03 1987-12-03 Single mode optical fiber Pending JPH01147412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306296A JPH01147412A (en) 1987-12-03 1987-12-03 Single mode optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306296A JPH01147412A (en) 1987-12-03 1987-12-03 Single mode optical fiber

Publications (1)

Publication Number Publication Date
JPH01147412A true JPH01147412A (en) 1989-06-09

Family

ID=17955391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306296A Pending JPH01147412A (en) 1987-12-03 1987-12-03 Single mode optical fiber

Country Status (1)

Country Link
JP (1) JPH01147412A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160840A (en) * 1987-12-16 1989-06-23 Sumitomo Electric Ind Ltd Preform for dispersion-shift optical fiber and production thereof
JP2007286238A (en) * 2006-04-14 2007-11-01 Fujikura Ltd Radiation resistant optical fiber and its manufacturing method
US7978947B2 (en) 2007-03-05 2011-07-12 Fujikura Ltd. Photonic bandgap fiber
US8031999B2 (en) 2007-03-05 2011-10-04 Fujikura Ltd. Photonic band-gap fiber
JP2012247780A (en) * 2011-05-27 2012-12-13 Draka Comteq Bv Single mode optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050503A (en) * 1983-08-31 1985-03-20 Furukawa Electric Co Ltd:The Optical fiber
JPS63189809A (en) * 1987-02-02 1988-08-05 Nippon Telegr & Teleph Corp <Ntt> Single mode optical fiber
JPS6486104A (en) * 1987-09-29 1989-03-30 Sumitomo Electric Industries Optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050503A (en) * 1983-08-31 1985-03-20 Furukawa Electric Co Ltd:The Optical fiber
JPS63189809A (en) * 1987-02-02 1988-08-05 Nippon Telegr & Teleph Corp <Ntt> Single mode optical fiber
JPS6486104A (en) * 1987-09-29 1989-03-30 Sumitomo Electric Industries Optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160840A (en) * 1987-12-16 1989-06-23 Sumitomo Electric Ind Ltd Preform for dispersion-shift optical fiber and production thereof
JP2007286238A (en) * 2006-04-14 2007-11-01 Fujikura Ltd Radiation resistant optical fiber and its manufacturing method
JP4699267B2 (en) * 2006-04-14 2011-06-08 株式会社フジクラ Radiation-resistant optical fiber and manufacturing method thereof
US7978947B2 (en) 2007-03-05 2011-07-12 Fujikura Ltd. Photonic bandgap fiber
US8031999B2 (en) 2007-03-05 2011-10-04 Fujikura Ltd. Photonic band-gap fiber
JP2012247780A (en) * 2011-05-27 2012-12-13 Draka Comteq Bv Single mode optical fiber

Similar Documents

Publication Publication Date Title
US4877306A (en) Coated optical waveguide fibers
US5278931A (en) Low bend loss singlemode optical waveguide fiber
KR0172600B1 (en) Single-mode, single polarization optical fiber
AU613455B2 (en) Bend insensitive optical fibre
JP6486533B2 (en) Optical fiber
US4447127A (en) Low loss single mode fiber
JP4175259B2 (en) Microstructured optical fiber and optical fiber ribbon using it, optical connector, optical fiber array, optical connection member
JPH08234036A (en) Single-mode optical waveguide fiber
JPH07261048A (en) Dispersion compensating fiber
US6205279B1 (en) Single mode optical fiber having multi-step core structure and method of fabricating the same
JP2005017694A (en) Optical fiber and optical fiber cable
JP2007536580A (en) Long wavelength pure silica core single mode fiber and method of forming the fiber
JPS589103A (en) Single mode fiber
CN113099725A (en) Optical fiber
US9002164B2 (en) Optical fiber and method of manufacturing the same
JPS6269210A (en) Waveguide
CN113099726B (en) Optical fiber
JPH01147412A (en) Single mode optical fiber
CN1192260C (en) Low dispersion slope negative dispersion optical fiber
CN115047559B (en) Multiband attenuation flat optical fiber
JPH11119036A (en) Plastic clad fiber
KR20010053516A (en) Single mode optical waveguide
JP2006512266A (en) Low splice loss optical fiber and method of manufacturing the optical fiber
JP2005181664A (en) Optical fiber and ribbon slot type fiber optic cable using the optical fiber
JPH09509765A (en) Single mode optical fiber