JPH10218627A - Production of glass and optical fiber - Google Patents

Production of glass and optical fiber

Info

Publication number
JPH10218627A
JPH10218627A JP2297397A JP2297397A JPH10218627A JP H10218627 A JPH10218627 A JP H10218627A JP 2297397 A JP2297397 A JP 2297397A JP 2297397 A JP2297397 A JP 2297397A JP H10218627 A JPH10218627 A JP H10218627A
Authority
JP
Japan
Prior art keywords
glass
heating
heavy water
vessel
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2297397A
Other languages
Japanese (ja)
Inventor
Kyozo Tsujikawa
恭三 辻川
Masaharu Ohashi
正治 大橋
Yoshiaki Miyajima
義昭 宮島
Hide Watanabe
秀 渡辺
Kentaro Nouchi
健太郎 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
SWCC Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Showa Electric Wire and Cable Co filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2297397A priority Critical patent/JPH10218627A/en
Publication of JPH10218627A publication Critical patent/JPH10218627A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1095Thermal after-treatment of beads, e.g. tempering, crystallisation, annealing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/22Doped silica-based glasses doped with non-metals other than boron or fluorine doped with deuterium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the production of an optical fiber that is reduced in OH group content and is excellent in light-transmission characteristics by placing glass starting materials or porous glass material formed by depositing fine glass particles and heavy water in a pressure and heating vessel, heating them until the vessel is saturated with the water vapor under pressure and continuing the heating in an inert gas atmosphere containing heavy water. SOLUTION: Raw materials for glass or a porous glass soot body formulated to a desired composition 9 and heavy water in an amount of 3-10wt.% based on the porous soot body are charged in a crucible 8 and they are mixed. Then, the crucible is placed in a pressure and heating vessel 12 having a heater 11 embedded therein and heated at the temperature that can saturate the vessel 12 with the steam under the pressure of about 5-10kgf/cm<2> (at 150-240 deg.C) for more than 2 days. Then, the glass raw materials or porous glass soot 9 in the crucible 8 is dried, taken out of the pressure vessel 12, transferred to another heating furnace and heated in an inert gas atmosphere or the same containing heavy water at 500-1,000 deg.C for more than 2 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラスおよび光フ
ァイバの製造方法に係り、さらに詳しくは、OH基含有量
の少ないガラスおよび光ファイバの製造方法に関する。
The present invention relates to a method for producing glass and an optical fiber, and more particularly, to a method for producing glass and an optical fiber having a small OH group content.

【0002】[0002]

【従来の技術】一般に光ファイバにおいては、その中に
含まれる水(OH基)が原因で伝送特性が低下することが
知られており、かかるOH基を低減すべく様々な製造技術
の開発が進められている。
2. Description of the Related Art It is generally known that in an optical fiber, transmission characteristics deteriorate due to water (OH group) contained therein, and various manufacturing techniques have been developed to reduce such OH group. Is underway.

【0003】すなわち、例えば、特開平1-124805号公報
には、石英系光ファイバの製造において、いわゆる外付
法(OVD 法=Outside Vapor-Phase Deposition)や気相
軸付法(VAD 法=Vapor-Phase Axial Deposition)など
により製造したガラス微粒子堆積体(多孔質母材)を所
定温度の加熱炉中に保持し、ここに D2 O (重水)の蒸
気を送り込むことにより、多孔質母材中の H2 O (水)
を D2 O に置換し、さらに塩素系ガスによる脱水処理を
施して、残留する H2 O や置換した D2 O を除去低減す
る方法が記載されている。
[0003] That is, for example, Japanese Patent Application Laid-Open No. 1-124805 discloses that in manufacturing a silica-based optical fiber, a so-called external method (OVD method = Outside Vapor-Phase Deposition) or a gas-phase shaft method (VAD method = Vapor). held -phase Axial deposition) soot glass deposit body produced by such a (porous base material) in the oven at a predetermined temperature, here by feeding the vapor of D 2 O (deuterated water), the porous base material of H 2 O (water)
Is replaced with D 2 O, and further subjected to a dehydration treatment with a chlorine-based gas to remove and reduce residual H 2 O and substituted D 2 O.

