【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は多孔質ガラス用組成物に関する。
〔従来技術〕
分相によつて多孔質ガラスを製造するための組
成物としては、ケイ酸、ホウ酸、アルカリおよび
アルミナを主成分とするホウケイ酸ガラスを500
〜650℃で熱処理してSiO2を主成分とする相と、
B2O3を主成分とする相に分相させ、後者を酸で
選択的に溶出することによつて多孔質ガラスを製
造することが知られている。(米国特許第2106774
号、米国特許第3843341号)。
しかしながら、かかる組成物から製造される多
孔質ガラスは化学的耐久性が悪いので、水溶液中
では使用できず、用途が著しく制限されていた。
そこでこの改善のための組成物として、Al2O3
5〜15重量%、CaO8〜25重量%を含むSiO2−B2
O3−Al2O3系組成物、およびこれに各種のアルカ
リおよびアルカリ土類金属、TiO2、ZrO2を添加
した組成物などが提案された。
Al2O3は、化学的耐久性を改善することはでき
るが、耐アルカリ性の改善には効果が十分ではな
い。
また、ZrO2、TiO2がSiO2骨格に残れば著しい
効果が期待できるが、これら組成物から多孔質ガ
ラスを製造すると、ZrO2、TiO2は細孔中にゲル
状に堆積し、骨格にはほとんど残らず、化学的耐
久性はなお不充分なままであつた。
〔発明の解決しようとする問題点〕
本発明は上記従来の欠点を解消し、化学的耐久
性に優れた多孔質ガラスを製造するための組成物
を提供せんとするものである。
〔問題点を解決するための手段〕
本発明の多孔質ガラス用組成物は、重量%表示
で、下記の組成からなる。
SiO2 40〜75%
B2O3 10〜30%
ZnO 3〜20%
ZrO2 0〜20%
Na2O 0.5〜10%
Al2O3 0〜10%
F+SO3+Cl
+As2O3
+Sb2O3 0.03〜1%
本発明の多孔質ガラス用組成物について限定理
由は下記のとおりである。
SiO2は網目構成酸化物であり、SiO2が40%未
満(重量%、以下同じ)では失透を生じやすく、
ガラス化しにくい、軟化点が低下するなどの欠点
がある。一方、75%を越えると組成物の溶融粘度
が高くなり、溶融性が悪くなる。SiO2は好まし
くは50〜70%である。
B2O3はSiO2と同様にガラス構成酸化物である。
B2O3が10%未満では、分相が不充分であり、多
孔質ガラスが得られない。
また、30%を越えると、得られた多孔質ガラス
の化学的耐久性および機械的強度が低下するので
好ましくない。B2O3は好ましくは12〜25%であ
る。
一般にこの種の組成物は失透しやすいが、ZnO
は失透温度および成形域の粘度を調整して成形性
を著しく改善する能力を有する。
またZnOは、分相促進と分相過程でZrO2を
SiO2相(骨格)に移行させ、骨格の化学的耐久
性を向上させるために添加される。
ZnOが3%未満では、かかる効果がほとんどな
く、20%を越えると失透しやすくなり、好ましく
ない。ZnOは5〜15%の範囲が好ましい。
ZrO2は分相過程でSiO2中に移行されて、多孔
質ガラスの骨格の化学的耐久性を強化する性質を
有する。
ZrO2が20%を越えるとガラス化が困難になり、
失透しやすくなる。ZrO2は2〜15%が好ましい。
Na2Oは、ガラス溶融温度を低下させるための
フラツクスである。0.5未満では組成物の溶融性
が悪くなり、粘度が高くなつて成形性が悪くなる
ので好ましくない。一方、10%を越えると、成形
温度域の粘度が下がりすぎて好ましくない。Na2
Oの好ましい範囲は、2〜7%である。
Al2O3は必須成分ではないが、成形温度域の粘
性、分相特性の調整、失透性の改善などに効果が
ある。
添加量が10%を越えると、ガラス化が困難とな
り、熱処理時にドロツプレツト状分相を生じ、酸
による溶出が困難となり、多孔質化が不可能にな
る。
F、SO3、Cl、As2O3およびSb2O3は、ガラス
の溶融時の清澄剤として添加される。これらの総
量が0.03%未満では、添加効果がなく、1.0%を
越えても添加量増加による効果の増加がみられな
い。
これらの総量の好ましい添加量は、0.05〜0.8
%の範囲である。
上記した本発明の多孔質ガラス用組成物は、例
えば次のようにして製造される。
まず所定の組成になるように、各原料を調合
し、次いで1300〜1550℃で20時間、加熱溶融す
る。
溶融物を棒状、管状、板状など目的の形状に成
形し、これを徐冷して所定形状の組成物を得る。
得られた成形物から、例えば次の工程で多孔質
ガラスを製造することができる。
すなわち、成形体を500〜850℃の温度で1〜48
時間熱処理して分相させる。
次いで、好ましくはHF溶液で3〜20秒間エツ
チングして、分相処理中にB2O3、Na2Oなどが
揮発して生じた表面のシリカリツチ相を除去す
る。
その後、85〜100℃のH2SO4、HCl、HNO3な
どの酸によつて可溶相を溶出した後に水洗し、乾
燥することによつて多孔質ガラスが製造される。
最後に、細孔内に堆積したSiO2、ZrO2、Al2O3
などのゲルをNaOH、濃H2SO4などによつて除
去すると、ゲルのない多孔質ガラスが得られる。
〔発明の効果〕
以上述べたように本発明によれば、ガラス組成
物を特定組成とすることによつて、特定組成の多
孔質ガラスを得ることができる。
そして、本発明の多孔質ガラス用組成物はZnO
を含んでいるので、容易に成形することができ
る。
更に本発明の多孔質ガラス用組成物から得られ
た多孔質ガラスにおいて、骨格にSiO2だけでな
く、ZrO2が含まれている場合には、化学的耐久
性、特に耐アルカリ性が極めて優れた多孔質ガラ
スが得られる。
また、細孔内に堆積したSiO2ゲルをアルカリ
溶液で処理して溶出除去する必要があるが、骨格
がSiO2で構成されている従来の多孔質ガラスの
場合には、骨格が溶解して崩れる心配がある。
しかしながら本発明において、ZrO2が含まれ
ている場合には、骨格が耐アルカリ性のために侵
食を受けないので、アルカリ溶液で十分に処理し
てゲルを除去することができる。
さらに本発明では、ZrO2ゲルも堆積する場合
があるが、これは濃H2SO4だけで溶解除去する
ことができる。
従来の多孔質ガラス用組成物では、CaOなどの
アルカリ土類金属の酸化物を含んでいるので、
H2SO4で処理すると、不溶性のアルカリ土類金
属の硫酸塩が細孔内に生成し、溶出不能となる。
従つて、アルカリ土類金属を含む従来の組成物
では、はじめに、HCl、HNO3などの可溶性塩を
つくる酸で可溶成分を溶出した後、再度H2SO4
で処理してZrO2ゲルを除去する必要がある。
本発明においては、組成物がCaOなどのアルカ
リ土類金属を含まないので、直接H2SO4処理が
可能であり、多孔化工程が著しく簡単になる。
以下、本発明の実施例を述べる。
〔実施例〕
下記表1のA〜Fの組成となるように、各原料
を調合し、溶融して多孔質ガラス用組成物を得
た。
これらの組成物は、非常に溶融性が良好であ
り、各種の直径および厚さの管、板、棒などの成
形物を製造する際の作業性が極めて優れていた。
次いで、これら多孔質ガラス用組成物を電気炉
で800℃、24時間熱処理して分相させた。
分相物を粉砕し、400〜800μmの粒径に揃えた。
この後、95℃、1N−HNO3で24時間可溶相を
溶出させ、濃H2SO4と0.25N−NaOHで細孔内に
堆積したゲルを除去し、水洗後乾燥して多孔質ガ
ラスを得た。
このようにして得られた多孔質ガラスの組成、
平均細孔径(Å)、細孔容積(c.c./g)を測定し、
その結果を同表に併載した。
なお、表中の平均細孔径、細孔容積は、水銀圧
入式ポロシメーター、窒素吸着装置により測定し
た。
また表1では、粒状物について実験を行つた
が、これらの組成物から、各種の直径及び厚さの
管、板、棒などの多孔質ガラス成形物も得られ
た。
次に、表1のD組成の多孔質ガラス管を、30℃
の1N−NaOH中に100時間浸漬、攪拌してその重
量の経時変化を測定した。
結果を実線で第1図に示す。
また、比較のために従来のバイコール型多孔質
ガラスについても同様の試験を行つた。
結果を破線で第1図に併記した。
また、表1のA組成の多孔質ガラス用組成物の
分相処理温度と平均細孔径との関係を第2図に示
す。
分相処理温度と平均細孔径の対数との間には直
線関係があり、40〜20000Åの範囲の多孔質ガラ
スを得ることができる。
[Industrial Field of Application] The present invention relates to a composition for porous glass. [Prior art] As a composition for producing porous glass by phase separation, borosilicate glass containing silicic acid, boric acid, alkali, and alumina as main components is used.
Heat treated at ~650℃ to form a phase mainly composed of SiO2 ,
It is known to produce porous glass by phase separation into a phase containing B 2 O 3 as a main component and selectively eluting the latter with acid. (U.S. Patent No. 2106774
No. 3,843,341). However, porous glass produced from such a composition has poor chemical durability and cannot be used in an aqueous solution, thus severely limiting its uses. Therefore, as a composition for this improvement, Al 2 O 3
SiO 2 −B 2 containing 5-15% by weight, CaO 8-25% by weight
O 3 -Al 2 O 3 based compositions and compositions in which various alkali and alkaline earth metals, TiO 2 and ZrO 2 are added have been proposed. Although Al 2 O 3 can improve chemical durability, it is not sufficiently effective in improving alkali resistance. Furthermore, if ZrO 2 and TiO 2 remain in the SiO 2 skeleton, a remarkable effect can be expected, but when porous glass is manufactured from these compositions, ZrO 2 and TiO 2 are deposited in the pores in the form of a gel, and are removed from the skeleton. Almost no residue remained, and the chemical durability remained insufficient. [Problems to be Solved by the Invention] The present invention aims to eliminate the above-mentioned conventional drawbacks and provide a composition for producing porous glass with excellent chemical durability. [Means for Solving the Problems] The composition for porous glass of the present invention has the following composition expressed in weight percent. SiO 2 40-75% B 2 O 3 10-30% ZnO 3-20% ZrO 2 0-20% Na 2 O 0.5-10% Al 2 O 3 0-10% F + SO 3 + Cl + As 2 O 3 + Sb 2 O 3 0.03 to 1% The reasons for limiting the composition for porous glass of the present invention are as follows. SiO 2 is a network-constituting oxide, and if SiO 2 is less than 40% (weight %, same hereinafter), devitrification tends to occur.
It has drawbacks such as being difficult to vitrify and having a low softening point. On the other hand, if it exceeds 75%, the melt viscosity of the composition will increase and the meltability will deteriorate. SiO2 is preferably 50-70%. B 2 O 3 is a glass constituent oxide like SiO 2 .
When B 2 O 3 is less than 10%, phase separation is insufficient and porous glass cannot be obtained. Moreover, if it exceeds 30%, the chemical durability and mechanical strength of the obtained porous glass will decrease, which is not preferable. B2O3 is preferably 12-25% . Generally, this type of composition is prone to devitrification, but ZnO
has the ability to significantly improve moldability by adjusting the devitrification temperature and viscosity of the molding zone. In addition, ZnO promotes phase separation and converts ZrO 2 in the phase separation process.
It is added to transition to SiO 2 phase (skeleton) and improve the chemical durability of the skeleton. When the ZnO content is less than 3%, there is almost no such effect, and when it exceeds 20%, devitrification tends to occur, which is not preferable. The ZnO content is preferably in the range of 5 to 15%. ZrO 2 is transferred into SiO 2 during the phase separation process and has the property of strengthening the chemical durability of the porous glass framework. When ZrO2 exceeds 20%, vitrification becomes difficult;
It becomes easier to devitrify. ZrO 2 is preferably 2 to 15%. Na 2 O is a flux to lower the glass melting temperature. If it is less than 0.5, the meltability of the composition will be poor, the viscosity will be high, and the moldability will be poor, which is not preferable. On the other hand, if it exceeds 10%, the viscosity in the molding temperature range becomes too low, which is not preferable. Na2
The preferred range of O is 2 to 7%. Although Al 2 O 3 is not an essential component, it is effective in adjusting the viscosity in the molding temperature range, adjusting phase separation characteristics, and improving devitrification. If the amount added exceeds 10%, vitrification becomes difficult, droplet-like phase separation occurs during heat treatment, acid elution becomes difficult, and porosity becomes impossible. F, SO 3 , Cl, As 2 O 3 and Sb 2 O 3 are added as fining agents during glass melting. If the total amount of these is less than 0.03%, there is no effect of addition, and even if the total amount exceeds 1.0%, no increase in the effect is seen by increasing the amount of addition. The preferable total addition amount of these is 0.05 to 0.8
% range. The porous glass composition of the present invention described above is manufactured, for example, as follows. First, each raw material is mixed to have a predetermined composition, and then heated and melted at 1300 to 1550°C for 20 hours. The melt is formed into a desired shape, such as a rod, a tube, or a plate, and then slowly cooled to obtain a composition in a predetermined shape. From the obtained molded product, porous glass can be manufactured, for example, in the following process. That is, the molded body is heated at a temperature of 500 to 850℃ for 1 to 48℃.
Heat treatment for a period of time to separate the phases. Next, it is preferably etched with an HF solution for 3 to 20 seconds to remove the siliceous phase on the surface caused by volatilization of B 2 O 3 , Na 2 O, etc. during the phase separation treatment. Thereafter, the soluble phase is eluted with an acid such as H 2 SO 4 , HCl, HNO 3 at 85 to 100°C, washed with water, and dried to produce porous glass. Finally, SiO 2 , ZrO 2 , Al 2 O 3 deposited inside the pores
When the gel is removed with NaOH, concentrated H 2 SO 4 etc., a gel-free porous glass is obtained. [Effects of the Invention] As described above, according to the present invention, a porous glass having a specific composition can be obtained by making the glass composition have a specific composition. The composition for porous glass of the present invention is ZnO
It can be easily molded. Furthermore, when the porous glass obtained from the composition for porous glass of the present invention contains not only SiO 2 but also ZrO 2 in the skeleton, it has extremely excellent chemical durability, especially alkali resistance. A porous glass is obtained. In addition, it is necessary to treat the SiO 2 gel deposited in the pores with an alkaline solution to elute and remove it, but in the case of conventional porous glass whose skeleton is composed of SiO 2 , the skeleton dissolves and removes it. I'm worried about it falling apart. However, in the present invention, when ZrO 2 is included, the skeleton is resistant to alkali and therefore does not suffer from erosion, so the gel can be removed by sufficient treatment with an alkaline solution. Furthermore, in the present invention, ZrO 2 gel may also be deposited, which can be dissolved and removed with concentrated H 2 SO 4 alone. Conventional porous glass compositions contain alkaline earth metal oxides such as CaO, so
When treated with H 2 SO 4 , insoluble alkaline earth metal sulfates are formed within the pores and cannot be eluted. Therefore, in conventional compositions containing alkaline earth metals, the soluble components are first eluted with an acid that forms a soluble salt, such as HCl or HNO 3 , and then the soluble components are eluted with H 2 SO 4 again.
It is necessary to remove the ZrO 2 gel by treatment with In the present invention, since the composition does not contain alkaline earth metals such as CaO, direct H 2 SO 4 treatment is possible, which greatly simplifies the porosity formation process. Examples of the present invention will be described below. [Example] Each raw material was prepared to have the compositions A to F in Table 1 below and melted to obtain a composition for porous glass. These compositions had very good melting properties and had excellent workability in producing molded products such as pipes, plates, and rods of various diameters and thicknesses. Next, these porous glass compositions were heat-treated in an electric furnace at 800°C for 24 hours to cause phase separation. The phase-separated product was pulverized to a particle size of 400 to 800 μm. After this, the soluble phase was eluted with 1N- HNO3 at 95℃ for 24 hours, the gel deposited in the pores was removed with concentrated H2SO4 and 0.25N -NaOH, and the porous glass was prepared by washing with water and drying. I got it. The composition of the porous glass thus obtained,
Measure the average pore diameter (Å) and pore volume (cc/g),
The results are also included in the same table. Note that the average pore diameter and pore volume in the table were measured using a mercury intrusion porosimeter and a nitrogen adsorption device. In Table 1, experiments were conducted on granular materials, but porous glass moldings such as tubes, plates, and rods of various diameters and thicknesses were also obtained from these compositions. Next, a porous glass tube with composition D in Table 1 was heated at 30°C.
The sample was immersed in 1N-NaOH for 100 hours and stirred, and the change in weight over time was measured. The results are shown in Figure 1 as a solid line. For comparison, a similar test was also conducted on conventional Vycor type porous glass. The results are also shown in Figure 1 with broken lines. Further, FIG. 2 shows the relationship between the phase separation treatment temperature and the average pore diameter of the porous glass composition having composition A in Table 1. There is a linear relationship between the phase separation treatment temperature and the logarithm of the average pore diameter, and porous glasses in the range of 40 to 20,000 Å can be obtained.
【表】【table】
【表】
* ゲル除去をせずに得た多孔質ガラス
[Table] *Porous glass obtained without gel removal
【図面の簡単な説明】[Brief explanation of drawings]
図1は、本発明の多孔質ガラス用組成物から得
られた多孔質ガラスと従来のシリカ系多孔質ガラ
スのアルカリ水溶液中における経時的な重量変化
を示す図、図2は本発明の多孔質ガラス用組成物
から多孔質ガラスを得る際の分相処理温度と平均
細孔径との関係を示す図である。
FIG. 1 is a diagram showing the weight change over time in an alkaline aqueous solution of a porous glass obtained from the composition for porous glass of the present invention and a conventional silica-based porous glass, and FIG. It is a figure showing the relationship between phase separation treatment temperature and average pore diameter when obtaining porous glass from a composition for glass.