JP3707937B2 - Glass and optical fiber manufacturing method - Google Patents

Glass and optical fiber manufacturing method Download PDF

Info

Publication number
JP3707937B2
JP3707937B2 JP26062798A JP26062798A JP3707937B2 JP 3707937 B2 JP3707937 B2 JP 3707937B2 JP 26062798 A JP26062798 A JP 26062798A JP 26062798 A JP26062798 A JP 26062798A JP 3707937 B2 JP3707937 B2 JP 3707937B2
Authority
JP
Japan
Prior art keywords
glass
optical fiber
raw material
oxide
mainly composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26062798A
Other languages
Japanese (ja)
Other versions
JP2000086250A (en
Inventor
秀 渡辺
健太郎 野内
健一 牟田
恭三 辻川
正治 大橋
義昭 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26062798A priority Critical patent/JP3707937B2/en
Publication of JP2000086250A publication Critical patent/JP2000086250A/en
Application granted granted Critical
Publication of JP3707937B2 publication Critical patent/JP3707937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/047Silica-containing oxide glass compositions containing deuterium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/22Doped silica-based glasses doped with non-metals other than boron or fluorine doped with deuterium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラスおよび光ファイバの製造方法に係り、さらに詳しくは、OH基含有量の少ないガラスおよび光ファイバの製造方法に関する。
【0002】
【従来の技術】
一般に光ファイバにおいては、その中に含まれる水(OH基)が原因で伝送特性が低下することが知られており、かかるOH基を低減すべく様々な製造技術の開発が進められている。
【0003】
すなわち、例えば、特開平1-124805号公報には、石英系光ファイバの製造において、いわゆる外付法(OVD 法=Outside Vapor-Phase Deposition)や気相軸付法(VAD 法=Vapor-Phase Axial Deposition)などにより製造したガラス微粒子堆積体(多孔質母材)を 600℃〜800 ℃以上の温度の加熱炉中に保持し、ここに D2 O (重水)の蒸気を送り込むことにより、多孔質母材中の H2 O (水)を D2 O に置換し、さらに塩素系ガスによる脱水処理を施して、残留する H2 O や置換した D2 O を除去低減する方法が記載されている。
【0004】
また、多成分ガラス系光ファイバの製造において、加熱炉内にセットしたルツボ内で溶融しているガラス中に、パイプを通じてD 2 OをCO2ガスやN2ガスなどの乾燥ガスをキャリアとして送り込むことにより、OH基をOD基に置換する方法も提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前者の方法では、加熱炉中に多量の D2 O の蒸気を送り込むにもかかわらず H2 O の D2 O への置換率がさほど高くなく、OH基の含有量を十分に低下させることは困難である。
【0006】
一方、後者の方法も、OH基のOD基への変換率は90%程度であり、そのうえ、パイプを直接溶融ガラス中に挿入して長時間ガスを送り込まなければならず、異物混入やパイプの溶融によるガラス組成のずれを招くおそれがある。
【0007】