【0004】また、多成分ガラス系光ファイバの製造に
おいて、図4に示すように、加熱炉1内にセットしたル
ツボ2内で溶融しているガラス3中に、パイプ4を通じ
て D2 O 5をCO2 ガスや N2 ガスなどの乾燥ガス6をキ
ャリアとして送り込むことにより、OH基をOD基に置換す
る方法も提案されている。図4において、7は、 D2O
収容槽を示している。
In the production of a multi-component glass optical fiber, as shown in FIG. 4, D 2 O 5 is passed through a pipe 4 into a glass 3 melted in a crucible 2 set in a heating furnace 1. A method has also been proposed in which an OH group is replaced with an OD group by sending a dry gas 6 such as CO 2 gas or N 2 gas as a carrier. In FIG. 4, 7 is D 2 O
Shows a storage tank.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前者の
方法では、加熱炉中に多量の D2 O の蒸気を送り込むに
もかかわらず H2 O の D2 O への置換率がさほど高くな
く、しかも、塩素系ガスによる脱水効果にも限界がある
ため、OH基の含有量を十分に低下させることは困難であ
る。
However, in the former method, the replacement ratio of H 2 O to D 2 O is not so high despite the fact that a large amount of D 2 O vapor is fed into the heating furnace. Also, since the dehydration effect of the chlorine-based gas is limited, it is difficult to sufficiently reduce the OH group content.

【0006】一方、後者の方法も、OH基のOD基への変換
率は90%程度であり、そのうえ、パイプ4を直接溶融ガ
ラス3中に挿入するため、異物混入やパイプの溶融によ
るガラス組成のずれを招くおそれがある。
On the other hand, in the latter method, the conversion rate of OH groups to OD groups is about 90%. In addition, since the pipe 4 is directly inserted into the molten glass 3, the glass composition due to foreign matter mixing and melting of the pipe is also considered. May cause misalignment.

【0007】本発明はこのような従来の事情に対処して
なされたもので、OH基含有量が少なく、伝送特性の向上
した光ファイバの製造を可能とするガラスの製造方法、
およびこれを用いた光ファイバの製造方法を提供するこ
とを目的とする。
The present invention has been made in view of such a conventional situation, and has a method of manufacturing a glass capable of manufacturing an optical fiber having a low OH group content and improved transmission characteristics.
And a method for manufacturing an optical fiber using the same.

【0008】[0008]

【課題を解決するための手段】本願の第1の発明は、ガ
ラス原料、もしくはガラス微粒子を堆積させて得られた
多孔質体をガラス化処理することからなるガラス製造方
法において、前記ガラス原料もしくは多孔質体のガラス
化処理に先立って、該ガラス原料もしくは多孔質体を重
水とともに加圧加熱容器に収容し、加圧下で水蒸気が飽
和する温度で加熱した後、不活性ガスもしくは重水を含
む不活性ガス雰囲気下で 500℃〜1000℃の温度で加熱す
ることを特徴とする。
According to a first aspect of the present invention, there is provided a glass production method comprising vitrifying a glass material or a porous body obtained by depositing glass fine particles. Prior to the vitrification treatment of the porous body, the glass raw material or the porous body is housed in a pressurized heating vessel together with heavy water, heated under pressure at a temperature at which water vapor is saturated, and then heated with an inert gas or heavy water. It is characterized by heating at a temperature of 500 ° C. to 1000 ° C. in an active gas atmosphere.

【0009】また、本願の第2の発明は、ガラス原料、
もしくはガラス微粒子を堆積させて得られた多孔質体を
ガラス化処理する工程を含む光ファイバの製造方法にお
いて、前記ガラス原料もしくは多孔質体のガラス化処理
に先立って、該ガラス原料もしくは多孔質体を重水とと
もに加圧加熱容器に収容し、加圧下で水蒸気が飽和する
温度で加熱した後、不活性ガスもしくは重水を含む不活
性ガス雰囲気下で 500℃〜1000℃の温度で加熱すること
を特徴とする。
Further, the second invention of the present application is a glass raw material,
Alternatively, in a method for producing an optical fiber including a step of vitrifying a porous body obtained by depositing glass fine particles, prior to vitrification of the glass raw material or the porous body, Is stored in a pressurized heating container together with heavy water, heated at a temperature at which water vapor is saturated under pressure, and then heated at a temperature of 500 ° C to 1000 ° C in an inert gas atmosphere containing an inert gas or heavy water. And

【0010】本発明においては、ガラス原料、もしくは
ガラス微粒子を堆積させて得られた多孔質体を重水とと
もに加圧加熱容器に収容し、加圧下で水蒸気が飽和する
温度で加熱することにより、ガラス原料や多孔質体の内
部にまで十分に重水もしくは重水ガスが拡散され、ま
た、不活性ガスもしくは重水を含む不活性ガス雰囲気下
で 500℃〜1000℃の温度で加熱することにより、内部に
まで拡散された重水もしくは重水蒸気によるOH基のOD基
への置換が促進されるため、ガラス原料や多孔質体中に
含まれるOH基を高率でOD基に置換することができ、OH基
含有量の少ない、したがってOH基に起因する吸収損失の
低いガラスあるいは光ファイバを得ることができる。こ
のような方法においては、重水の使用量が少なくてすむ
うえ、従来法におけるようパイプの挿入による不純物の
混入や組成のずれも防止される。
In the present invention, a glass material or a porous body obtained by depositing glass fine particles is housed together with heavy water in a pressurized and heated vessel, and heated under pressure to a temperature at which water vapor is saturated, whereby the glass is heated. Heavy water or heavy water gas is sufficiently diffused to the inside of the raw material or the porous body. The replacement of OH groups with OD groups by diffused heavy water or heavy steam is promoted, so that OH groups contained in glass raw materials and porous materials can be replaced with OD groups at a high rate, and OH groups containing It is possible to obtain a glass or an optical fiber having a small amount and, therefore, having a low absorption loss due to OH groups. In such a method, the amount of heavy water used is small, and the contamination of impurities and the deviation of the composition due to the insertion of the pipe as in the conventional method are prevented.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明の、いわゆる溶融法による
ガラスの製造方法の一例を示す図である。
FIG. 1 is a diagram showing an example of a method for producing glass by a so-called melting method according to the present invention.

【0013】図1に示すように、本発明においては、ル
ツボ8に所望の組成に調合したガラス原料9と D2 O 1
0を投入し、混合した後、ヒータ11を内蔵した加圧加
熱容器12に入れ、 5kgf/cm2 〜10kgf/cm2 程度の加圧
下で水蒸気が飽和する温度、すなわち、 150℃〜 240℃
程度の温度で加熱する。加熱時間はガラス原料9の組成
や量にもよるが、少なくとも 2日間以上加熱することが
望ましい。また、ガラス原料9に対する D2 O 10の割
合は、 3wt%〜10wt%程度が適当である。なお、ここで
使用されるガラス原料9には、粉末状の未処理のガラス
原料のほか、このような粉末状のガラス原料を乾燥もし
くは仮焼結させたもの、あるいは、一旦溶融させてガラ
ス化したものを粉砕したガラス粉末などが用いられる。
As shown in FIG. 1, in the present invention, a crucible 8 is mixed with a glass raw material 9 mixed with a desired composition and D 2 O 1.
0 were charged, after mixing, placed in a pressure heating vessel 12 with a built-in heater 11, 5kgf / cm 2 ~10kgf / cm 2 about the temperature at which water vapor is saturated under pressure, i.e., 0.99 ° C. ~ 240 ° C.
Heat at about the temperature. The heating time depends on the composition and the amount of the glass raw material 9, but it is preferable to heat it for at least two days. The ratio of D 2 O 10 to the glass raw material 9 is suitably about 3 wt% to 10 wt%. The glass raw material 9 used here is not only a powdery untreated glass raw material, but also a powdered or dried glass raw material, or a glass material which is once melted and vitrified. Glass powder or the like obtained by pulverizing the crushed material is used.

【0014】次いで、場合によっては、乾燥ガスを送る
などの方法により、ルツボ8内のガラス原料9を乾燥さ
せた後、加圧加熱容器12より取り出し、別の加熱炉に
移し、 N2 ガスなどの不活性ガス、望ましくは D2 O を
含んだ不活性ガス雰囲気下で、かつ 500℃〜1000℃程度
の温度で通常 2時間以上加熱処理する。この処理によ
り、ガラス原料中のOH基はOD基に置換される。
Next, if necessary, after drying the glass raw material 9 in the crucible 8 by a method such as sending dry gas, the glass raw material 9 is taken out of the pressurized heating vessel 12, transferred to another heating furnace, and subjected to N 2 gas or the like. In an inert gas atmosphere containing an inert gas, preferably D 2 O, and a temperature of about 500 ° C. to 1000 ° C., heat treatment is usually performed for 2 hours or more. By this treatment, OH groups in the glass raw material are replaced with OD groups.

