JPS6259543A - Quartz glass tube - Google Patents
Quartz glass tubeInfo
- Publication number
- JPS6259543A JPS6259543A JP60198347A JP19834785A JPS6259543A JP S6259543 A JPS6259543 A JP S6259543A JP 60198347 A JP60198347 A JP 60198347A JP 19834785 A JP19834785 A JP 19834785A JP S6259543 A JPS6259543 A JP S6259543A
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- glass tube
- boron
- low
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01884—Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes
- C03B37/01892—Deposition substrates, e.g. tubes, mandrels
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/02—Pure silica glass, e.g. pure fused quartz
- C03B2201/03—Impurity concentration specified
- C03B2201/04—Hydroxyl ion (OH)
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/14—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron and fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、通信用の光ファイバ、イメージスコープ用の
マルチプルファイバなどの光伝送体の製造に好適に用い
られる石英ガラス管に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a quartz glass tube that is suitably used for manufacturing optical transmission bodies such as optical fibers for communications and multiple fibers for image scopes.
〔従来技術並びに発明が解決しようとする間゛照点〕硼
素ドープされた石英ガラス層を石英ガラス管の内表面に
、例えばCVD法により内けする場合、ドーパントとし
て用いられた硼素元素が石英ガラス管に含まれている水
分を吸収して、硼素ドープ石英ガラス層のOH基含を量
を高める問題がある。[Prior art and the point of view to be solved by the invention] When a boron-doped quartz glass layer is deposited on the inner surface of a quartz glass tube by, for example, the CVD method, the boron element used as a dopant is removed from the quartz glass. There is a problem of absorbing water contained in the tube and increasing the OH group content of the boron-doped quartz glass layer.
かかる石英ガラス管を用いて光伝送体を製造した場合に
は、伝送損失の小さい光伝送体は得難い。When manufacturing an optical transmission body using such a quartz glass tube, it is difficult to obtain an optical transmission body with low transmission loss.
本発明は、上記の問題を解決するために、0[1基含有
量が200ppb以下の低○【(石英ガラス管の内表面
に硼素ドープされた石英ガラス層が形成されてなる石英
ガラス管を提案する。In order to solve the above-mentioned problems, the present invention provides a quartz glass tube in which a boron-doped quartz glass layer is formed on the inner surface of the quartz glass tube. suggest.
たとえ硼素ドーパントの水吸収作用が働いても、肉付さ
れる石英ガラス管自体が0H)5含有全200ppb以
下のものであるために、硼素ドープ石英ガラス層のOH
基含有量の増大は実質上止しない。Even if the water absorption effect of the boron dopant works, since the quartz glass tube itself contains less than 200 ppb of 0H)5, the OH of the boron-doped quartz glass layer is
The increase in group content virtually never stops.
低OH石英ガラス管は天然石英からなるものであっても
合成石英からなるものであってもよいが、トー記の方法
で求めたOH基含有量が200ppb以丁であることが
必須である。それよりOH基含有量が多いと、硼素ドー
プ石英ガラスICのOH基含有Vが光伝送路、特に通信
用光ファイバの伝送特性に悪影響を及ぼす程に増大する
。従って、本発明において用いる低OH石英ガラス管と
しては、OL(基含有量が100ppb以下、特に50
ppb以ドのものが好ましい。The low-OH quartz glass tube may be made of natural quartz or synthetic quartz, but it is essential that the OH group content determined by Toh's method be 200 ppb or more. If the OH group content is higher than that, the OH group content V of the boron-doped quartz glass IC increases to the extent that it adversely affects the transmission characteristics of an optical transmission line, particularly an optical fiber for communication. Therefore, as the low-OH quartz glass tube used in the present invention, OL (with a group content of 100 ppb or less, especially 50
Preferably less than ppb.
014基含有星:被検石英ガラスをコアとし、その外側
に、無水のクラット層を有する光ファイバを線引により
作成し、この光ファイバにつき波長1.31L−にお+
Jる[D失値L I(dB/ 1ua)を測定し、次の
弐により算出する。Stars containing 014 groups: An optical fiber having a core of quartz glass to be tested and an anhydrous crat layer on the outside was created by drawing.
Measure the loss value LI (dB/1ua) and calculate it using the following procedure.
OH基含有量(ppm) = 0.0185 x (L
+ −Lo )ここに+−oは、上記被検光ファイバ
がOH基を含まないと仮定したときの波長1638戸に
おける推定1員失値(dB/に+a)である。OH group content (ppm) = 0.0185 x (L
+-Lo) Here, +-o is the estimated one-member loss value (+a in dB/) at a wavelength of 1638, assuming that the optical fiber to be tested does not contain an OH group.
低OH石英ガラス管の内壁への硼素ドープされた石英ガ
ラス層の形成は、たとえばSiCβ4、SiF4などの
5i02生成物質と、B(1!3、BF3などの硼素源
を有する材料とを用いてCVD法など周知の方法にて行
うことができる。特にBF3とSiCβ4との混合物、
r3Ci!3とSiF4との混合物など、硼素とフッ素
とが共にドープされることが好ましく、特に、ドープ材
料としてBF3を用いることが好ましい。The formation of a boron-doped quartz glass layer on the inner wall of a low-OH quartz glass tube can be achieved by CVD using a 5i02 generating material such as SiCβ4, SiF4, and a material with a boron source such as B(1!3, BF3). It can be carried out by a well-known method such as the method.In particular, a mixture of BF3 and SiCβ4,
r3Ci! Preferably, boron and fluorine are co-doped, such as a mixture of 3 and SiF4, and in particular it is preferred to use BF3 as the doping material.
以下、実施例、比較例により本発明を一層詳細に説明す
る。以下において、部、%はいずれも重盪部、重量%を
書味する。Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In the following, both parts and percentages are expressed as weight percentages.
実施例1
0H5含有1150pphの合成石英からなる外径20
龍、厚さ!、 5 nの石英ガラス管の内壁に、5iC
fi+= BF3および02の混合ガスを用い−て、常
法に従って硼素とフッ素とでドープされたn冒が1.4
485 、厚さ0.8 u+の石英ガラスクラッド層を
形成した。Example 1 Outer diameter 20 made of synthetic quartz containing 0H5 and 1150 pph
Dragon, thickness! , 5iC on the inner wall of a 5n quartz glass tube.
fi + = 1.4 doped with boron and fluorine using a mixed gas of BF3 and 02 according to a conventional method.
485, and a 0.8 u+ thickness silica glass cladding layer was formed.
実施例2〜4、比較例1
用いた石英ガラス管のOH基含有川用、それぞれ100
ppb(実施例2) 、50ppb (実施例3)、
20ppb(実施例4 ) 、200.000 ppb
(比較例1)、である屯においてのみ異なり、他は
上記実施例1と同様にしてクラッド層が内付けられた石
英ガラス管を得た。Examples 2 to 4, Comparative Example 1 The OH group-containing quartz glass tube used was 100% each.
ppb (Example 2), 50ppb (Example 3),
20ppb (Example 4), 200.000ppb
(Comparative Example 1) A quartz glass tube having a cladding layer therein was obtained in the same manner as in Example 1, except that the tube was different.
比較例2
S lCe4 、BF3.02の混合ガスに代わって、
SiF4と02との混合ガスを用い、フッ素のみがドー
プされたn。が1.4480であるクラット層を内イ」
けしだ点においてのみ比較例1と異なる方法にてクラッ
ド層肉付は石英ガラス管を得た。Comparative Example 2 Instead of a mixed gas of S lCe4 and BF3.02,
n doped with only fluorine using a mixed gas of SiF4 and 02. is 1.4480.
A quartz glass tube was obtained in which the cladding layer was thickened using a method different from that of Comparative Example 1 only in terms of shading.
0 )(基含有量が、20ppb、外径8貫嘗の純石英
ガラスロッドを上記で得た各石英ガラス管に挿入し、特
公昭59−24092の実施例13と同じ方法および表
面処理ガラスを用いてロッド・イン・チューブ法にて光
フアイバ母材を、次いで該母材を2.000℃で線引き
し、ウレタン樹脂プリコートを施してコア径60−、ク
ラッド摩15戸、プリコート層を除くファイバ外径15
0戸の光ファイバを得た。0) (A pure quartz glass rod with a group content of 20 ppb and an outer diameter of 8 cm was inserted into each of the quartz glass tubes obtained above, and the same method and surface-treated glass as in Example 13 of Japanese Patent Publication No. 59-24092 were applied. An optical fiber base material is made using the rod-in-tube method, and then the base material is drawn at 2,000°C, and a urethane resin precoat is applied to produce a fiber with a core diameter of 60 mm, a cladding layer of 15 mm, and a fiber excluding the precoat layer. Outer diameter 15
Obtained optical fiber for 0 homes.
前記の方法で測定した各実施例、比較例からの光ファイ
バのOH5含有量(コアのOH7J含有屋の金遣とクラ
ッド層のO)(基含有量の一部とが測定にかかる)は、
それぞれ実施例1が25ppb、実施例2:22ppb
、実施例3:20ppb、実施例4:20ppb、比較
例L:LOOOppb、比較例2:30ppbであった
命
これらの結果から、各実施例および硼素をドーパントと
して用いない比較例2においては、クラッド層のOH基
含有量の増加量は極く僅かであるが、比較例1における
増加は著し5いことが明らかである。The OH5 content (OH7J content in the core and O in the cladding layer) of the optical fibers from each example and comparative example measured by the above method (a part of the group content is measured) is:
Example 1: 25 ppb, Example 2: 22 ppb, respectively.
, Example 3: 20 ppb, Example 4: 20 ppb, Comparative Example L: LOOOppb, Comparative Example 2: 30 ppb. Although the increase in the OH group content of the layer is very small, it is clear that the increase in Comparative Example 1 is significant.
(発明の効果)
ドーパントとしての硼素は、石英ガラス光ファイバ製造
上極めて重要なものであることは周知の通りであり、一
方、硼素ドーパントは、前記した水吸収作用を有するも
のであるが、本発明により水吸収作用の問題が解消する
。(Effect of the invention) It is well known that boron as a dopant is extremely important in manufacturing silica glass optical fibers.On the other hand, boron dopant has the above-mentioned water absorption effect, but this The invention eliminates the problem of water absorption.
特許出願人 大日日本電線株式会社 ′、1Patent applicant: Dainichi Nippon Electric Cable Co., Ltd. ', 1
Claims (3)
ガラス管の内表面に硼素ドープされた石英ガラス層が形
成されてなることを特徴とする石英ガラス管。(1) A quartz glass tube characterized in that a boron-doped quartz glass layer is formed on the inner surface of a low-OH quartz glass tube with an OH group content of 200 ppb or less.
ラス管である特許請求の範囲第(1)項記載の石英ガラ
ス管。(2) The quartz glass tube according to claim (1), wherein the low OH quartz glass tube is a natural or synthetic quartz glass tube.