本発明はこのような従来の事情に対処してなされたもので、OH基含有量が少なく、伝送特性の向上した光ファイバの製造を可能とするガラスの製造方法、およびこれを用いた光ファイバの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本願の第1の発明は、酸化物を主体とするガラス原料、もしくは酸化物を主体とするガラス微粒子からなる多孔質体を、重水を含む0 ℃〜 100 ℃の不活性ガス雰囲気中に1時間以上保持した後、ガラス化処理を行うことを特徴とするものである。
【0009】
また、本願の第2の発明は、酸化物を主体とするガラス原料、もしくは酸化物を主体とするガラス微粒子からなる多孔質体をガラス化処理する工程を含む光ファイバの製造方法において、前記ガラス原料もしくは多孔質体を、重水を含む0 ℃〜 100 ℃の不活性ガス雰囲気中に1時間以上保持した後、ガラス化処理を行うことを特徴とするものである。
【0010】
本発明においては、ガラス化処理に先立って重水を含む不活性ガス雰囲気中に 1時間以上保持することにより、ガラス化処理の際に効率良くOH基からOD基への置換が進み、OH基含有量の少ない低損失のガラスおよび光ファイバを得ることができる。これは、ガラス化処理の前に原料あるいは多孔質体に D2 O 分子を吸着させておくことで、ガラス化処理中のOD基置換が効率良く進むからと考えられる。このような方法においては、従来の方法のように雰囲気を特に高温に保持する必要がなく、また、パイプの挿入による不純物の混入や組成のずれも防止される。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。
【0012】
図1は、本発明の一実施形態である、いわゆる溶融法によるガラスの製造方法の一例を示す図である。
【0013】
図1に示すように、本発明においては、ルツボ1に所望の組成に調合したガラス原料2を投入し、加熱炉3内に入れる。ここで使用されるガラス原料2は、酸化物を主体とするものであり、ケイ酸( SiO2 )、アルミナ(Al2 O3 )、ソーダ(Na2 O )、カリ( K2 O )、ホウ酸( B2 O 3 )、石灰(CaO )、マグネシア(MgO )、酸化リチウム( LiO2 )などの酸化物を主体とする酸化物系ガラス原料をそのまま使用することができるほか、炭酸ナトリウム(Na2 CO3 )、炭酸カルシウム(Ca2 CO3 )などの炭酸塩、水酸化アルミニウム(Al(OH)3 )などの水酸化化合物などを含むガラス原料を仮焼結させて得られた多孔質体もしくはこれを粉砕したもの、あるいは、各種ガラス原料を一旦溶融させてガラス化したものを粉砕したガラス粉末、さらにはゾル−ゲル法により作製したガラス前駆体などが用いられる。
【0014】
加熱炉3内は、 D2 O 4中を通した N2 ガス、Arガス、Heガスなどの不活性ガス5をパイプ6を通じて送り込むことにより、 D2 O を含む不活性ガス雰囲気に保たれており、ガラス原料2は、このような雰囲気下で 1時間以上保持される。この間の加熱炉3内の温度は、OH基のOD基への置換効率の点から、 0℃〜 100℃の範囲が望ましく、 100℃を越えると、 D2 O 分子の吸着量が減少し、OH基のOD基への置換効率が低下する。実用的には10℃〜50℃の範囲がより望ましい。
【0015】
この後、ガラス原料2は、加熱炉3内で、望ましくは D2 O を含んだ不活性ガス雰囲気を維持したまま、通常のガラス化処理、すなわち、ガラス原料の組成に応じた溶融、清澄、冷却の各工程が行われ、ガラスが製造される。図1中、7は D2 O 収容槽を示す。
【0016】
このような方法においては、 D2 O を含む不活性ガス雰囲気下に保持されている間に、ガラス原料に D2 O 分子が吸着する結果、溶融時に、原料が十分に D2 O 雰囲気にさらされるため、OH基が効率良くOD基に置換され、OH基をほとんど含有しないガラスが製造される。また、この方法においては、従来法のようにパイプを挿入しないため、不純物の混入やパイプの溶融にともなうガラス組成の変化も防止される。
【0017】
なお、上記方法を二重るつぼ法に適用することにより、すなわち、たとえば上記加熱炉に代えて、光ファイバ製造用の加熱炉、いわゆる紡糸炉を用い、ルツボに二重ルツボを用いることにより、OD基置換率の高い、すなわち、OH基含有量の極めて小さい低損失の光ファイバを得ることができる。
【0018】
また、図面による説明は省略するが、本発明は、ガラス微粒子を堆積させて得られた多孔質体から光ファイバ用母材を製造し、さらに、この母材から光ファイバを製造する場合にも適用することができる。
【0019】