【0015】この後、望ましくは、不活性ガスもしくは
D2 O を含んだ不活性ガス雰囲気下を維持したまま、通
常のガラス化処理、すなわち、ガラス原料の組成に応じ
た溶融、清澄、冷却の各工程を行うことにより、所望の
ガラスが製造される。
Thereafter, desirably, an inert gas or
While maintaining the inert gas atmosphere containing D 2 O, a normal vitrification treatment, that is, a melting, refining, and cooling process in accordance with the composition of the glass raw material is performed to produce a desired glass. You.

【0016】また、得られたガラスを用いて、二重るつ
ぼ法やロッドインチューブ法などにより、光ファイバを
製造することができる。
Using the obtained glass, an optical fiber can be manufactured by a double crucible method, a rod-in-tube method, or the like.

【0017】このようにして得られたガラスあるいは光
ファイバは、原料中に含まれていたOH基のほとんどがOD
基に置換されており、OH基に起因する吸収損失が低減さ
れる。また、従来法のようにパイプを挿入しないため、
不純物の混入やパイプの溶融にともなうガラス組成の変
化も防止される。
In the glass or optical fiber obtained in this way, most of the OH groups contained in the raw material are OD.
And the absorption loss due to the OH group is reduced. Also, since the pipe is not inserted unlike the conventional method,
Changes in glass composition due to contamination of impurities and melting of the pipe are also prevented.

【0018】次に、本発明による、ガラス微粒子を堆積
させて得られた多孔質体から光ファイバ用母材を製造す
る方法の一例を図2を用いて説明する。
Next, an example of a method for producing a preform for an optical fiber from a porous body obtained by depositing glass fine particles according to the present invention will be described with reference to FIG.

【0019】この例においては、まず、外付法、気相軸
付法などにより所望の組成のガラス微粒子堆積体(多孔
質母材)を作製した後、この多孔質母材13を、図2に
示すように、 D2 O 10を入れたルツボ14の上蓋15
に D2 O と非接触的に吊し、ヒータ11を内蔵した加圧
加熱容器12に投入する。以下、上記の例と同様にし
て、 5kgf/cm2 〜10kgf/cm2 程度の加圧下で水蒸気が飽
和する温度で加熱した後、必要に応じて乾燥させ、次い
で、別の加熱炉に移し、 N2 ガスなどの不活性ガス、望
ましくは D2 O を含んだ不活性ガス雰囲気下、 500℃〜
1000℃程度の温度で 2時間以上加熱処理する。この後、
必要に応じて脱水処理を施した後、常法により透明ガラ
ス化処理することにより、OH基のほとんどがOD基に置換
された光ファイバ用ガラス母材を得ることができ、これ
を用いてOH基に起因する吸収損失の少ない伝送特性に優
れた光ファイバを得ることができる。
In this example, first, a glass fine particle deposit (porous base material) having a desired composition is prepared by an external method, a gas phase attaching method, or the like, and then the porous base material 13 is replaced with a porous base material 13 shown in FIG. As shown in the figure, the upper lid 15 of the crucible 14 containing D 2 O 10
D 2 O and a non-contact manner hung, charged into pressure heating container 12 with a built-in heater 11 to. Thereafter, in the same manner as the above example, after the steam in 5kgf / cm 2 ~10kgf / cm 2 approximately under pressure and heated at a temperature to be saturated, dried if necessary, then transferred to another furnace, Under an inert gas atmosphere containing N 2 gas or the like, preferably D 2 O,
Heat treatment at a temperature of about 1000 ° C for 2 hours or more. After this,
After performing a dehydration treatment as needed, by performing a transparent vitrification treatment by an ordinary method, it is possible to obtain a glass preform for an optical fiber in which most of the OH groups are substituted with OD groups, It is possible to obtain an optical fiber having excellent transmission characteristics with little absorption loss due to the base.

【0020】なお、本発明においては、OH基およびOD基
の絶対量を減少させるために、乾燥後の熱処理の後、加
熱を継続したまま加熱炉内を真空引きするようにしても
よい。これにより、OH基の量をさらに減少させることが
できるとともに、OD基の量も減らすことができ、広い波
長に亘って低損失なガラスや光ファイバを得ることがで
きる。
In the present invention, in order to reduce the absolute amounts of OH groups and OD groups, after the heat treatment after drying, the inside of the heating furnace may be evacuated while continuing the heating. As a result, the amount of OH groups can be further reduced, and the amount of OD groups can be reduced, so that glass and optical fibers with low loss over a wide wavelength range can be obtained.

【0021】[0021]

【実施例】次に、本発明の実施例を記載する。Next, examples of the present invention will be described.

【0022】実施例1 SiO2 、Al(OH)3 、およびNa2 CO3 とこれらの総重量の1
0wt%の D2 O とをルツボに入れて混合し、これを図1
に示したような加圧加熱容器12内にセットし、 9kgf/
cm2 の加圧下、 240℃の温度で 2日間加熱した。乾燥
後、加圧加熱容器12より取り出したガラス原料を、加
熱炉に投入し、D 2 O 中を通した N2 ガス雰囲気下、 8
30℃での温度で 2時間加熱した。次いで、1400℃まで昇
温し、 6時間清澄を行なった後、徐冷して、多成分ガラ
ス(Na-Al-Si-O系ガラス)を得た。
Example 1 SiO 2 , Al (OH) 3 , and Na 2 CO 3 and one part of their total weight
0 wt% of D 2 O was mixed in a crucible and mixed.
9kgf /
Heated at a temperature of 240 ° C. under a pressure of cm 2 for 2 days. After drying, the glass raw material taken out from the pressurized heating vessel 12 is put into a heating furnace, and is passed through a D 2 O atmosphere under a N 2 gas atmosphere.
Heated at 30 ° C. for 2 hours. Next, the temperature was raised to 1400 ° C., clarification was performed for 6 hours, and then the mixture was gradually cooled to obtain a multi-component glass (Na—Al—Si—O glass).

【0023】得られたガラスの透過率−波長特性を図3
(A)に示す。
FIG. 3 shows the transmittance-wavelength characteristics of the obtained glass.
It is shown in (A).

【0024】また、比較のために、OD基置換を行わなか
った同じ組成の多成分ガラス、すなわち、ガラス原料を
D 2 O により処理することなくそのまま溶融して得たガ
ラスの透過率−波長特性を図3(B)に示す。
For comparison, a multi-component glass having the same composition without OD group substitution, that is, a glass raw material was used.
FIG. 3B shows the transmittance-wavelength characteristics of the glass obtained by melting as it is without treatment with D 2 O.

【0025】これらの図からも明らかなように、実施例
のガラスでは、OH基に起因する2.9μm付近の吸収が減
少し、OD基に起因する 3.8μm付近の吸収が増加してい
る。 実施例2 気相軸付法により作成した石英系光ファイバ用多孔質母
材を、図2に示したように、 D2 O 14を入れたルツボ
15に吊して加圧加熱容器12内にセットし、9kgf/cm
2 の加圧下、 240℃の温度で 2日間加熱した。乾燥後、
加圧加熱容器12より取り出した多孔質母材を、加熱炉
に投入し、D 2 O 中を通した N2 ガス雰囲気下、 950℃
で 5時間加熱した。次いで、1400℃まで昇温し焼結させ
て、石英系光ファイバ用母材を得た。
As is clear from these figures, in the glasses of the examples, the absorption around 2.9 μm due to the OH group decreases and the absorption around 3.8 μm due to the OD group increases. Example 2 As shown in FIG. 2, a porous preform for a silica-based optical fiber prepared by a gas-phase shaping method was suspended in a crucible 15 containing D 2 O 14 and placed in a pressurized heating vessel 12. Set, 9kgf / cm
2 under pressure, and heated for 2 days at a temperature of 240 ° C.. After drying,
The porous preform taken out from the pressurized heating container 12 is put into a heating furnace, and is heated at 950 ° C. in a N 2 gas atmosphere passing through D 2 O.
For 5 hours. Next, the temperature was raised to 1400 ° C. and sintering was performed to obtain a base material for a silica-based optical fiber.

【0026】このようにして得られた母材中のOH基およ
びOD基の含有量を測定したところ、OH基が2ppm、OD基が
45ppmであった。
When the contents of OH groups and OD groups in the base material thus obtained were measured, the OH groups were 2 ppm and the OD groups were
It was 45 ppm.

【0027】比較例 比較のため、加圧加熱容器12内の加圧を行なわず、ま
た、加熱炉内をD 2 O中を通さない N2 ガス雰囲気下に
保持するようにした以外は、実施例2の場合と同様にし
て石英系光ファイバ用母材を製造したところ、OH基含有
量は 40ppmであった。
COMPARATIVE EXAMPLE For the purpose of comparison, pressurization in the pressurized heating vessel 12 was not performed, and the heating furnace was maintained under an N 2 gas atmosphere that did not pass through D 2 O. When a preform for a silica-based optical fiber was manufactured in the same manner as in Example 2, the OH group content was 40 ppm.

【0028】[0028]

【発明の効果】以上の実施例からも明らかなように、本
発明によれば、ガラス中のOH基を高率でOD基に置換する
ことができるため、OH基に起因する吸収損失の低いガラ
スあるいは光ファイバを得ることができる。
As is clear from the above examples, according to the present invention, the OH groups in the glass can be replaced by OD groups at a high rate, so that the absorption loss due to the OH groups is low. Glass or optical fibers can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガラスの製造方法の一例を示す
図。
FIG. 1 is a diagram showing an example of a method for producing glass according to the present invention.

【図2】本発明による光ファイバ用母材の製造方法の一
例を示す図。
FIG. 2 is a diagram showing an example of a method for manufacturing an optical fiber preform according to the present invention.

【図3】(A)は実施例で得られたガラスの透過率−波
長特性を示すグラフ、(B)は比較例のガラスの透過率
−波長特性を示すグラフ。
3A is a graph showing transmittance-wavelength characteristics of the glass obtained in the example, and FIG. 3B is a graph showing transmittance-wavelength characteristics of the glass of the comparative example.

【図4】従来のガラスの製造方法を示す図。FIG. 4 is a view showing a conventional glass manufacturing method.

【符号の説明】[Explanation of symbols]

8、14………ルツボ 9………ガラス原料 10……… D2 O 12………加圧加熱容器 13………多孔質母材8,14 ......... crucible 9 ......... frit 10 ......... D 2 O 12 ......... pressure heating container 13 ......... porous preform

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 正治 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 宮島 義昭 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 渡辺 秀 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 野内 健太郎 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaharu Ohashi 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Telegraph and Telephone Corporation (72) Inventor Yoshiaki Miyajima 3-192, Nishishinjuku, Shinjuku-ku, Tokyo No. Nippon Telegraph and Telephone Co., Ltd. No. 1-1, Showa Electric Wire & Cable Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス原料、もしくはガラス微粒子を堆
積させて得られた多孔質体をガラス化処理することから
なるガラスの製造方法において、前記ガラス原料もしく
は多孔質体のガラス化処理に先立って、該ガラス原料も
しくは多孔質体を重水とともに加圧加熱容器に収容し、
加圧下で水蒸気が飽和する温度で加熱した後、不活性ガ
スもしくは重水を含む不活性ガス雰囲気下で 500℃〜10
00℃の温度で加熱することを特徴とするガラス製造方
法。
In a method for producing glass, which comprises vitrifying a glass material or a porous body obtained by depositing glass fine particles, prior to vitrifying the glass material or the porous body, The glass material or the porous body is housed in a pressurized heating container together with heavy water,
After heating at a temperature at which water vapor is saturated under pressure, 500 ° C to 10 ° C in an inert gas atmosphere containing an inert gas or heavy water
A glass manufacturing method characterized by heating at a temperature of 00 ° C.
【請求項2】 ガラス原料、もしくはガラス微粒子を堆
積させて得られた多孔質体をガラス化処理する工程を含
む光ファイバの製造方法において、前記ガラス原料もし
くは多孔質体のガラス化処理に先立って、該ガラス原料
もしくは多孔質体を重水とともに加圧加熱容器に収容
し、加圧下で水蒸気が飽和する温度で加熱した後、不活
性ガスもしくは重水を含む不活性ガス雰囲気下で 500℃
〜1000℃の温度で加熱することを特徴とする光ファイバ
の製造方法。
2. A method for producing an optical fiber, comprising the step of vitrifying a glass material or a porous body obtained by depositing glass fine particles, prior to vitrifying the glass material or the porous body. The glass raw material or the porous body is housed in a pressurized heating vessel together with heavy water, heated at a temperature at which water vapor is saturated under pressure, and then heated to 500 ° C. in an inert gas atmosphere containing an inert gas or heavy water.
A method for producing an optical fiber, comprising heating at a temperature of 1000C.
JP2297397A 1997-02-05 1997-02-05 Production of glass and optical fiber Withdrawn JPH10218627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2297397A JPH10218627A (en) 1997-02-05 1997-02-05 Production of glass and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2297397A JPH10218627A (en) 1997-02-05 1997-02-05 Production of glass and optical fiber

Publications (1)

Publication Number Publication Date
JPH10218627A true JPH10218627A (en) 1998-08-18

Family

ID=12097517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297397A Withdrawn JPH10218627A (en) 1997-02-05 1997-02-05 Production of glass and optical fiber

Country Status (1)

Country Link
JP (1) JPH10218627A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380178C (en) * 2003-06-10 2008-04-09 日本电信电话株式会社 Electrooptic modulation element
JP2009514774A (en) * 2005-11-07 2009-04-09 コーニング インコーポレイテッド Deuteroxyl-doped quartz glass, optical member having the glass, lithography system, and method for producing the glass
JP2010528960A (en) * 2007-05-09 2010-08-26 コーニング インコーポレイテッド Glass with low OH and OD levels
JP2013075827A (en) * 2005-11-07 2013-04-25 Corning Inc Deuteroxyl-doped silica glass, optical member and lithographic system comprising the glass and method for making the glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380178C (en) * 2003-06-10 2008-04-09 日本电信电话株式会社 Electrooptic modulation element
JP2009514774A (en) * 2005-11-07 2009-04-09 コーニング インコーポレイテッド Deuteroxyl-doped quartz glass, optical member having the glass, lithography system, and method for producing the glass
JP2013075827A (en) * 2005-11-07 2013-04-25 Corning Inc Deuteroxyl-doped silica glass, optical member and lithographic system comprising the glass and method for making the glass
JP2017186254A (en) * 2005-11-07 2017-10-12 コーニング インコーポレイテッド Deuteroxyl-doped silica glass, optical member and lithographic system comprising the same, and method of making the same
JP2010528960A (en) * 2007-05-09 2010-08-26 コーニング インコーポレイテッド Glass with low OH and OD levels
KR101494477B1 (en) * 2007-05-09 2015-02-17 코닝 인코포레이티드 Glasses having low OH, OD levels

Similar Documents

Publication Publication Date Title
US5395413A (en) Method for producing fused silica with low sodium ion contamination level
US5145510A (en) Silica glass powder and a method for its production and a silica glass body product made thereof
JPS632901B2 (en)
WO2006068940A2 (en) Method of making alkali metal silica glass, feedstock, and glass article formed therefrom
JPS647015B2 (en)
KR890001123B1 (en) Method for crystalization of glass preform
JPH10218627A (en) Production of glass and optical fiber
JP3707937B2 (en) Glass and optical fiber manufacturing method
JPS60260436A (en) Manufacture of glass base material for optical fiber
JPH01145346A (en) Production of optical fiber preform
JPH03279238A (en) Quartz glass for light transmission and production thereof
JPS6289B2 (en)
JPH0324415B2 (en)
JPH0426523A (en) Production of optical fiber
JPS599497B2 (en) Optical glass manufacturing method
JPS6128612B2 (en)
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JPH0667765B2 (en) Quartz glass manufacturing method and manufacturing apparatus
JPS63242938A (en) Storage of porous preform for optical fiber
JPH01294548A (en) Production of optical fiber preform
JPH06219757A (en) Preparation of dope glass
JPS63176325A (en) Production of glass preform for optical fiber
JPS583981B2 (en) Method of manufacturing non-porous fused glass objects
JPS62288129A (en) Production of glass preform for optical fiber
JPS582170B2 (en) Method for manufacturing base material for optical functional elements

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406