してBF_3を用い、CVD法により形成されたもので
ある特許請求の範囲第(1)項および第(2)項記載の
石英ガラス管。(3) The quartz glass tube according to claims (1) and (2), wherein the boron-doped quartz glass layer is formed by a CVD method using BF_3 as a doping material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60198347A JPH0665613B2 (en) | 1985-09-06 | 1985-09-06 | Quartz glass tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60198347A JPH0665613B2 (en) | 1985-09-06 | 1985-09-06 | Quartz glass tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6259543A true JPS6259543A (en) | 1987-03-16 |
JPH0665613B2 JPH0665613B2 (en) | 1994-08-24 |
Family
ID=16389607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60198347A Expired - Fee Related JPH0665613B2 (en) | 1985-09-06 | 1985-09-06 | Quartz glass tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0665613B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906195A (en) * | 1987-07-15 | 1990-03-06 | Yazaki Corporation | Built-in function type wiring apparatus |
US5760490A (en) * | 1995-10-25 | 1998-06-02 | Yazaki Corporation | Electronic unit for vehicle |
EP0972752A1 (en) * | 1998-07-14 | 2000-01-19 | Lucent Technologies Inc. | Large preform for singlemode fiber and method for making same |
WO2000027767A1 (en) * | 1998-11-09 | 2000-05-18 | Heraeus Quarzglas Gmbh & Co. Kg | Quartz glass tube for use in the production of optical fiber preforms |
EP1061054A1 (en) * | 1999-06-18 | 2000-12-20 | Lucent Technologies Inc. | Method of making optical fiber by a rod-in tube process and fiber made by the method |
WO2001090010A1 (en) * | 2000-05-24 | 2001-11-29 | Heraeus Tenevo Ag | Method for producing an optical fibre and blank for an optical fibre |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2290102A1 (en) * | 1998-03-16 | 1999-09-23 | The Furukawa Electric Co., Ltd. | Wavelength-multiplexing optical transmission channel and optical fiber used therefor |
-
1985
- 1985-09-06 JP JP60198347A patent/JPH0665613B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906195A (en) * | 1987-07-15 | 1990-03-06 | Yazaki Corporation | Built-in function type wiring apparatus |
US5760490A (en) * | 1995-10-25 | 1998-06-02 | Yazaki Corporation | Electronic unit for vehicle |
EP0972752A1 (en) * | 1998-07-14 | 2000-01-19 | Lucent Technologies Inc. | Large preform for singlemode fiber and method for making same |
WO2000027767A1 (en) * | 1998-11-09 | 2000-05-18 | Heraeus Quarzglas Gmbh & Co. Kg | Quartz glass tube for use in the production of optical fiber preforms |
EP1061054A1 (en) * | 1999-06-18 | 2000-12-20 | Lucent Technologies Inc. | Method of making optical fiber by a rod-in tube process and fiber made by the method |
WO2001090010A1 (en) * | 2000-05-24 | 2001-11-29 | Heraeus Tenevo Ag | Method for producing an optical fibre and blank for an optical fibre |
Also Published As
Publication number | Publication date |
---|---|
JPH0665613B2 (en) | 1994-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4165915A (en) | Light conducting fiber | |
US4690504A (en) | Quartz glass-made optical fibers and a method for the preparation thereof | |
US4733939A (en) | Radiation-resistant optical conductor | |
US4335934A (en) | Single mode fibre and method of making | |
JPH044988B2 (en) | ||
JPH0684254B2 (en) | Radiation resistant multiple fibers | |
EP0590199B1 (en) | Ultraviolet resistant silica glass fiber | |
Lazay et al. | Developments in single-mode fiber design, materials, and performance at Bell Laboratories | |
EP0177040A2 (en) | Method for producing glass preform for optical fiber | |
JPS6259543A (en) | Quartz glass tube | |
GB2062610A (en) | Single mode optical fibres | |
JP2542356B2 (en) | Radiation resistant method for silica optical fiber glass | |
JPH0416427B2 (en) | ||
JP4001930B2 (en) | Glass with artificial isotope distribution for waveguides | |
GB2071644A (en) | Radiation Resistant Optical Fibers and a Process for the Production Thereof | |
JPS5773703A (en) | Manufacture of optical fiber bundle | |
Itoh et al. | Phosphorus-dopant effect on hydroxyl absorption increases in silica glasses and fibers | |
JP2699117B2 (en) | Radiation resistant multiple fiber | |
JPS61251539A (en) | Optical fiber | |
JPS6153132A (en) | Preform of radiation-resistant optical fiber | |
JPH0826763A (en) | Optical fiber and its production | |
JPS60141628A (en) | Preparation of quartz glass doped with fluorine | |
JPH0794333B2 (en) | Method for manufacturing radiation resistant multiple fiber | |
Suzuki et al. | Improvement in radiation resistivity of pure-silica core fibers | |
JPS62100456A (en) | Quartz glass optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |