JPS6225618B2 - - Google Patents

Info

Publication number
JPS6225618B2
JPS6225618B2 JP56023772A JP2377281A JPS6225618B2 JP S6225618 B2 JPS6225618 B2 JP S6225618B2 JP 56023772 A JP56023772 A JP 56023772A JP 2377281 A JP2377281 A JP 2377281A JP S6225618 B2 JPS6225618 B2 JP S6225618B2
Authority
JP
Japan
Prior art keywords
glass
weight
treated
acid
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56023772A
Other languages
Japanese (ja)
Other versions
JPS57140334A (en
Inventor
Tadao Nakajima
Juichi Kuroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MYAZAKIKEN
Original Assignee
MYAZAKIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MYAZAKIKEN filed Critical MYAZAKIKEN
Priority to JP2377281A priority Critical patent/JPS57140334A/en
Publication of JPS57140334A publication Critical patent/JPS57140334A/en
Publication of JPS6225618B2 publication Critical patent/JPS6225618B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、多孔性ガラスの製造方法に関し、更
に詳しくは、CaO−B2O3−SiO2−Al2O3系ガラス
の易分相性を利用して分離した二相中の一方を酸
により溶解除去することによつて、ガラスに多孔
構造を形成させる方法に関する。 従来技術 Na2O−B2O3−SiO2系ガラスにおいては、高け
い酸質成分とNa2O−B2O3成分とが分相を生ずる
ので、分相したガラスを酸溶液で処理してNa2O
−B2O3成分を溶出させ、多孔性高けい酸ガラス
を得る方法が知られている(米国特許第2106744
号及び第2215039号)。しかしながら、この公知の
系においては、Al2O3が存在すると分相が著しく
抑制されるので、Al2O3含有量は、最大限4〜5
重量%(以下単に%とする)程度に抑制されてい
る。従つて、使用するガラス原料に大巾な制限が
あり、例えばシラスとして知られている南九州産
の火山灰に含まれる安価な火山ガラスを使用する
ことは出来ない。更に、上記の公知の系では、基
礎ガラスの組成が単純である為、原料の組成変動
の影響を受けやすく、又、得られる多孔性ガラス
は化学的耐久性に劣る等の問題点も存在する。 発明の構成 本発明者は、Al2O3含有量に対する制約の少な
い多孔性ガラスを得るべく種々研究を重ねた結
果、Al2O3含有量が5〜15%にも達するにもかか
わらず、或る新たな組成のCaO−B2O3−SiO2
Al2O3系ガラスが分相現象を呈することを見出
し、本発明を完成するにいたつた。即ち、本発明
は、下記の方法に係るものである: (1) Ca08〜25重量%、B2O38〜30重量%、SiO245
〜70重量%およびAl2O35〜15重量%を必須成
分とする基礎ガラスを600〜800℃の範囲内の一
定温度で2〜48時間熱処理した後、0.5〜2規
定濃度の塩酸、硝酸または硫酸溶液に70〜90℃
で浸漬することにより酸可溶成分を抽出するこ
とを特徴とする多孔性ガラスの製造方法(以下
これを本願第一発明とする)。 更に、本発明者の研究によれば、本願第一発
明により得られた多孔性ガラスを水酸化ナトリ
ウム溶液により処理する場合には、ガラス中の
細孔に残留するシリカゲルが除去され、多孔性
ガラスの細孔容積が著しく増大することが見出
された。即ち、本発明は、更に下記の方法にも
係る: (2) Ca08〜25重量%、B2O38〜30重量%、SiO245
〜70重量%およびAl2O35〜15重量%を必須成
分とする基礎ガラスを600〜800℃の範囲内の一
定温度で2〜48時間熱処理した後、0.5〜2規
定濃度の塩酸、硝酸または硫酸溶液に70〜90℃
で浸漬することにより酸可溶成分を抽出して得
た多孔性ガラスを0.01〜0.05規定濃度の水酸化
ナトリウム溶液により30℃以下で処理してガラ
ス中の細孔に残留するシリカゲルを除去するこ
とを特徴とする多孔性ガラスの製造方法(以下
これを本願第二発明とする)。 本発明で使用するCaO−B2O3−SiO2−Al2O3
基礎ガラスの製造方法は、特に限定されるもので
はないが、例えば、第1図に示すフローダイヤグ
ラムに従つて以下の様にして製造される。即ち、
基礎ガラスの重量を100%とした場合にCa08〜25
%、B2O38〜30%、SiO245〜70%およびAl2O35〜
15%となる様に石灰、ほう酸、けい砂およびアル
ミナを調合し、良く混合した後、混合物をガラス
溶融用るつぼに入れ、約1100℃でか焼し、原料を
分解して溶融させ、次いで温度を約1350〜1500℃
に上昇させ、4時間後に溶融を完了する。次い
で、溶融物を氷水中に投下するか又は型に鋳込ん
で急冷することにより、基礎ガラスが得られる。 本発明においては、上記基礎ガラスを600〜800
℃の範囲内の一定温度で2〜48時間熱処理する。
この熱処理によりガラス組織に二相分離現象が生
じ、透明な基礎ガラスが白濁ないし白色不透明に
変化する。同一組成の基礎ガラスを使用する場
合、多孔性ガラスの細孔の大きさは、分相のサイ
ズに直接依存するので、熱処理条件の設定は、細
孔設計上極めて重要である。本発明で使用する基
礎ガラスの組成範囲内では、いずれの組成点にお
いても、以下の事項が成立する。すなわち、熱処
理温度を一定として熱処理時間を変化させた場
合、下記式(1)に示す如く、熱処理の経過とともに
細孔径は指数関数的に増加する。一方、熱処理時
間を一定として熱処理温度を変化させた場合、下
記式(2)に示す如く、温度の上昇とともに細孔径は
増大する。 ln=0.5lnt+a ……(1) ln=−E/2RT+b ……(2) ただし :平均細孔径(Å) t:熱処理時間(hr) T:熱処理温度(〓) R:気体定数 E:活性化エネルギー(kcal/
mole) a,b:組成によつてきまる定数 従つて、上記式(1)又は(2)を利用することによ
り、基礎ガラスの熱処理条件を決定すれは良い。 次いで、上述の如くして熱処理された分相ガラ
スを0.5〜2規定濃度の塩酸、硝酸または硫酸に
浸漬し、70〜90℃の温度で加熱する。かくして、
分相ガラス中の酸に可浴な分離相であるほう酸カ
ルシウム相が溶出し、多孔構造を有するガラスが
製造される。 この様にして得られた多孔性ガラスでは、ほう
酸カルシウム相中に分配されたSiO2が、酸処理
時の加水分解によつてゲル化し、細孔内に残留す
るこがある。この場合、これらのSiO2ゲルのた
めに、多孔性ガラスの細孔容積は、基礎ガラスの
組成および熱処理条件から予測されるそれよりも
小さくなるので、細孔容積のより大きい多孔性ガ
ラスを得るためには、SiO2ゲルを取り除く必要
がある。従つて、本願第二発明では、本願第一発
明により得られたSiO2ゲル含有多孔性ガラスを
0.01〜0.05規定濃度の水酸化ナトリウムに30℃以
下で浸漬し、SiO2ゲルをけい酸ナトリウムとし
て抽出する。処理温度は、常温又はその近傍とす
ることが好ましい。水酸化ナトリウム濃度が高過
ぎたり、処理温度が高過ぎる場合には、多孔性シ
リカ骨格そのものを損なうおそれがある。 なお、本発明においては、基礎ガラスの原料の
一部としてシラスの如き火山灰等に含まれる火山
ガラスを使用するのが有利である。SiO2及び
Al2O3源となる火山ガラスは、原料のガラス化速
度を増大させるとともに、原料コストを大巾に低
減させる。又、火山ガラスに含まれる不純物のほ
とんどは、ほう酸カルシウム相に分配され、酸に
より溶出するので、多孔性ガラスの性能に実質的
に影響を与えない。 発明の効果 (1) Al2O3含有量に対する制約が大巾に緩和され
たので、広範囲の原料を使用し得る。 (2) 従つて、シラスを代表例とする火山灰に由来
する安価な火山ガラスを使用する場合には、多
孔性ガラスの物性を害うことなく、大巾なコス
ト低減が可能である。 (3) Al2O3含有量が高いので、化学的耐久性に優
れている。 (4) 四元系成分を必須成分とする基礎ガラスを使
用するので、原料の組成変動の影響を受けにく
い。 実施例 以下、実施例を示し、図面を参照しつつ本発明
の特徴とするところをより一層明らかにする。 実施例 1 基礎ガラスの組成が第2図に示す分相域に属す
るA,B及びCの3点となるように、ほう酸、石
灰及びシラスに含まれる火山ガラスを調合する。
調合された原料をよく混合し、1100℃でか焼し、
1400℃で4時間溶融した後、溶融物を氷水に投下
急冷する。得られた基礎ガラスを700℃で24時間
熱処理した後、熱処理物を粉砕して60〜120メツ
シユ留分をとり、これを2N−HClに浸漬して70℃
で4時間保持する。 次いで、上記酸処理物を0.05N−NaOHにより
30℃で処理した後、再度2N−HClに浸漬し、水洗
し、乾燥する。かくして、第3図に示す細孔分布
を有する多孔性ガラスNo.1、No.2およびNo.3が得
られる。 これ等の多孔性ガラスの細孔特性値は、第1表
に示す通りである。 実施例 2 実施例1と同様にして調製した第2図のB点に
相当する組成の基礎ガラスを700℃、750℃および
800℃で24時間熱処理した後、実施例1と同様に
して多孔性ガラスを得る。得られた3種の多孔性
ガラスの電子顕微鏡写真を第4図として示し、細
孔の分布状態を第5図に示す。また、これ等ガラ
スの細孔特性値は、第2表に示す通りである。
Technical Field The present invention relates to a method for producing porous glass, and more specifically, the present invention relates to a method for producing porous glass, and more specifically, the present invention relates to a method for producing porous glass, and more specifically, one of the two phases separated by utilizing the easily separated compatibility of CaO-B 2 O 3 - SiO 2 - Al 2 O 3-based glass. This invention relates to a method of forming a porous structure in glass by dissolving and removing it with an acid. Conventional technology In Na 2 O−B 2 O 3 −SiO 2 glass, the high silicic acid component and the Na 2 O−B 2 O 3 component cause phase separation, so the phase separated glass is treated with an acid solution. and Na 2 O
- A method of obtaining porous highly silicate glass by eluting B 2 O 3 components is known (US Patent No. 2106744).
No. 2215039). However, in this known system, the Al 2 O 3 content is at most 4-5, since the presence of Al 2 O 3 significantly suppresses phase separation.
It is suppressed to about % by weight (hereinafter simply referred to as %). Therefore, there are severe restrictions on the glass raw materials that can be used; for example, it is not possible to use the inexpensive volcanic glass contained in volcanic ash from southern Kyushu, known as Shirasu. Furthermore, in the above-mentioned known systems, since the composition of the base glass is simple, it is easily affected by compositional fluctuations of raw materials, and the resulting porous glass has problems such as poor chemical durability. . Structure of the Invention The present inventor has conducted various studies in order to obtain a porous glass with fewer restrictions on Al 2 O 3 content, and as a result, despite the Al 2 O 3 content reaching 5 to 15%, A new composition of CaO−B 2 O 3 −SiO 2
We have discovered that Al 2 O 3 glass exhibits a phase separation phenomenon, and have completed the present invention. That is, the present invention relates to the following method: (1) Ca08-25% by weight, B 2 O 3 8-30% by weight, SiO 2 45
~70% by weight and 5-15% by weight of Al 2 O 3 as essential components are heat-treated at a constant temperature within the range of 600-800°C for 2-48 hours, and then treated with hydrochloric acid or nitric acid at a concentration of 0.5-2N. or 70-90℃ in sulfuric acid solution
1. A method for producing porous glass (hereinafter referred to as the first invention of the present application), characterized in that an acid-soluble component is extracted by immersion in a porous glass. Furthermore, according to the research of the present inventor, when the porous glass obtained according to the first invention of the present application is treated with a sodium hydroxide solution, the silica gel remaining in the pores in the glass is removed, and the porous glass is It was found that the pore volume of That is, the present invention further relates to the following method: (2) Ca08-25% by weight, B 2 O 3 8-30% by weight, SiO 2 45
~70% by weight and 5-15% by weight of Al 2 O 3 as essential components are heat-treated at a constant temperature within the range of 600-800°C for 2-48 hours, and then treated with hydrochloric acid or nitric acid at a concentration of 0.5-2N. or 70-90℃ in sulfuric acid solution
The porous glass obtained by extracting acid-soluble components by immersion in the glass is treated with a sodium hydroxide solution with a normal concentration of 0.01 to 0.05 at 30°C or less to remove the silica gel remaining in the pores in the glass. A method for producing porous glass (hereinafter referred to as the second invention of the present application). The method for producing the CaO-B 2 O 3 -SiO 2 -Al 2 O 3 base glass used in the present invention is not particularly limited, but for example, the following method may be used according to the flow diagram shown in FIG. It is manufactured in the following manner. That is,
Ca08~25 when the weight of the basic glass is taken as 100%
%, B2O3 8~30 % , SiO2 45~70% and Al2O3 5 ~
After mixing lime, boric acid, silica sand, and alumina to a concentration of 15%, the mixture was placed in a glass melting crucible and calcined at approximately 1100℃ to decompose and melt the raw materials, and then the temperature About 1350~1500℃
and complete melting after 4 hours. The base glass is then obtained by dropping the melt into ice water or casting it into a mold and quenching it. In the present invention, the basic glass is 600 to 800
Heat treatment for 2 to 48 hours at a constant temperature within the range of °C.
This heat treatment causes a two-phase separation phenomenon in the glass structure, and the transparent base glass changes from cloudy to white to opaque. When using base glasses of the same composition, the pore size of the porous glass directly depends on the size of the phase separation, so setting the heat treatment conditions is extremely important in pore design. Within the composition range of the basic glass used in the present invention, the following matters hold true at any composition point. That is, when the heat treatment temperature is kept constant and the heat treatment time is varied, the pore diameter increases exponentially as the heat treatment progresses, as shown in equation (1) below. On the other hand, when the heat treatment time is kept constant and the heat treatment temperature is varied, the pore diameter increases as the temperature rises, as shown in equation (2) below. ln=0.5lnt+a...(1) ln=-E/2RT+b...(2) where: Average pore diameter (Å) t: Heat treatment time (hr) T: Heat treatment temperature (〓) R: Gas constant E: Activation Energy (kcal/
mole) a, b: constants that depend on the composition Therefore, it is best to determine the heat treatment conditions for the basic glass by using the above formula (1) or (2). Next, the phase-separated glass heat-treated as described above is immersed in hydrochloric acid, nitric acid, or sulfuric acid at a concentration of 0.5 to 2 normal and heated at a temperature of 70 to 90°C. Thus,
The calcium borate phase, which is an acid-bathable separated phase in the phase-separated glass, is eluted, producing a glass having a porous structure. In the porous glass obtained in this manner, SiO 2 distributed in the calcium borate phase may gel due to hydrolysis during acid treatment and remain in the pores. In this case, for these SiO 2 gels, the pore volume of the porous glass will be smaller than that predicted from the composition of the base glass and the heat treatment conditions, thus obtaining a porous glass with a larger pore volume. In order to do this, it is necessary to remove the SiO 2 gel. Therefore, in the second invention of the present application, the SiO 2 gel-containing porous glass obtained according to the first invention of the present application is used.
Immerse in sodium hydroxide with a normal concentration of 0.01~0.05 at below 30°C to extract the SiO2 gel as sodium silicate. The treatment temperature is preferably at or around room temperature. If the sodium hydroxide concentration is too high or the treatment temperature is too high, the porous silica skeleton itself may be damaged. In the present invention, it is advantageous to use volcanic glass contained in volcanic ash, such as whitebait, as part of the raw materials for the base glass. SiO2 and
Volcanic glass, which serves as a source of Al 2 O 3 , increases the vitrification rate of raw materials and significantly reduces raw material costs. Moreover, most of the impurities contained in the volcanic glass are distributed in the calcium borate phase and eluted by the acid, so that they do not substantially affect the performance of the porous glass. Effects of the invention (1) Since restrictions on Al 2 O 3 content have been greatly relaxed, a wide range of raw materials can be used. (2) Therefore, when using inexpensive volcanic glass derived from volcanic ash, of which whitebait is a typical example, it is possible to significantly reduce costs without impairing the physical properties of porous glass. (3) It has high Al 2 O 3 content, so it has excellent chemical durability. (4) Since a basic glass containing quaternary components as essential components is used, it is less susceptible to compositional fluctuations in raw materials. Examples Hereinafter, examples will be shown to further clarify the features of the present invention with reference to the drawings. Example 1 A volcanic glass containing boric acid, lime, and whitebait is prepared so that the basic glass has three compositions, A, B, and C, which belong to the phase separation region shown in FIG.
The prepared raw materials are mixed well, calcined at 1100℃,
After melting at 1400°C for 4 hours, the melt was poured into ice water to be rapidly cooled. After heat-treating the obtained basic glass at 700°C for 24 hours, the heat-treated product was crushed to obtain a 60-120 mesh fraction, which was immersed in 2N-HCl and heated at 70°C.
Hold for 4 hours. Next, the above acid-treated product was treated with 0.05N-NaOH.
After processing at 30°C, immerse again in 2N-HCl, wash with water, and dry. In this way, porous glasses No. 1, No. 2 and No. 3 having the pore distribution shown in FIG. 3 are obtained. The pore characteristic values of these porous glasses are shown in Table 1. Example 2 A basic glass having a composition corresponding to point B in Fig. 2 prepared in the same manner as in Example 1 was heated at 700°C, 750°C and
After heat treatment at 800° C. for 24 hours, porous glass is obtained in the same manner as in Example 1. FIG. 4 shows electron micrographs of the three types of porous glasses obtained, and FIG. 5 shows the distribution of pores. Further, the pore characteristic values of these glasses are as shown in Table 2.

【表】【table】

【表】 実施例 3 実施例1と同様にして調製した第2図のC点に
相当する組成の基礎ガラスを700℃で24時間熱処
理した後、2N−HClに浸漬し、70℃に加温してリ
ーチングを行なう。この酸処理後の多孔性ガラス
の細孔容積は、第6図にNo.6として示す様に
0.430(ml/g)程度であるのに対し、該多孔性
ガラスを実施例1と同様にしてアルカリ処理する
と、第6図にNo.3として示す様にその細孔容積
は、1.393(ml/g)にも達し、3.3倍の改善効果
が認められる。 両ガラスの細孔特性値を第3表に示す。
[Table] Example 3 A base glass prepared in the same manner as in Example 1 and having a composition corresponding to point C in Figure 2 was heat treated at 700°C for 24 hours, then immersed in 2N-HCl and heated to 70°C. and perform leeching. The pore volume of the porous glass after this acid treatment is shown as No. 6 in Figure 6.
On the other hand, when the porous glass was treated with alkali in the same manner as in Example 1, the pore volume was 1.393 (ml/g), as shown as No. 3 in Figure 6. g), and an improvement effect of 3.3 times is recognized. Table 3 shows the pore characteristic values of both glasses.

【表】 実施例 4 ほう酸、石灰及びシラスに含まれる火山ガラス
の割合を種々調整して、Al2O3が9%(一定)で
あり、且つCaO、B2O3及びSiO2の割合が種々異
なるガラスを調製し、その分相域を調べたとこ
ろ、第2図に示すものとほぼ同様の結果が得られ
た。 また、Al2O3が9%であつて、第2図のA点、
B点及びC点に夫々相当するCaO:B2O3:SiO2
の量比を有する3種の基礎ガラスを使用して、実
施例1と同様の手順で多孔性ガラス、及び
を得た後、細孔特性を調べたところ、第1表の多
孔性ガラスNo.1、No.2及びNo.3に類似する結果が
得られた。 実施例 5 Al2O3が6%であつて、第2図のA点、B点及
びC点に夫々相当するCaO:B2O3:SiO2の量比
を有する3種の基礎ガラスを使用して、実施例1
と同様の手順で多孔性ガラス、及びを得た
後、細孔特性を調べたところ、第1表の多孔性ガ
ラスNo.1、No.2及びNo.3に類似する結果が得られ
た。 実施例4及び5に示す結果から、Al2O3の量が
本発明の範囲内で変動しても、CaO:B2O3
SiO2の量比が同じ場合には、多孔性ガラスの物
性には、大きな変動は生じないことが明らかであ
る。
[Table] Example 4 The proportions of volcanic glass contained in boric acid, lime, and shirasu were variously adjusted, and Al 2 O 3 was 9% (constant), and the proportions of CaO, B 2 O 3 , and SiO 2 were When various different glasses were prepared and their phase separation regions were investigated, results almost similar to those shown in FIG. 2 were obtained. Also, if Al 2 O 3 is 9%, point A in Figure 2,
CaO corresponding to point B and point C, respectively: B 2 O 3 : SiO 2
Porous glasses were obtained in the same manner as in Example 1 using three types of basic glass having a quantitative ratio of , and then the pore characteristics were investigated. Porous glass No. 1 in Table 1 was obtained. Results similar to No. 1, No. 2 and No. 3 were obtained. Example 5 Three types of basic glasses were prepared in which Al 2 O 3 was 6% and the amount ratio of CaO:B 2 O 3 :SiO 2 corresponded to points A, B, and C in FIG. 2, respectively. Using Example 1
After obtaining porous glasses and in the same manner as above, the pore characteristics were investigated, and results similar to those of porous glasses No. 1, No. 2, and No. 3 in Table 1 were obtained. From the results shown in Examples 4 and 5, even if the amount of Al 2 O 3 varies within the range of the present invention, CaO:B 2 O 3 :
It is clear that when the quantitative ratio of SiO 2 is the same, there is no significant variation in the physical properties of the porous glass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による多孔性ガラスの製造方
法の一例を示すフローダイヤグラムである。第2
図は、CaO−B2O3−SiO2−Al2O3系ガラス(但し
Al2O312%)における分相域を枠で囲んで示す組
成図である。第3図は、実施例1で得た3種の多
孔性ガラスの細孔分布(微分)を示すグラフであ
る。第4図は、実施例2で得た3種の多孔性ガラ
スの電子顕微鏡写真である。第5図は、実施例2
で得た多孔性ガラスの細孔分布を示すグラフであ
る。第6図は、実施例3で得られた酸処理後の多
孔性ガラスとこれを更にアルカリ処理した多孔性
ガラスの細孔分布(積分)とを対比して示すグラ
フである。
FIG. 1 is a flow diagram showing an example of a method for manufacturing porous glass according to the present invention. Second
The figure shows CaO−B 2 O 3 −SiO 2 −Al 2 O 3 glass (however,
FIG. 2 is a composition diagram showing a phase separation region (Al 2 O 3 12%) surrounded by a frame. FIG. 3 is a graph showing the pore distribution (differential) of the three types of porous glasses obtained in Example 1. FIG. 4 is an electron micrograph of three types of porous glasses obtained in Example 2. Figure 5 shows Example 2
It is a graph showing the pore distribution of the porous glass obtained in . FIG. 6 is a graph showing a comparison of the pore distribution (integral) of the acid-treated porous glass obtained in Example 3 and the alkali-treated porous glass.

Claims (1)

【特許請求の範囲】 1 Ca08〜25重量%、B2O38〜30重量%、SiO245
〜70重量%およびAl2O35〜15重量%を必須成分
とする基礎ガラスを600〜800℃の範囲内の一定温
度で2〜48時間熱処理した後、0.5〜2規定濃度
の塩酸、硝酸または硫酸溶液に70〜90℃で浸漬す
ることにより酸可溶成分を抽出することを特徴と
する多孔性ガラスの製造方法。 2 Ca08〜25重量%、B2O38〜30重量%、SiO245
〜70重量%およびAl2O35〜15重量%を必須成分
とする基礎ガラスを600〜800℃の範囲内の一定温
度で2〜48時間熱処理し、次いで0.5〜2規定濃
度の塩酸、硝酸または硫酸溶液に70〜90℃で浸漬
することにより酸可溶成分を抽出して得た多孔性
ガラスを0.01〜0.05規定濃度の水酸化ナトリウム
溶液により30℃以下で処理してガラス中の細孔に
残留するシリカゲルを除去することを特徴とする
多孔性ガラスの製造方法。
[Claims] 1 Ca08-25% by weight, B 2 O 3 8-30% by weight, SiO 2 45
~70% by weight and 5-15% by weight of Al 2 O 3 as essential components are heat-treated at a constant temperature within the range of 600-800°C for 2-48 hours, and then treated with hydrochloric acid or nitric acid at a concentration of 0.5-2N. Alternatively, a method for producing porous glass, which comprises extracting acid-soluble components by immersing it in a sulfuric acid solution at 70 to 90°C. 2 Ca08-25% by weight, B 2 O 3 8-30% by weight, SiO 2 45
A base glass containing ~70% by weight and 5~15% by weight of Al 2 O 3 as essential components is heat treated at a constant temperature within the range of 600~800°C for 2~48 hours, and then treated with hydrochloric acid or nitric acid at a concentration of 0.5~2N. Alternatively, porous glass obtained by extracting acid-soluble components by immersing it in a sulfuric acid solution at 70 to 90°C is treated with a sodium hydroxide solution with a normal concentration of 0.01 to 0.05 at 30°C or less to remove the pores in the glass. A method for producing porous glass, the method comprising removing silica gel remaining in the glass.
JP2377281A 1981-02-17 1981-02-17 Manufacture of porous glass Granted JPS57140334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2377281A JPS57140334A (en) 1981-02-17 1981-02-17 Manufacture of porous glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2377281A JPS57140334A (en) 1981-02-17 1981-02-17 Manufacture of porous glass

Publications (2)

Publication Number Publication Date
JPS57140334A JPS57140334A (en) 1982-08-30
JPS6225618B2 true JPS6225618B2 (en) 1987-06-04

Family

ID=12119624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2377281A Granted JPS57140334A (en) 1981-02-17 1981-02-17 Manufacture of porous glass

Country Status (1)

Country Link
JP (1) JPS57140334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106975A (en) * 2005-10-11 2007-04-26 Spg Trading Kk Device for manufacturing spg (shirasu porous glass) emulsion fuel
WO2008044550A1 (en) 2006-10-04 2008-04-17 Suntory Limited O/w/o-type emulsion containing lignan compound, and composition comprising the same
US7591452B2 (en) 2003-12-15 2009-09-22 Miyazaki Prefecture Method for producing monodisperse bubbles
JP2009234900A (en) * 2008-03-28 2009-10-15 Univ Of Miyazaki Underwater ozonizer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140841A (en) * 1984-07-31 1986-02-27 Miyazakiken Porous moulded product of glass and its preparation
JPS61106437A (en) * 1984-10-26 1986-05-24 Asahi Glass Co Ltd Glass composition for porosity and porous glass
JPH07113438B2 (en) * 1986-03-15 1995-12-06 清本鉄工株式会社 Shirasu porous glass hermetic sealing device
US4895683A (en) * 1987-04-27 1990-01-23 Kiyomoto Tekko Kabushiki Kaisha Apparatus for mass transferring between phases different from each other
US4818447A (en) * 1987-04-27 1989-04-04 Kiyomoto Tekko Kabushiki Kaisha Apparatus for mass transferring between phases different from each other
JPH01194994A (en) * 1988-01-29 1989-08-04 Ise Kagaku Kogyo Kk Preparation of ozone-containing water
US20060060820A1 (en) * 2004-09-21 2006-03-23 Schumacher Ray F Hollow porous-wall glass microspheres for hydrogen storage
JP2011063465A (en) * 2009-09-16 2011-03-31 Spg Techno Kk Container formed with porous glass membrane on surface thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344580A (en) * 1976-10-05 1978-04-21 Mitsubishi Chem Ind Ltd 1,6-dihydropyridazine derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344580A (en) * 1976-10-05 1978-04-21 Mitsubishi Chem Ind Ltd 1,6-dihydropyridazine derivatives

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591452B2 (en) 2003-12-15 2009-09-22 Miyazaki Prefecture Method for producing monodisperse bubbles
JP2007106975A (en) * 2005-10-11 2007-04-26 Spg Trading Kk Device for manufacturing spg (shirasu porous glass) emulsion fuel
WO2008044550A1 (en) 2006-10-04 2008-04-17 Suntory Limited O/w/o-type emulsion containing lignan compound, and composition comprising the same
JP2009234900A (en) * 2008-03-28 2009-10-15 Univ Of Miyazaki Underwater ozonizer

Also Published As

Publication number Publication date
JPS57140334A (en) 1982-08-30

Similar Documents

Publication Publication Date Title
JPS6366777B2 (en)
JPS6225618B2 (en)
JPH0262503B2 (en)
US3785793A (en) Method of leaching high silica glass having 0.5-2.0% p2o5
JPH06191877A (en) Polarization glass
JPS6369732A (en) Glass for sealing molybdenum
Riebling Preparation and Structure of Thallium and Silver Germanate Glasses
JPS60215547A (en) Ultraviolet transmitting glass
JPH0432020B2 (en)
JPH0444612B2 (en)
JPS6159255B2 (en)
JP4626934B2 (en) LCD protective glass
US3883358A (en) Copper aluminoborate glasses
US3720527A (en) Fast setting hydraulic cements from glass powders
JPH0460936B2 (en)
JPS5843342B2 (en) Method for forming a sealing glass composition containing copper oxide
Shelby Effect of morphology on helium mobility in soda‐lime‐silica glasses
US3585053A (en) Glass-ceramic article and method
JP3707937B2 (en) Glass and optical fiber manufacturing method
Tynes et al. Rayleigh scattering losses in soda borosilicate glasses
JPS62148336A (en) Porous body comprising alumino phosphosilicate glass ceramic and its preparation
JPS606904B2 (en) Method for manufacturing ceramic articles containing alumina caretite
JPS5934664B2 (en) Glass composition with good alkali resistance
JPS62167239A (en) Glass composition for porous body
JPH03199133A (en) Quartz glass material for heat treatment