すなわち、外付法、内付法、気相軸付法などにより作製した光ファイバ用ガラス微粒子堆積体(多孔質母材)を、加熱炉にセットし、上記の例と同様にして D2 O を含んだ不活性ガス雰囲気下に保持した後、望ましくは同雰囲気を維持したまま、透明ガラス化処理することにより、OH基のほとんどがOD基に置換された光ファイバ用ガラス母材を得ることができ、これを用いてOH基に起因する吸収損失の少ない伝送特性に優れた光ファイバを製造することができる。
【0020】
【実施例】
次に、本発明の実施例を記載する。
【0021】
実施例1
ガラス原料として SiO2 、Al(OH)3 、およびNa2 CO3 をルツボに入れて混合し、これを加熱炉内にセットし、大気雰囲気下 620℃の温度で約 3時間加熱した。次いで、熱処理した原料を石英乳鉢に入れ乳棒を用いて粉砕した後、テフロン容器に移して、原料の 3〜4 重量%程度の D2 O を加え、ボールミルを使用して撹拌した。なお、 D2 O を添加するのは、乾燥した原料が大気中の水分( H2 O )を吸収するのを防止するとともに、撹拌後に電気炉に投入する際の原料の飛散を抑制するためである。
【0022】
この後、十分に撹拌した原料をルツボに入れて電気炉内にセットする一方、 D2 O 中を通した N2 ガスを電気炉内に流し込み、そのまま室温で放置した。放置後、約 3時間経過したところで、炉内温度を昇温させ、D 2 O 中を通した N2 ガス雰囲気下、 830℃での温度で 2時間加熱し、さらに、1400℃まで昇温して、 6時間清澄を行なった後、徐冷して、多成分ガラス(Na-Al-Si-O系ガラス)を得た。 得られたガラスの透過率−波長特性を図2(A)に示す。
【0023】
また、比較のために、OD基置換を行わなかった同じ組成の多成分ガラス、すなわち、ガラス原料をD 2 O により処理することなくそのまま溶融して得たガラスの透過率−波長特性を図2(B)に示す。
【0024】
これらの図からも明らかなように、実施例のガラスでは、OH基に起因する2.9 μm付近の吸収が減少している。
【0025】
実施例2
光ファイバのコア用ガラス原料およびクラッド用ガラス原料にそれぞれ実施例1と同様の処理を施した。すなわち、ガラス原料をルツボに入れて混合し、これを加熱炉内にセットし、大気雰囲気下 620℃の温度で約 3時間加熱した後、熱処理した原料を石英乳鉢に入れ乳棒を用いて粉砕し、テフロン容器に移して、原料の 3〜4 重量%程度の D2 O を加え、ボールミルを使用して撹拌した。
【0026】
次いで、十分に撹拌したこれらのコア用ガラス原料およびクラッド用ガラス原料を、紡糸炉内にセットされた白金二重ルツボのコア部およびクラッド部にそれぞれ投入する一方、 D2 O 中を通した N2 ガスを二重ルツボのコア部上方より白金パイプを用いて紡糸炉内に流し込み、そのまま室温に放置した。放置後、約 1.5時間経過したところで炉内温度を昇温させ、 D2 O 中を通した N2 ガス雰囲気下、 830℃での温度で 2時間加熱し、さらに、1400℃まで昇温して 6時間清澄を行った。この後、 800℃〜900 ℃の温度に保持し、ガラスの温度が十分に安定したところで紡糸して光ファイバを得た。
【0027】
得られた光ファイバの波長損失を図3(A)に示す。
【0028】
また、比較のために、OD基置換を行わなかった同じ組成のガラス原料を用いた光ファイバ、すなわち、ガラス原料をD 2 O により処理することなくそのまま溶融し紡糸して得た光ファイバの波長損失を図3(B)に示す。
【0029】
これらの図からも明らかなように、実施例の光ファイバでは、OH基に起因する 2.9μmの吸収の 2倍波である 1.4μm付近の吸収が減少している。
【0030】
【発明の効果】
以上の実施例からも明らかなように、本発明によれば、ガラス化処理前に重水を含む不活性ガス雰囲気中に材料を保持するだけで簡単に、かつ、高率で材料中に含まれるOH基をOD基に置換することができ、OH基に起因する吸収損失の低いガラスあるいは光ファイバを得ることができる。
【図面の簡単な説明】
【図1】本発明によるガラスの製造方法の一例を示す図。
【図2】(A)は本発明の実施例で得られたガラスの透過率−波長特性を示すグラフ、(B)は比較例のガラスの透過率−波長特性を示すグラフ。
【図3】本発明の他の実施例で得られた光ファイバの波長損失スペクトルを示す図。
【符号の説明】
1………ルツボ
2………ガラス原料
3………加熱炉
4……… D2 O
5………不活性ガス
6………パイプ
7……… D2 O 収容槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing glass and an optical fiber, and more particularly to a method for producing glass and an optical fiber having a low OH group content.
