JPH01145346A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH01145346A
JPH01145346A JP30327487A JP30327487A JPH01145346A JP H01145346 A JPH01145346 A JP H01145346A JP 30327487 A JP30327487 A JP 30327487A JP 30327487 A JP30327487 A JP 30327487A JP H01145346 A JPH01145346 A JP H01145346A
Authority
JP
Japan
Prior art keywords
optical fiber
chlorine
porous glass
glass body
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30327487A
Other languages
Japanese (ja)
Inventor
Yoichi Ishiguro
洋一 石黒
Tsunehisa Kyodo
倫久 京藤
Shinji Ishikawa
真二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30327487A priority Critical patent/JPH01145346A/en
Publication of JPH01145346A publication Critical patent/JPH01145346A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01282Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by pressing or sintering, e.g. hot-pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase

Abstract

PURPOSE:To obtain the title preform having low transmission loss at a low cost, by dehydrating a porous glass composed mainly of SiO2 under specific condition and converting to transparent glass with heat. CONSTITUTION:A porous glass composed mainly of SiO2, containing GeO2, TiO2 and/or Al2O3, having a bulk density of 0.2-0.8g/cm<3> and produced by VAD process, OVD process, sol-gel process or pressing process is dehydrated at 500-950 deg.C in an inert gas atmosphere (He, Ar or N2 atmosphere) containing Cl or Cl compound (e.g., CCl4) and NO at a Cl/NO ratio of 2/1 and having a Cl or Cl compound concentration of 1-10vol.% in terms of Cl2. The supply of Cl or Cl compound and NO is stopped and the heat-treated product is converted into a transparent material by heating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主成分が二酸化ケイ素である多孔質ガラス体
に脱水処理と透明化処理を施して透明ガラス体の光フア
イバ用母材を製造する方法に関するもので、詳しくは新
規かつ有利な脱水処理により低損失な光フアイバ用母材
をコスト低減して製造できる方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of manufacturing a transparent glass base material for optical fiber by subjecting a porous glass body whose main component is silicon dioxide to dehydration treatment and transparency treatment. The present invention relates to a method for producing a low-loss optical fiber base material at a reduced cost through a novel and advantageous dehydration treatment.

〔従来の技術〕[Conventional technology]

光フアイバ用透明ガラス母材の製法として、スート付法
、ゾルゲル法その他の方法で作成された、二酸化ケイ素
を主たる成分とする多孔質ガラス体を焼結・透明化する
方法が知られているが、この焼結・透明化に先立ち、又
は同時に、その製造過程で多孔質ガラス体中に取り込ま
れた水分(OH)i除く脱水処理が一般に行われている
。これは得られた光ファイバ母材t−線引して光ファイ
バとしたとき、このファイバの水酸基による伝送損失増
大等の特性への悪影響を防ぐためである。
As a method for producing a transparent glass base material for optical fibers, a method is known in which a porous glass body containing silicon dioxide as a main component, created by a soot method, a sol-gel method, or other methods, is sintered and made transparent. Prior to or at the same time as this sintering and transparency, a dehydration process is generally performed to remove water (OH) that has been incorporated into the porous glass body during the manufacturing process. This is to prevent the hydroxyl groups of the fiber from adversely affecting the characteristics, such as increased transmission loss, when the obtained optical fiber preform is t-drawn to form an optical fiber.

このような従来技術として、例えば特公昭58−155
03号公報に提案される、多孔質ガラス体を透明化に必
要な時間加熱する間に、ヘリウム及び5容t%までの有
効量の塩素を含む雰囲気中にさらし、該多孔質ガラス体
を透明化させつつ、雰囲気中の塩素を該多孔質ガラス体
内に浸透させて、内部に含まれてい友水酸基イオンと置
換させることにより脱水し、これにより実質的に水分を
含まず、950 nm での減衰が10 (LB/10
1以下のガラスを形成することを特徴とする方法がある
As such conventional technology, for example, Japanese Patent Publication No. 58-155
No. 03 proposes that the porous glass body be exposed to an atmosphere containing helium and an effective amount of chlorine up to 5 t% by volume while heating the porous glass body for the time required to make it transparent. chlorine in the atmosphere permeates into the porous glass body and replaces the hydrophilic acid group ions contained therein, resulting in dehydration, resulting in substantially no water content and attenuation at 950 nm. is 10 (LB/10
There is a method characterized by forming a glass of 1 or less.

°また、特公昭57−40096号公報に提案されるよ
うに、多孔質ガラス体を)・ロゲン又にハロゲン化物を
含み脱水作用を有するガス雰囲気中で、800℃よ99
50℃乃至1250℃まで一定の昇温速度で加熱し、次
に950℃〜1250℃の温度域で一定時間保持し、さ
らに前記の脱水作用を有するガス濃度を減少させ九うえ
、ガラス化温度まで昇温させて加熱し、透明ガラス体を
得ることを特徴とする方法がろる。
Further, as proposed in Japanese Patent Publication No. 57-40096, a porous glass body can be heated at 800°C to 99°C in a gas atmosphere containing halogen or halides and having a dehydrating effect.
Heating at a constant temperature increase rate from 50°C to 1250°C, then holding for a certain period of time in the temperature range of 950°C to 1250°C, and further reducing the concentration of the gas having the dehydration effect until reaching the vitrification temperature. A method characterized by heating at an elevated temperature to obtain a transparent glass body.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記従来法のうちの前者は、透明化を行ないな
がら塩素を流し、塩素を含む雰囲気中で密なガラスを作
ってしまうので、気密を充分に保ち得す大気が混入しや
すい設備、装置で製造しても、ガラス中の水分を減少さ
せることができるという利点を有する反面、1400℃
〜1600℃というガラス化温度で塩素を流すため、ガ
ラス中に欠陥を生じさせることが避けられないという欠
点を有する。
By the way, in the former of the above conventional methods, chlorine is flowed while making it transparent and a dense glass is created in an atmosphere containing chlorine, so it is difficult to maintain sufficient airtightness in equipment and equipment that is easily contaminated with air. Even when manufactured, it has the advantage of being able to reduce the moisture content in the glass, but at 1400℃
Since chlorine is flowed at a vitrification temperature of ~1600°C, it has the disadvantage of inevitably causing defects in the glass.

また、後者は脱水処理の大部分t−1250c以下で行
ない、それ以上の高温域では脱水作用のあるガスの濃度
を減少させるので、高温下で脱水剤と反応することによ
る欠陥の生成tSる程度抑えることができ友。しかし近
年ファイバに要求される信頼性がさらに厳しくなり、水
素雰囲気下でのロス増、またに放射線下でのロス増の原
因となるガラス欠陥をさらに減少させる必要が生じてき
ており、より一層改良された手段が望まれている。
In addition, in the latter, most of the dehydration treatment is carried out at temperatures below t-1250c, and at higher temperatures the concentration of gases that have a dehydrating effect is reduced, so that defects are generated by reacting with the dehydrating agent at high temperatures. You can hold back your friend. However, in recent years, the reliability required for fibers has become even more stringent, and it has become necessary to further reduce glass defects that cause increased loss in hydrogen atmospheres and radiation exposure. A suitable method is desired.

本発明にこのような現状に鑑みてなされたもので、上記
の諸問題を解消し、ガラス欠陥等の生成なく有効に脱水
、透明化処理して高品質な光フアイバ用母材を製造でき
る新規な方法を提案するものでらる。
The present invention has been made in view of the current situation, and is a novel method that solves the above-mentioned problems and can produce a high-quality base material for optical fiber through effective dehydration and transparency treatment without producing glass defects. I am here to suggest a method.

〔問題点を解決するための手段・作用〕本発明は主要成
分が二酸化ケイ素である多孔質ガラス体を、塩素又は塩
素化合物と一酸化窒素とを含む不活性ガス雰囲気中で5
00℃以上950℃以下の温度範四内にて脱水処理し、
しかる後雰囲気への塩素又は塩素化合物と一酸化窒素と
の供給を停止して加熱透明化することを特徴とする光フ
アイバ用母材の製造方法に関する。
[Means and effects for solving the problems] The present invention provides a porous glass body whose main component is silicon dioxide in an inert gas atmosphere containing chlorine or a chlorine compound and nitrogen monoxide.
Dehydrated within a temperature range of 00°C or higher and 950°C or lower,
The present invention relates to a method for manufacturing an optical fiber base material, which comprises thereafter ceasing the supply of chlorine or a chlorine compound and nitrogen monoxide to the atmosphere and heating to make the base material transparent.

本発明における多孔質ガラス体1) G 60* tT
ie!、ム40m  のうちのいずれか1種以上を含ん
でいてもよく、カサ密度がα2〜Q、Bf/α1である
ことが好ましい。ま九雰囲気中の塩素又は塩素化合物の
濃度がCle換算で1〜1o容量係であり、塩素又は塩
素化合物と一酸化窒素との比が、aZ 原子2に対しN
o  1でら)、塩素化合物が四塩化炭素であり不活性
ガスがヘリウム、アルゴン、窒素のいずれかであること
が特に、好ましい実施態様である。
Porous glass body in the present invention 1) G 60* tT
ie! , M40m, and preferably has a bulk density of α2 to Q and Bf/α1. The concentration of chlorine or chlorine compounds in the atmosphere is 1 to 1o by volume in terms of Cle, and the ratio of chlorine or chlorine compounds to nitrogen monoxide is 2 to 2 atoms of aZ.
In a particularly preferred embodiment, the chlorine compound is carbon tetrachloride and the inert gas is helium, argon, or nitrogen.

まず本発明に到達した経緯から説明を始める。First, we will begin by explaining how the present invention was achieved.

ガラス中の欠陥を増加させずに塩素等の脱水剤で多孔質
ガラス体の脱水を行なうためには、なるべく低温で脱水
を行なえばよい。ところが現実には、脱水温度を低くし
ていくに従って、多孔質ガラス体中の残留水が多くなっ
てしまう。
In order to dehydrate a porous glass body using a dehydrating agent such as chlorine without increasing defects in the glass, dehydration should be performed at as low a temperature as possible. However, in reality, as the dehydration temperature is lowered, the amount of water remaining in the porous glass body increases.

本発明者等が4々研究の結果、この原因は脱水温度の低
下と共に、活性なCl 原子が減少することにあると判
明した。そこで、低温で活性なCl 原子を増加させる
ことにより、低温でも充分な脱水が行なえる方法を検討
し、塩素又は塩素化合物と一酸化窒素を共存させること
が有効であると見出し、本発明に到ったのである。
As a result of various studies conducted by the present inventors, it has been found that the cause of this is that the number of active Cl atoms decreases as the dehydration temperature decreases. Therefore, we investigated a method that would allow sufficient dehydration even at low temperatures by increasing the number of Cl atoms that are active at low temperatures, and discovered that it is effective to coexist chlorine or chlorine compounds with nitrogen monoxide, leading to the present invention. That's what happened.

−酸化窒素の共存によシ低温でも活性なCl原子が減少
しない理由を、化学反応式を挙げて詳細に説明すると、
まず従来の方法では下記(1)、(2)式によシ脱水反
応が進行すると考えられる・C2l → 2Cl   
          ・・・(1)81−OH+ 01
4 B i + HQL↑      ・−・(2)こ
こで(1)式の塩素が分解する反応の活性化エネルギー
u 57 Kcal  である〔文献: W、 L、 
Jolly1ザ プリンクプルズ オプ インオーガニ
ック ケミストリイ“、マクグロウヒル社、ニューヨー
ク、1976年発行〕。
-The reason why active Cl atoms do not decrease even at low temperatures due to the coexistence of nitrogen oxide is explained in detail by giving a chemical reaction formula.
First, in the conventional method, the dehydration reaction is thought to proceed according to the following equations (1) and (2): C2l → 2Cl
... (1) 81-OH+ 01
4 B i + HQL↑ ・−・(2) Here, the activation energy of the reaction in which chlorine decomposes in formula (1) is u 57 Kcal [References: W, L,
Jolly 1 The Prinkles Op Inorganic Chemistry, published by McGraw-Hill, New York, 1976].

これに対し、本発明の方法では、下記(3)、(4)式
の反応が起っていると考えられる。
On the other hand, in the method of the present invention, reactions of the following formulas (3) and (4) are considered to occur.

C2t+NO→noaz + Cl     ・・・(
3)Sl−oH+Cl→st + HCl↑    ・
・・(4)ここで(3)式の反応の活性化エネルギーニ
22Kcal  である〔文献同上〕。したがって、本
発明の方法でに活性なCl原子が生じるに必要な活性化
エネルギーが従来法のそれのA以下と大幅に減少するの
で、同一温度で行なうならばOL濃度が増加することに
なり、低温であっても充分な脱水が行なえるようになっ
たと考えることができる。そして本発明は従来法よりも
低温での脱水が実現し念ことにより、ガラス中の欠陥生
成を防止でき、残留OHによるロスや、水素雰囲気下又
は放射線下でのロス増を低減した高品質な光フアイバ用
母材を得ることができるのである。
C2t+NO→noaz+Cl...(
3) Sl-oH+Cl→st+HCl↑・
...(4) Here, the activation energy of the reaction of formula (3) is 22 Kcal [Ibid. in the document]. Therefore, the activation energy required to generate active Cl atoms in the method of the present invention is significantly reduced to less than A of that in the conventional method, so if carried out at the same temperature, the OL concentration will increase. It can be considered that sufficient dehydration can now be performed even at low temperatures. Furthermore, the present invention achieves dehydration at a lower temperature than conventional methods, thereby preventing the formation of defects in the glass, reducing loss due to residual OH and increased loss under hydrogen atmosphere or radiation. A base material for optical fiber can be obtained.

本発明における多孔質ガラス体は二酸化ケイ素(SiO
m) t”主要成分とし、その他の成分として例えば二
酸化ゲルマニウム(aeo@ ) 、二酸化チタン(T
i1l )、酸化アルミニウム(At10り、酸化ポロ
ン(Jog )、五酸化燐(Pros )、酸化マグネ
シウム(MgO)、酸化亜鉛(ZnO)等の金属酸化物
、窒X(8)、フッ素(F)等を含んでいてもよい。
The porous glass body in the present invention is silicon dioxide (SiO
m) t” is the main component, and other components include, for example, germanium dioxide (aeo@), titanium dioxide (T
metal oxides such as aluminum oxide (At10), poron oxide (Jog), phosphorus pentoxide (Pros), magnesium oxide (MgO), zinc oxide (ZnO), nitrogen X (8), fluorine (F), etc. May contain.

該多孔質ガラス体のカサ密度1(L2乃至Q、81/鍔
3の範囲内であることが好゛ましい。α2f/cm”未
満でに多孔質ガラス体が割れ易く取扱い困難であり、C
L 817cm”を越えると気泡を含まぬ透明ガラスを
得ることが難かしく、まな、多孔質体中心まで脱水・フ
ッ素添加することが難かしいからである。
It is preferable that the bulk density of the porous glass body is within the range of 1 (L2 to Q, 81/tsuba3. If the bulk density is less than α2f/cm", the porous glass body is easily broken and difficult to handle.
This is because if the length exceeds 817 cm, it is difficult to obtain transparent glass without bubbles, and it is also difficult to dehydrate and add fluorine to the center of the porous body.

このような多孔質ガラス体に、例えばガラス原料ガスを
火炎加水分解反応させてガラス微粒子を生成させ、これ
を軸方向に堆積させて多孔質ガラス体を得るVAD法(
気相軸付法)、上記ガラス微粒子を出発ロンドの表面に
順次堆積し増径させて多孔質ガラス体を得るOvD法(
外付法)、金属アルコラード1−加水分解して所定の容
器中でゲル化した後乾燥することによシ多孔質ガラス体
を得るゾルゲル法、ガラス微粒子を静水圧により加圧成
形して多孔質ガラス体とするプレス法等の種々の公知技
術によって製造されるものでよい。
In such a porous glass body, for example, a glass raw material gas is subjected to a flame hydrolysis reaction to generate glass fine particles, which are then deposited in the axial direction to obtain a porous glass body using the VAD method (
(vapor phase axis attachment method), OvD method (vapor phase axial attachment method), in which the above-mentioned glass particles are sequentially deposited on the surface of the starting iron and the diameter is increased to obtain a porous glass body (
Sol-gel method, in which a porous glass body is obtained by hydrolyzing metal alcolade 1, gelling it in a designated container, and then drying it; a porous glass body is obtained by press-molding glass fine particles using hydrostatic pressure; It may be manufactured by various known techniques such as a pressing method to form a glass body.

本発明においては該多孔質ガラス体を、まず温度500
〜950℃の範囲内で、塩素又は塩素化合物ガスと一酸
化窒素(MO)t−含む不活性ガス雰囲気中に曝して脱
水処理する。温度が500℃未満でに前記(3)式の反
応が不十分にしか起きず、一方、950℃を越えるとガ
ラス中に欠陥を生じさせるので好ましくない。
In the present invention, the porous glass body is first heated to a temperature of 500
Dehydration treatment is carried out by exposing the sample to an inert gas atmosphere containing chlorine or chlorine compound gas and nitrogen monoxide (MO) at a temperature of -950°C. If the temperature is less than 500°C, the reaction of formula (3) will only occur insufficiently, while if it exceeds 950°C, defects will occur in the glass, which is not preferable.

該塩素又は塩素化合物ガスとしては、例えば塩素(C2
り、四塩化炭素(CO4,)、塩化チオニル(EOCl
l )、四塩化ケイ素(51ct4 )、四塩化ゲルマ
ニウム(Ge04 )等が挙げられ、特に塩素又は四塩
化炭素が好ましい。該塩素又に塩素化合物ガスの濃度に
、塩素換算で1容址係以上10容i%以下が好ましく、
1容量%未満でにこれより生じるCl 原子濃度が低く
て脱水が不充分となり易く、また10容量係を越えると
ガラス中に気泡が残り易く好ましくない。該塩素又は塩
素化合物と一酸化窒素との比に、O2原子2個に対しN
o が1個の割合か、前記(3)式において当量関係と
なるので好ましい。
The chlorine or chlorine compound gas is, for example, chlorine (C2
carbon tetrachloride (CO4,), thionyl chloride (EOCl)
1), silicon tetrachloride (51ct4), germanium tetrachloride (Ge04), etc., with chlorine or carbon tetrachloride being particularly preferred. The concentration of the chlorine or chlorine compound gas is preferably 1 volume i% or more and 10 volume i% or less in terms of chlorine,
If it is less than 1% by volume, the resulting Cl 2 atom concentration is low and dehydration tends to be insufficient, and if it exceeds 10% by volume, bubbles tend to remain in the glass, which is not preferable. The ratio of chlorine or chlorine compound to nitrogen monoxide is 2 O atoms to 2 N atoms.
It is preferable that o be 1, since this creates an equivalence relationship in the above formula (3).

なお、四塩化炭素を脱水剤とする場合に框、雰囲気ガス
中にさらに酸素(Os ) t−添加して、遊離炭素(
0)の発生を防ぐ。この時の反応に下記の(5)〜(7
)式のとおりである。
In addition, when carbon tetrachloride is used as a dehydrating agent, additional oxygen (Os) is added to the frame and atmospheric gas to remove free carbon (
0) will be prevented from occurring. The reactions at this time include the following (5) to (7).
) is as follows.

CC26+  o冨  →  2 Ctl +  2 
CO・ ・ ・ (5)C!4+No  →moCl 
+ ct     ・・・(6)st−OH+ CL→
 日1+ HCl          ・・・(7)本
発明における不活性ガスとしては、例えばヘリウム(H
θ)、アルゴ゛ン(Ar )、窒素(Nu)等を用いる
ことができる。
CC26+ otomi → 2 Ctl + 2
CO・ ・ ・ (5)C! 4+No →moCl
+ ct...(6) st-OH+ CL→
Day 1+ HCl (7) As the inert gas in the present invention, for example, helium (H
θ), argon (Ar), nitrogen (Nu), etc. can be used.

以上の脱水処理は多孔質ガラス体の密度、大きさ等に応
じて一概でにないものの[15〜2時間程度行ない、し
かる後に、雰囲気中への塩素又は塩素系化合物ガス及び
−酸化窒素の供給を停止し、不活性ガス雰囲気中でガラ
ス化温度に加熱して、透明ガラス化する。
Although the above dehydration treatment may vary depending on the density, size, etc. of the porous glass body, it is carried out for about 15 to 2 hours, and then chlorine or chlorine-based compound gas and -nitrogen oxide are supplied to the atmosphere. is stopped and heated to the vitrification temperature in an inert gas atmosphere to form transparent vitrification.

〔実施列〕[Implementation row]

実施例1,2及び比較例1〜3 VAD法によシ作製した、平均カサ密度が1217cm
”であり、中心部の組成がSin、94重ii%−Go
O16重t%、周辺部の組成が8101)00重1i%
である多孔質ガラス体(120mφX600mm)を表
の−1〜−5の条件で30分間脱水を行なった。−1〜
−4については、脱水後更に1600℃のHθ雰囲気中
に50分間保持して透明化を行なった後、外径125μ
mにファイバ化し、特性の評価を行なつ九。Na1(比
較例1)はNo ガスを加えた脱水ではあるが、残留O
H濃度が波長1.38μmにおけるロス換算で5. O
dE/kmと高かった。脱水温度が400℃と低かつ九
ためと考えられる。
Examples 1 and 2 and Comparative Examples 1 to 3 Fabricated by VAD method, average bulk density is 1217 cm
”, the composition of the center is Sin, 94% ii%-Go
O16 weight t%, peripheral composition is 8101)00 weight 1i%
A porous glass body (120 mφ x 600 mm) was dehydrated for 30 minutes under the conditions -1 to -5 in the table. -1~
-4, after dehydration, it was further kept in a Hθ atmosphere at 1600℃ for 50 minutes to make it transparent, and the outer diameter was 125μ.
9. Fabricate it into a fiber and evaluate its characteristics. Although Na1 (Comparative Example 1) was dehydrated with the addition of No gas, residual O
The H concentration is 5.5 in terms of loss at a wavelength of 1.38 μm. O
It was as high as dE/km. This is thought to be because the dehydration temperature was as low as 400°C.

−2及びN&3(実施例1及び2)は、実用上問題のな
いレベルの残留OH濃度(10−、:20ppb )で
あり、しかもガラス欠陥の存在を示す波長L52μmで
の吸収ピークに出現せず、ゲルマニウムの蒸発も全く見
られなかつ念。
-2 and N&3 (Examples 1 and 2) have a residual OH concentration (10-,: 20 ppb) at a level that poses no practical problem, and there is no absorption peak at wavelength L52 μm that indicates the presence of glass defects. , there was no visible evaporation of germanium at all.

−4及びNa5(比較列2及び3)に、残留OH濃度に
実用上問題のない値でらつ九が、波長1.52μmでの
ピークが出現すると共に、ゲルマニウムが蒸発し、屈折
率のプロファイルが乱れな。
-4 and Na5 (comparison rows 2 and 3), the residual OH concentration has a value that does not cause any practical problems, but a peak at a wavelength of 1.52 μm appears, germanium evaporates, and the refractive index profile It's chaotic.

なお実用上問題のない残留OR濃度とは、波長1.38
μmでのOH吸収ピークの値が1dB/kmであるのに
対応する2 0 ppb以下をいう。
Note that the residual OR concentration that causes no practical problems is the wavelength of 1.38.
It means 20 ppb or less, which corresponds to an OH absorption peak value of 1 dB/km in μm.

実施列3 OVD法により作製した、平均カサ密度14F/an”
であり、最外周部にTi1l を5重量憾を含むSiO
意からなる多孔質体(100mφ×500 mml )
を、石英炉心管中で温度600℃、C1)10容量嘔、
No 1G容t%、NR80容量係の雰囲気中に30分
間さらして脱水処理し、次に1550℃の■θ雰囲気中
に30分間保持して透明化した。得られ九光ファイバ用
母材は気泡を含まなかった。この母材から外径125μ
mの光ファイバを作製したところ、残留OHによる波長
1.3μmでの吸収は15 aB/kmと実用上問題の
ないレベルであシ、波長1.52μmの吸収ピークは出
現しなかった。また、Tie。
Practical row 3 Average bulk density 14F/an'' produced by OVD method
, and the outermost periphery contains SiO containing 50% of Ti1l.
Porous body (100mφ×500 mml)
, in a quartz furnace tube at a temperature of 600°C, with a volume of C1) of 10,
It was dehydrated by being exposed to an atmosphere of No. 1 G volume t% and NR 80 volume for 30 minutes, and then kept in a 1550° C. ■θ atmosphere for 30 minutes to make it transparent. The obtained base material for nine optical fibers did not contain air bubbles. From this base material, the outer diameter is 125μ
When an optical fiber of m was prepared, the absorption at a wavelength of 1.3 μm due to residual OH was 15 aB/km, a level that poses no problem for practical use, and no absorption peak at a wavelength of 1.52 μm appeared. Also, Tie.

の蒸発も観察されなかった。No evaporation was observed.

実施列4 プレス法により作製し比、平均カサ密度がα7 f/α
3でらり、810,100優からなる多孔質ガラス体(
80WφX 300 mml ) ’ks810炉心管
中で脱水処理、フッ素添加処理、透明化処理t−II次
行なって、光フアイバ母材を得た。脱水条件に、温度6
50℃、ccj4s容量係、Ol 5容量係、No 5
容を優、N885容量%からなる雰囲気中に2時間さら
し友。次に炉内を1)50℃に昇温し、81F、  3
容貸優、He97容t%の雰囲気に3時間さらし、フッ
素を添加し、さらに同じ雰囲気のまま炉温を1550℃
に昇温して1時間加熱して透明化した。以上で得られた
光フアイバ用母材中にに気孔がなく、t2重量係のフッ
素を含んでいた。
Practical row 4 Produced by pressing method, average bulk density is α7 f/α
3, a porous glass body consisting of 810,100 yen (
Dehydration treatment, fluorine addition treatment, and transparentization treatment t-II were then carried out in a 80WφX 300 mml) 'ks810 furnace tube to obtain an optical fiber preform. For dehydration conditions, temperature 6
50℃, ccj4s capacity section, Ol 5 capacity section, No 5
Expose the sample to an atmosphere consisting of 885% N8 by volume for 2 hours. Next, the inside of the furnace was heated to 1) 50℃, 81F, 3
Exposure to an atmosphere containing 97 volume t% He for 3 hours, add fluorine, and then raise the furnace temperature to 1550°C in the same atmosphere.
The mixture was heated for 1 hour to become transparent. The optical fiber base material obtained above had no pores and contained fluorine in the amount of t2 weight.

この光フアイバ用母材の中心に穴を開け、ドーパントヲ
含まない高純度石英ロンド?挿入してフラップスにより
一体化し、導波路構造を作製した。これを線引して外9
125μmのファイバとし、伝送損失を測定し九ところ
、波長1.3μmで(L 32 dB/ kll s波
長1.55μmでα18dB/)cmで1>、OB基に
よる1、 381)m Tノ吸収a CL 2 aB/
kmと低く、又、欠陥存在を示す1.52μmの吸収ピ
ークに生じなかつ友。
Is it possible to drill a hole in the center of this optical fiber base material and use high-purity quartz rond that does not contain dopants? They were inserted and integrated using flaps to create a waveguide structure. Draw this line outside 9
Using a 125 μm fiber, we measured the transmission loss and found that at a wavelength of 1.3 μm, (L 32 dB/kll s and α18 dB/) at a wavelength of 1.55 μm, 1>, 1, 381) m T absorption a due to the OB group. CL 2 aB/
km, and does not occur at the absorption peak of 1.52 μm, which indicates the presence of defects.

実施例5 MAD法により作製しt1平均カサ密度が12 f/c
rm”であり、組成が0eO1)5重量%−At!Os
15 i量%−8iO冨70重、3996である多孔質
ガラス体(60−φX 400 mm )を、石英炉心
管中で温度600℃、Cl、 t o容量%−NO10
容i#係−He80容量優の雰囲気中に30分間さらし
て脱水処理し、次に1600℃のHe雰囲気中に30分
間保持して透明化した。
Example 5 Produced by MAD method with t1 average bulk density of 12 f/c
rm" and the composition is 0eO1) 5% by weight - At!Os
A porous glass body (60-φ x 400 mm) with 15 i amount %-8 iO content 70 weight and 3996 was heated in a quartz furnace tube at a temperature of 600 °C, Cl, to volume %-NO10
Case i# - Dehydration treatment was carried out by exposing the sample to an atmosphere of 80 volumes of He for 30 minutes, and then it was kept in a He atmosphere at 1600° C. for 30 minutes to make it transparent.

得られ走光ファイバ用母材に気泡を含まず、Δn(比屈
折率差)=2%でわった。この母材を市販の高純度石英
管でジャケラティングした後、直径125μmの光ファ
イバとしたところ、該ファイバの残留OHによる波長1
.3μmでの吸収HQ、 56B/kflIと実用上問
題のないレベルであり、波長1.52μmでの吸収ピー
クに出現しなかつ念。
The obtained optical fiber base material did not contain any air bubbles and had a relative refractive index difference of Δn (relative refractive index difference) of 2%. After jacketating this base material with a commercially available high-purity quartz tube, it was made into an optical fiber with a diameter of 125 μm.
.. The absorption HQ at 3 μm is 56 B/kflI, which is a level that poses no practical problem, and the absorption peak at the wavelength of 1.52 μm does not appear.

実施例6 ゾルゲル法によシ作製し念、平均カサ密度がα5 fi
! / ct* ”であシ、1.5重量%の7を含有す
る810章  からなる多孔質ガラス体(30wφx1
ooom−)を、石英炉心管中で温度600℃、01)
10容量係−1a010容1%−1)e80容量僑の雰
囲気中に51)]分間曝して脱水処理し、次に1300
℃のHe雰囲気中に30分間保持して透明化し念。得ら
れた光フアイバ用母材は気泡を含まなかった。この母材
の中心に穴を明け、高純度石英ロンドを挿入してコラッ
プスにより一体化して、導波路構造を作製しな。これを
外径125μmに線引きして7アイパ化し、伝送損失を
測定し九ところ、波長1.5μmで132 dB/km
s波長L 55 pmで(L 1 s IIE/−であ
り、OH基による1、38μmでの吸収に[L2dB/
kfllと低く、また、欠陥存在を示す1.52μmの
吸収ピークは生じなかった。
Example 6 Fabricated using the sol-gel method, the average bulk density was α5 fi
! / ct* "A porous glass body (30wφx1
ooom-) in a quartz furnace tube at a temperature of 600℃, 01)
10 volume - 1a 010 volume 1% - 1) e 80 volume Exposed in an atmosphere for 51)] minutes to dehydrate, then 1300
Keep it in He atmosphere at ℃ for 30 minutes to make it transparent. The obtained optical fiber base material did not contain air bubbles. A hole is made in the center of this base material, a high-purity quartz rond is inserted, and the material is integrated by collapsing to create a waveguide structure. This was drawn to have an outer diameter of 125 μm and made into a 7-eyeper wire, and the transmission loss was measured to be 132 dB/km at a wavelength of 1.5 μm.
s wavelength L 55 pm (L 1 s IIE/-, and absorption at 1.38 μm by OH groups [L2 dB/
The absorption peak at 1.52 μm, which indicates the presence of defects, was not observed.

〔発明の効果〕〔Effect of the invention〕

以上の説明及び実施列、比較列の結果から本発明の温度
範囲と雰囲気ガス条件で脱水処理することにより、残留
01)濃度が1.3μmにおける光吸収に換算してt 
Oan/km以下の光フアイバ用母材が安定して得られ
、また該母材中にはガラス欠陥が少なく、1.52μm
に吸収ピークが出現することがないことが判る。
From the above explanation and the results of the practical and comparative columns, by dehydrating in the temperature range and atmospheric gas conditions of the present invention, the residual 01) concentration was converted to light absorption at 1.3 μm.
Oan/km or less, a base material for optical fiber can be stably obtained, and there are few glass defects in the base material, and the diameter is 1.52 μm.
It can be seen that no absorption peak appears.

従って本発明による光フアイバ用母材から作製された光
ファイバに、低ロスで経時変化が少ない九め海底ケーブ
ル用光ファイバに利用すると非常に効果的である。
Therefore, it is very effective to use the optical fiber produced from the optical fiber base material according to the present invention as an optical fiber for submarine cables with low loss and little change over time.

また、本発明方法は950℃を越える高温では塩素又は
塩素化合物ガスを流さないので、ドーパントの蒸発が殆
んどないため、所望の組成(屈折率分布)が得られると
いう利点があり、これ框一方で製造上の歩留り向上に寄
与し、コスト低減効果が期待できるに加え、炉心管材質
として81Cのように高温では塩素又は塩素化合物と反
応するものでも利用できるという利点もある、という浸
れた方法である。
In addition, since the method of the present invention does not flow chlorine or chlorine compound gas at high temperatures exceeding 950°C, there is almost no evaporation of the dopant, so there is an advantage that the desired composition (refractive index distribution) can be obtained. On the other hand, this sophisticated method contributes to improving production yields and is expected to reduce costs, and also has the advantage that materials such as 81C, which react with chlorine or chlorine compounds at high temperatures, can be used as the core tube material. It is.

Claims (8)

【特許請求の範囲】[Claims] (1)主要成分が二酸化ケイ素である多孔質ガラス体を
、塩素又は塩素化合物と一酸化窒素とを含む不活性ガス
雰囲気中で500℃以上 950℃以下の温度範囲内にて脱水処理し、しかる後雰
囲気への塩素又は塩素化合物と一酸化窒素との供給を停
止して加熱透明化することを特徴とする光ファイバ用母
材の製造方法。
(1) A porous glass body whose main component is silicon dioxide is dehydrated in an inert gas atmosphere containing chlorine or a chlorine compound and nitrogen monoxide within a temperature range of 500°C or more and 950°C or less, and then 1. A method for producing an optical fiber base material, which comprises heating and making the base material transparent by stopping the supply of chlorine or a chlorine compound and nitrogen monoxide to the post-atmosphere.
(2)多孔質ガラス体がGeO_2、TiO_2、Al
_2O_3のいずれか1以上を含むことを特徴とする特
許請求の範囲第(1)項記載の光ファイバ用母材の製造
方法。
(2) Porous glass body is made of GeO_2, TiO_2, Al
The method for manufacturing an optical fiber preform according to claim (1), characterized in that it contains one or more of _2O_3.
(3)多孔質ガラス体のカサ密度が0.2g/cm^3
乃至0.8g/cm^3であることを特徴とする特許請
求の範囲第(1)又は(2)項に記載の光ファイバ用母
材の製造方法。
(3) The bulk density of the porous glass body is 0.2 g/cm^3
The method for manufacturing an optical fiber preform according to claim 1 or 2, wherein the preform is 0.8 g/cm^3 to 0.8 g/cm^3.
(4)多孔質ガラス体がVAD法、OVD法、ゾルゲル
法又はブレス法により作製されることを特徴とする特許
請求の範囲第(1)乃至(3)項のいずれかに記載の光
ファイバ用母材の製造方法。
(4) For the optical fiber according to any one of claims (1) to (3), wherein the porous glass body is produced by a VAD method, an OVD method, a sol-gel method, or a press method. Method of manufacturing base material.
(5)塩素又は塩素化合物の濃度がCl_2換算で1容
量%以上10容量%以下であることを特徴とする特許請
求の範囲第(1)項記載の光ファイバ用母材の製造方法
(5) The method for manufacturing an optical fiber preform according to claim (1), wherein the concentration of chlorine or a chlorine compound is 1% by volume or more and 10% by volume or less in terms of Cl_2.
(6)塩素又は塩素化合物と一酸化窒素NO^7との比
がCl原子2に対しNOが1であることを特徴とする特
許請求の範囲第(1)又は(5)項に記載の光フアイバ
用母材の製造方法。
(6) The light according to claim (1) or (5), characterized in that the ratio of chlorine or chlorine compound to nitrogen monoxide NO^7 is 1 NO to 2 Cl atoms. Method for manufacturing fiber base material.
(7)塩素化合物が四塩化炭素であることを特徴とする
特許請求の範囲第(1)、(5)又は(6)項のいずれ
かに記載の光ファイバ用母材の製造方法。
(7) The method for manufacturing an optical fiber preform according to any one of claims (1), (5), and (6), wherein the chlorine compound is carbon tetrachloride.
(8)不活性ガスがヘリウム、アルゴン又は窒素である
ことを特徴とする特許請求の範囲第(1)項記載の光フ
ァイバ用母材の製造方法。
(8) The method for manufacturing an optical fiber preform according to claim (1), wherein the inert gas is helium, argon, or nitrogen.
JP30327487A 1987-12-02 1987-12-02 Production of optical fiber preform Pending JPH01145346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30327487A JPH01145346A (en) 1987-12-02 1987-12-02 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30327487A JPH01145346A (en) 1987-12-02 1987-12-02 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH01145346A true JPH01145346A (en) 1989-06-07

Family

ID=17918987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30327487A Pending JPH01145346A (en) 1987-12-02 1987-12-02 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH01145346A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
WO2005097693A1 (en) * 2004-04-07 2005-10-20 Heraeus Tenevo Gmbh Method for producing a hollow cylinder from synthetic quartz glass, using a retaining device
JP2007137706A (en) * 2005-11-17 2007-06-07 Fujikura Ltd Manufacturing method for optical fiber
JP2008247741A (en) * 2003-06-25 2008-10-16 Fujikura Ltd Method and apparatus for producing base material of optical fiber
WO2012021317A1 (en) * 2010-08-12 2012-02-16 Corning Incorporated Treatment of silica based soot or an article made of silica based soot

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
WO2002026646A3 (en) * 2000-09-27 2002-10-31 Corning Inc Process for drying porous glass preforms
JP2008247741A (en) * 2003-06-25 2008-10-16 Fujikura Ltd Method and apparatus for producing base material of optical fiber
JP4536805B2 (en) * 2003-06-25 2010-09-01 株式会社フジクラ Optical fiber preform manufacturing method and apparatus
US7921676B2 (en) 2003-06-25 2011-04-12 Fujikura Ltd. Method for manufacturing optical fiber preform and optical fiber preform apparatus
US7946132B2 (en) 2003-06-25 2011-05-24 Fujikura Ltd. Method for manufacturing optical fiber preform and optical fiber preform apparatus
WO2005097693A1 (en) * 2004-04-07 2005-10-20 Heraeus Tenevo Gmbh Method for producing a hollow cylinder from synthetic quartz glass, using a retaining device
JP2007137706A (en) * 2005-11-17 2007-06-07 Fujikura Ltd Manufacturing method for optical fiber
WO2012021317A1 (en) * 2010-08-12 2012-02-16 Corning Incorporated Treatment of silica based soot or an article made of silica based soot
CN103068754A (en) * 2010-08-12 2013-04-24 康宁股份有限公司 Treatment of silica based soot or an article made of silica based soot
JP2013535404A (en) * 2010-08-12 2013-09-12 コーニング インコーポレイテッド Treatment of silica-based soot or articles made of silica-based soot
US10829403B2 (en) 2010-08-12 2020-11-10 Corning Incorporated Treatment of silica based soot or an article made of silica based soot

Similar Documents

Publication Publication Date Title
US4680046A (en) Method of preparing preforms for optical fibers
US4125388A (en) Method of making optical waveguides
US4979971A (en) Method for producing glass preform for optical fiber
JPS60260434A (en) Manufacture of anhydrous glass preform for optical transmission
US5221309A (en) Method for producing glass preform for optical fiber
JPS61247633A (en) Production of glass base material for optical fiber
JPS647015B2 (en)
KR100789124B1 (en) A high-purity pyrogenically prepared silicon dioxide, a process for the preparation of the same, and a silica glass and articles obtained by using the same
EP0167054A1 (en) Method for producing glass preform for optical fiber
JPH01145346A (en) Production of optical fiber preform
US20020108404A1 (en) Drying agent and improved process for drying soot preforms
JPS61191544A (en) Quartz base optical fiber
JPS6289B2 (en)
JPS59500513A (en) doped optical fiber
JPH0324415B2 (en)
GB1598760A (en) Optical fibre preforms and their manufacture
JPH03279238A (en) Quartz glass for light transmission and production thereof
US20230167002A1 (en) Optical fibers and method of making the same
JPH10218627A (en) Production of glass and optical fiber
JPH0425212B2 (en)
JP2000327348A (en) Glass for optical part
JPH0469569B2 (en)
JPH0233657B2 (en) TIO2GANJUHIKARIFUAIBANOSEIZOHOHO
JPH0813689B2 (en) Manufacturing method of optical fiber preform
JP2695556B2 (en) Method of manufacturing base material for optical fiber