[0002]
[Prior art]
In general, it is known that transmission characteristics of optical fibers deteriorate due to water (OH groups) contained therein, and various manufacturing techniques are being developed to reduce such OH groups.
[0003]
That is, for example, Japanese Patent Application Laid-Open No. 1-124805 discloses a so-called external method (OVD method = Outside Vapor-Phase Deposition) or gas phase axis method (VAD method = Vapor-Phase Axial) in the production of silica-based optical fibers. The glass particulate deposit (porous matrix) produced by Deposition) is held in a heating furnace at a temperature of 600 ° C to 800 ° C or higher, and D 2 O (heavy water) vapor is fed into it to make it porous. of H 2 O in the base material (water) is replaced with D 2 O, further subjected to dehydration treatment with a chlorine-based gas, a method of reducing remove residual H 2 O and substituted D 2 O is described .
[0004]
Moreover, Te manufacturing odor multicomponent glass optical fiber, the glass being melted in the crucible was set in a heating furnace, the D 2 O to dry gas, such as CO 2 gas or N 2 gas as a carrier through a pipe A method of replacing the OH group with the OD group by sending it in has also been proposed .
[0005]
[Problems to be solved by the invention]
However, in the former method, the substitution rate of H 2 O to D 2 O is not so high even though a large amount of D 2 O vapor is sent into the heating furnace, and the content of OH groups is sufficiently reduced. It is difficult.
[0006]
On the other hand, the latter method also has a conversion rate of OH groups to OD groups of about 90%. In addition, the pipe must be inserted directly into the molten glass and gas must be sent in for a long time. There is a possibility of causing a shift in the glass composition due to melting.
[0007]
The present invention has been made in response to such a conventional situation, and a glass manufacturing method capable of manufacturing an optical fiber having a small OH group content and improved transmission characteristics, and an optical fiber using the same. It aims at providing the manufacturing method of.
[0008]
[Means for Solving the Problems]
In the first invention of the present application, a porous material composed of a glass raw material mainly composed of oxide or glass fine particles mainly composed of oxide is placed in an inert gas atmosphere containing heavy water at 0 ° C. to 100 ° C. for 1 hour. After the above holding, vitrification treatment is performed.
[0009]
Further, the second invention of the present application is the method for producing an optical fiber comprising a step of vitrifying a porous material comprising a glass raw material mainly composed of an oxide or glass fine particles mainly composed of an oxide. The raw material or porous body is maintained in an inert gas atmosphere containing heavy water at 0 ° C. to 100 ° C. for 1 hour or longer, and then vitrification is performed.
[0010]
In the present invention, by maintaining in an inert gas atmosphere containing heavy water for 1 hour or more prior to vitrification treatment, the substitution from OH groups to OD groups proceeds efficiently during vitrification treatment, and OH group containing A low-loss glass and an optical fiber with a small amount can be obtained. This is presumably because OD group substitution during vitrification proceeds efficiently by adsorbing D 2 O molecules to the raw material or porous body before vitrification. In such a method, it is not necessary to keep the atmosphere at a particularly high temperature as in the conventional method, and contamination of impurities and compositional deviation due to insertion of a pipe are prevented.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a diagram showing an example of a method for producing glass by a so-called melting method, which is an embodiment of the present invention.
[0013]
As shown in FIG. 1, in the present invention, a glass raw material 2 prepared in a desired composition is put into a crucible 1 and put into a heating furnace 3. The glass raw material 2 used here is mainly composed of oxides, and is composed of silicic acid (SiO 2 ), alumina (Al 2 O 3 ), soda (Na 2 O), potash (K 2 O), boron. Oxide-based glass materials mainly composed of oxides such as acid (B 2 O 3 ), lime (CaO), magnesia (MgO), and lithium oxide (LiO 2 ) can be used as they are, and sodium carbonate (Na 2 CO 3 ), porous material obtained by pre-sintering glass materials containing carbonates such as calcium carbonate (Ca 2 CO 3 ) and hydroxide compounds such as aluminum hydroxide (Al (OH) 3 ) Alternatively, a pulverized one, a glass powder obtained by pulverizing a glass material obtained by once melting various glass raw materials, a glass precursor produced by a sol-gel method, or the like is used.
[0014]
The inside of the heating furnace 3 is maintained in an inert gas atmosphere containing D 2 O by sending an inert gas 5 such as N 2 gas, Ar gas, and He gas passed through D 2 O 4 through a pipe 6. Thus, the glass raw material 2 is held for 1 hour or longer in such an atmosphere. The temperature in the heating furnace 3 during this period is preferably in the range of 0 ° C. to 100 ° C. from the viewpoint of the substitution efficiency of OH groups to OD groups, and if it exceeds 100 ° C., the amount of adsorbed D 2 O molecules decreases, Replacement efficiency of OH group to OD group decreases. Practically, the range of 10 ° C to 50 ° C is more desirable.
[0015]
Thereafter, the glass raw material 2 is maintained in an inert gas atmosphere containing D 2 O in the heating furnace 3, and is usually subjected to normal vitrification treatment, that is, melting, fining according to the composition of the glass raw material, Each process of cooling is performed and glass is manufactured. In FIG. 1, 7 indicates a D 2 O storage tank.
[0016]
In such methods, while being maintained under an inert gas atmosphere containing D 2 O, results D 2 O molecules are adsorbed to the glass material, upon melting, the raw material is sufficiently exposed to D 2 O atmosphere Therefore, OH groups are efficiently substituted with OD groups, and a glass containing almost no OH groups is produced. Further, in this method, since the pipe is not inserted as in the conventional method, the change in the glass composition due to the mixing of impurities and the melting of the pipe is also prevented.
[0017]
In addition, by applying the above method to the double crucible method, that is, for example, using a heating furnace for manufacturing an optical fiber, a so-called spinning furnace instead of the above heating furnace, and using a double crucible for the crucible, OD A low-loss optical fiber having a high group substitution rate, that is, an extremely low OH group content can be obtained.
[0018]
Although not described with reference to the drawings, the present invention is also applicable to the case where an optical fiber preform is produced from a porous body obtained by depositing glass fine particles, and an optical fiber is produced from this preform. Can be applied.
[0019]
That is, an optical fiber glass fine particle deposit (porous base material) produced by an external method, an internal method, a gas phase axis method, etc. is set in a heating furnace, and D 2 O is applied in the same manner as in the above example. After maintaining in an inert gas atmosphere containing glass, it is desirable to obtain a glass preform for optical fiber in which most of the OH groups are replaced with OD groups by transparent vitrification while maintaining the same atmosphere. This can be used to manufacture an optical fiber with excellent transmission characteristics with little absorption loss due to OH groups.
[0020]
【Example】
Next, examples of the present invention will be described.
[0021]
Example 1
SiO 2 , Al (OH) 3 , and Na 2 CO 3 as glass raw materials were mixed in a crucible, set in a heating furnace, and heated at a temperature of 620 ° C. for about 3 hours in an air atmosphere. Next, the heat-treated raw material was put in a quartz mortar and pulverized using a pestle, then transferred to a Teflon container, added with 3 to 4% by weight of D 2 O of the raw material, and stirred using a ball mill. D 2 O is added to prevent the dried raw material from absorbing moisture (H 2 O) in the atmosphere and to suppress the scattering of the raw material when it is put into the electric furnace after stirring. is there.
[0022]
Thereafter, the sufficiently stirred raw material was put in a crucible and set in an electric furnace, while N 2 gas passed through D 2 O was poured into the electric furnace and left at room temperature. After about 3 hours, the temperature inside the furnace was raised, heated in a N 2 gas atmosphere through D 2 O for 2 hours at a temperature of 830 ° C, and further raised to 1400 ° C. After clarification for 6 hours, it was gradually cooled to obtain a multicomponent glass (Na—Al—Si—O-based glass). The transmittance-wavelength characteristic of the obtained glass is shown in FIG.
[0023]
For comparison, FIG. 2 shows the transmittance-wavelength characteristics of a multicomponent glass having the same composition without OD group substitution, that is, a glass obtained by melting a glass raw material as it is without being treated with D 2 O. Shown in (B).
[0024]
As is clear from these figures, in the glass of the example, the absorption around 2.9 μm due to the OH group is decreased.
[0025]
Example 2
The same processing as in Example 1 was performed on the glass material for the core of the optical fiber and the glass material for the cladding. That is, glass raw materials are mixed in a crucible, set in a heating furnace, heated in an air atmosphere at a temperature of 620 ° C. for about 3 hours, and then the heat-treated raw materials are put in a quartz mortar and pulverized using a pestle. Then, it was transferred to a Teflon container, D 2 O of about 3 to 4% by weight of the raw material was added, and the mixture was stirred using a ball mill.
[0026]
Then, the sufficiently stirred glass material for the core and the glass material for the clad are respectively put into the core part and the clad part of the platinum double crucible set in the spinning furnace, while passing through D 2 O. Two gases were poured into the spinning furnace from above the core of the double crucible using a platinum pipe and left at room temperature. After about 1.5 hours, the temperature inside the furnace was raised, heated in a N 2 gas atmosphere passed through D 2 O for 2 hours at a temperature of 830 ° C, and further raised to 1400 ° C. A 6-hour clarification was performed. Thereafter, the temperature was maintained at 800 ° C. to 900 ° C., and the fiber was spun when the glass temperature was sufficiently stabilized to obtain an optical fiber.
[0027]
The wavelength loss of the obtained optical fiber is shown in FIG.
[0028]
For comparison, the wavelength of an optical fiber using a glass raw material having the same composition without OD group substitution, that is, an optical fiber obtained by melting and spinning the glass raw material as it is without being treated with D 2 O. The loss is shown in FIG.
[0029]
As is clear from these figures, in the optical fiber of the example, the absorption around 1.4 μm, which is a second harmonic wave of the absorption of 2.9 μm due to the OH group, decreases.
[0030]
【The invention's effect】
As is clear from the above examples, according to the present invention, the material is simply and at a high rate contained in the inert gas atmosphere containing heavy water before vitrification. An OH group can be substituted with an OD group, and a glass or an optical fiber with low absorption loss due to the OH group can be obtained.
[Brief description of the drawings]
FIG. 1 shows an example of a method for producing glass according to the present invention.
2A is a graph showing the transmittance-wavelength characteristics of the glass obtained in the example of the present invention, and FIG. 2B is a graph showing the transmittance-wavelength characteristics of the glass of the comparative example.
FIG. 3 is a diagram showing a wavelength loss spectrum of an optical fiber obtained in another example of the present invention.
[Explanation of symbols]
1 ……… Crucible 2 ……… Glass raw material 3 ……… Reheating furnace 4 ……… D 2 O
5 ……… Inert gas 6 ……… Pipe 7 ……… D 2 O storage tank

Claims (2)

酸化物を主体とするガラス原料、もしくは酸化物を主体とするガラス微粒子からなる多孔質体を、重水を含む0 ℃〜 100 ℃の不活性ガス雰囲気中に1時間以上保持した後、ガラス化処理を行うことを特徴とするガラスの製造方法。A glass raw material mainly composed of oxide or a porous body composed of fine glass particles mainly composed of oxide is kept in an inert gas atmosphere containing heavy water at 0 ° C. to 100 ° C. for 1 hour or longer, and then vitrified. A method for producing glass, characterized in that: 酸化物を主体とするガラス原料、もしくは酸化物を主体とするガラス微粒子からなる多孔質体をガラス化処理する工程を含む光ファイバの製造方法において、前記ガラス原料もしくは多孔質体を、重水を含む0 ℃〜 100 ℃の不活性ガス雰囲気中に1時間以上保持した後、ガラス化処理を行うことを特徴とする光ファイバの製造方法。In a method for producing an optical fiber including a step of vitrifying a glass raw material mainly composed of oxide or a porous body composed of glass fine particles mainly composed of oxide, the glass raw material or porous body contains heavy water. A method for producing an optical fiber, comprising vitrification after holding in an inert gas atmosphere at 0 ° C to 100 ° C for 1 hour or more.
JP26062798A 1998-09-14 1998-09-14 Glass and optical fiber manufacturing method Expired - Fee Related JP3707937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26062798A JP3707937B2 (en) 1998-09-14 1998-09-14 Glass and optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26062798A JP3707937B2 (en) 1998-09-14 1998-09-14 Glass and optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2000086250A JP2000086250A (en) 2000-03-28
JP3707937B2 true JP3707937B2 (en) 2005-10-19

Family

ID=17350557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26062798A Expired - Fee Related JP3707937B2 (en) 1998-09-14 1998-09-14 Glass and optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3707937B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2310219A1 (en) * 2000-05-29 2001-11-29 Nu-Wave Photonics Inc. Application of deuterium oxide in producing silicon containing and metal containing materials
JP7103292B2 (en) * 2019-03-29 2022-07-20 三菱ケミカル株式会社 Synthetic silica glass powder
CN115196858A (en) * 2022-06-24 2022-10-18 中国建筑材料科学研究总院有限公司 Glass melting method

Also Published As

Publication number Publication date
JP2000086250A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
EP0068580B1 (en) Optical fibre of the graded index type and method of producing same
US7637126B2 (en) Method for the production of laser-active quartz glass and use thereof
JPH10291836A (en) Transparent bead and its production
EP1841704A2 (en) Method of making alkali metal silica glass, feedstock, and glass article formed therefrom
JPS6332733B2 (en)
US4883521A (en) Method for the preparation of silica glass
US5655046A (en) Glass composition, optical fiber made of same, and method for preparing glasses
JP2003500330A (en) Glass fiber composition
JPH07121814B2 (en) Topped quartz glass
KR890001123B1 (en) Method for crystalization of glass preform
JP3707937B2 (en) Glass and optical fiber manufacturing method
CN106517764B (en) A kind of synthetic method of rear-earth-doped raw material of quartz glass powder
CN106977095A (en) A kind of anhydrous oxyhalide tellurite glass and preparation method thereof
JPS6225618B2 (en)
US3962515A (en) Strengthened composite glass article and method of production
US4110002A (en) Optical fibers formed of aluminum borophosphate glass compositions
JPH10218627A (en) Production of glass and optical fiber
JP3771073B2 (en) Glass fiber
KR101343683B1 (en) Process for producing optical fiber base and apparatus therefor
JPH0324415B2 (en)
Zhou et al. Effects of impurities and manufacturing methods on the devitrification of silica fibers
Rabinovich et al. Multicomponent glasses from particulate gels
JPS582170B2 (en) Method for manufacturing base material for optical functional elements
CA1116448A (en) Optical fibers formed of aluminum borophosphate glass compositions
JPS61146733A (en) Porous glass fiber comprising titanic acid and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees