JP7168901B2 - Method for manufacturing porous glass member - Google Patents

Method for manufacturing porous glass member Download PDF

Info

Publication number
JP7168901B2
JP7168901B2 JP2018128188A JP2018128188A JP7168901B2 JP 7168901 B2 JP7168901 B2 JP 7168901B2 JP 2018128188 A JP2018128188 A JP 2018128188A JP 2018128188 A JP2018128188 A JP 2018128188A JP 7168901 B2 JP7168901 B2 JP 7168901B2
Authority
JP
Japan
Prior art keywords
glass member
porous glass
base material
glass
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128188A
Other languages
Japanese (ja)
Other versions
JP2020007180A (en
Inventor
雅人 辻口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018128188A priority Critical patent/JP7168901B2/en
Publication of JP2020007180A publication Critical patent/JP2020007180A/en
Application granted granted Critical
Publication of JP7168901B2 publication Critical patent/JP7168901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多孔質ガラス部材の製造方法に関する。 The present invention relates to a method for manufacturing a porous glass member.

近年、多孔質ガラスは、シャープな細孔分布と大きな比表面積を持ち、耐熱性、耐有機溶媒性を持つため、分離膜、散気管、電極材料や触媒の担持体など幅広い用途への利用が検討されている。これらのなかには、アルカリ性の環境下で使用する場合もあり、応用を考慮すると多孔質ガラスには耐アルカリ性が必要とされる。耐アルカリ性多孔質ガラスは、ジルコニアを含んだアルカリホウケイ酸ガラスからなるガラス母材を熱処理してシリカリッチ相と酸化ホウ素リッチ相の2相に分離し、酸化ホウ素リッチ相を酸で除去することにより作製される(例えば、特許文献1参照)。 In recent years, porous glass has a sharp pore distribution, a large specific surface area, heat resistance, and resistance to organic solvents. being considered. Some of these are used in an alkaline environment, and the porous glass is required to have alkali resistance in consideration of its application. Alkali-resistant porous glass is produced by heat-treating a glass base material made of alkali borosilicate glass containing zirconia to separate it into two phases, a silica-rich phase and a boron oxide-rich phase, and removing the boron oxide-rich phase with an acid. (See Patent Document 1, for example).

特許第4951799号Patent No. 4951799

しかしながら、特許文献1に記載されている耐アルカリ性多孔質ガラスの製造方法では、製造途中に多孔質ガラス部材に割れが発生する場合があり、所望の形状の部材を作製することが困難であった。 However, in the method for producing an alkali-resistant porous glass described in Patent Document 1, cracks may occur in the porous glass member during production, making it difficult to produce a member having a desired shape. .

以上に鑑み、本発明は、多孔質ガラス部材に割れが発生しにくい多孔質ガラス部材の製造方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a method for manufacturing a porous glass member in which cracks are less likely to occur in the porous glass member.

本発明者は、種々の実験を繰り返した結果、ガラス母材のガラス組成を厳密に規制することにより上記技術的課題を解決しえることを見出した。 As a result of repeating various experiments, the inventors of the present invention have found that the above technical problems can be solved by strictly controlling the glass composition of the glass base material.

即ち、本発明の多孔質ガラス部材の製造方法は、質量%で、SiO 42~80%、B 0超~40%、NaO 0超~20%、ZrO 3超~10%、Al 0~3%未満、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0.5~20%を含有し、質量比でNaO/Bが0.25~0.5であるガラス母材を熱処理し、2相に分相させる工程、及び、一方の相を酸で除去する工程を含むことを特徴とする。なお、「NaO/B」は、NaOの含有量をBの含有量で除した値を指す。 That is, in the method for producing a porous glass member of the present invention, SiO 2 is 42 to 80%, B 2 O 3 is more than 0 to 40%, Na 2 O is more than 0 to 20%, and ZrO 2 is more than 3 to 10% by mass. %, Al 2 O 3 0 to less than 3%, RO (R is at least one selected from Mg, Ca, Sr and Ba) 0.5 to 20%, and the mass ratio is Na 2 O/B 2 The method is characterized by including a step of heat-treating a glass base material having O 3 of 0.25 to 0.5 to separate into two phases, and a step of removing one of the phases with an acid. In addition , " Na2O / B2O3 " refers to the value obtained by dividing the content of Na2O by the content of B2O3 .

割れの原因は、酸化ホウ素リッチ相を酸により除去する工程で生じる体積変化であり、その体積変化の原因は、多孔質ガラスの細孔中に残留しているシリカゲルの水和による膨張、シリカリッチ相中からNaOが溶出することによる収縮である。検討した結果、ガラス母材の組成を上記のようにすれば、膨張量と収縮量が同程度になり、体積変化が起こりにくく、多孔質ガラス部材に割れが発生しにくくなることを見出した。 The cause of the cracks is the volume change that occurs in the process of removing the boron oxide-rich phase with acid, and the cause of the volume change is the expansion due to hydration of the silica gel remaining in the pores of the porous glass, the silica-rich This is contraction due to elution of Na 2 O from the phase. As a result of investigation, it was found that if the composition of the glass base material is set as described above, the amount of expansion and the amount of contraction are approximately the same, volume change is less likely to occur, and cracks are less likely to occur in the porous glass member.

本発明の多孔質ガラス部材の製造方法は、ガラス母材が、2~1000のアスペクト比を有することが好ましい。なお、アスペクト比は下記の式により算出する。 In the method for producing a porous glass member of the present invention, the glass base material preferably has an aspect ratio of 2-1000. Incidentally, the aspect ratio is calculated by the following formula.

アスペクト比=(ガラス母材の底面積)1/2/ガラス母材の厚み Aspect ratio = (bottom area of glass base material) 1 /2/thickness of glass base material

本発明の多孔質ガラス部材の製造方法は、熱処理温度が500~800℃であることが好ましい。 In the method for producing a porous glass member of the present invention, the heat treatment temperature is preferably 500 to 800.degree.

本発明の多孔質ガラス部材用ガラス母材は、質量%で、SiO 42~80%、B 0超~40%、NaO 0超~20%、ZrO 3超~10%、Al 0~3%未満、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0.5~20%を含有し、質量比でNaO/Bが0.25~0.5であることを特徴とする。 The glass base material for a porous glass member of the present invention contains, in % by mass, SiO 2 42 to 80%, B 2 O 3 more than 0 to 40%, Na 2 O more than 0 to 20%, and ZrO 2 more than 3 to 10%. , Al 2 O 3 less than 0 to 3%, RO (R is at least one selected from Mg, Ca, Sr and Ba) 0.5 to 20%, and the mass ratio is Na 2 O/B 2 O 3 is 0.25 to 0.5.

本発明によれば、多孔質ガラス部材に割れが発生しにくい多孔質ガラス部材の製造方法を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the manufacturing method of the porous-glass member which a crack does not generate|occur|produce in a porous-glass member easily.

本発明の多孔質ガラス部材の製造方法について説明する。 A method for manufacturing the porous glass member of the present invention will be described.

まず、以下のようにして多孔質ガラス部材用ガラス母材を用意する。質量%で、SiO 42~80%、B 0超~40%、NaO 0超~20%、ZrO 3超~10%、Al 0~3%未満、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0.5~20%を含有し、質量比でNaO/Bが0.25~0.5のガラス組成になるように、ガラス原料を調合する。以下に、各成分の含有量を上記のように特定した理由を説明する。なお、特に断りがない場合、以下の成分含有量に関する説明において、「%」は「質量%」を意味する。 First, a glass base material for a porous glass member is prepared as follows. % by mass, SiO 2 42-80%, B 2 O 3 0-40%, Na 2 O 0-20%, ZrO 3-10%, Al 2 O 3 0-3%, RO ( R is at least one selected from Mg, Ca, Sr and Ba) and contains 0.5 to 20%, and a glass composition having a mass ratio of Na 2 O/B 2 O 3 of 0.25 to 0.5 Mix the glass raw materials so that The reasons for specifying the content of each component as described above will be described below. In addition, unless otherwise specified, "%" means "% by mass" in the following descriptions of component contents.

SiOはガラスネットワークを形成する成分である。SiOの含有量は42~80%であり、45~75%、50~72%、特に55~70%であることが好ましい。SiOの含有量が少なすぎると、耐候性や機械的強度が低下する傾向がある。また、シリカゲルの水和による膨張量が、シリカリッチ相中からNaOが溶出することによる収縮量より小さくなりやすく、多孔質ガラス部材に割れが発生しやすくなる。一方、SiOの含有量が多すぎると、分相しにくくなる。 SiO2 is a component that forms a glass network. The content of SiO 2 is 42-80%, preferably 45-75%, 50-72%, especially 55-70%. If the SiO2 content is too low, weather resistance and mechanical strength tend to decrease. In addition, the amount of swelling due to hydration of silica gel tends to be smaller than the amount of shrinkage due to elution of Na 2 O from the silica-rich phase, and cracks are likely to occur in the porous glass member. On the other hand, if the content of SiO2 is too high, phase separation becomes difficult.

はガラスネットワークを形成し、分相を促進する成分である。Bの含有量は0超~40%であり、10~30%、特に20~25%であることが好ましい。Bを含有していないと、上記効果が得にくい。一方、Bの含有量が多すぎると、耐候性が低下しやすくなる。 B 2 O 3 is a component that forms a glass network and promotes phase separation. The content of B 2 O 3 is more than 0 to 40%, preferably 10 to 30%, especially 20 to 25%. If B 2 O 3 is not contained, the above effects are difficult to obtain. On the other hand, if the B 2 O 3 content is too high, the weather resistance tends to decrease.

NaOは溶融温度を低下させて溶融性を改善する成分であるとともに分相を促進させる成分である。NaOの含有量は0超~20%であり、3~10%、特に4~8%であることが好ましい。NaOを含有していないと、上記効果が得られにくい。一方、NaOの含有量が多すぎると、逆に分相しにくくなる。 Na 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation. The content of Na 2 O is more than 0 to 20%, preferably 3 to 10%, especially 4 to 8%. If Na 2 O is not contained, the above effects are difficult to obtain. On the other hand, when the content of Na 2 O is too high, phase separation becomes difficult.

NaO/Bは0.25~0.5であり、0.28~0.4、特に0.3~0.35であることが好ましい。NaO/Bが小さすぎると、シリカゲルの水和による膨張量が、シリカリッチ相中からNaOが溶出することによる収縮量より大きくなりやすく、多孔質ガラス部材に割れが発生しやすくなる。一方、NaO/Bが大きすぎると、シリカゲルの水和による膨張量が、シリカリッチ相中からNaOが溶出することによる収縮量より小さくなりやすく、多孔質ガラス部材に割れが発生しやすくなる。 Na 2 O/B 2 O 3 is 0.25-0.5, preferably 0.28-0.4, especially 0.3-0.35. If the ratio of Na 2 O/B 2 O 3 is too small, the amount of swelling due to hydration of silica gel tends to be greater than the amount of shrinkage due to elution of Na 2 O from the silica-rich phase, and cracks occur in the porous glass member. easier to do. On the other hand, if the ratio of Na 2 O/B 2 O 3 is too large, the amount of swelling due to hydration of silica gel tends to be smaller than the amount of shrinkage due to elution of Na 2 O from the silica-rich phase, and the porous glass member cracks. becomes more likely to occur.

ZrOは耐候性を向上する成分である。ZrOの含有量は3超~10%であり、4~8%、特に5~7%であることが好ましい。ZrOの含有量が少なすぎると、上記効果が得にくい。一方、ZrOの含有量が多すぎると、失透しやすくなると共に分相しにくくなる。 ZrO2 is a component that improves weather resistance. The content of ZrO 2 is more than 3-10%, preferably 4-8%, especially 5-7%. If the content of ZrO 2 is too small, it is difficult to obtain the above effects. On the other hand, if the content of ZrO 2 is too high, devitrification tends to occur and phase separation becomes difficult.

Alは、耐候性や機械的強度を向上させる成分である。Alの含有量は0~3%未満であり、0~2%未満、特に0.1~1.5%であることが好ましい。Alの含有量が多すぎると、溶融温度が上昇し溶融性が悪化しやすくなる。 Al 2 O 3 is a component that improves weather resistance and mechanical strength. The content of Al 2 O 3 is from 0 to less than 3%, preferably from 0 to less than 2%, in particular from 0.1 to 1.5%. If the Al 2 O 3 content is too high, the melting temperature tends to rise and the meltability tends to deteriorate.

なお、NaO+Al(NaO、及びAlの合量)は、多孔質ガラス部材の割れに影響を与える。NaO+Alは、0超~20%、2~15%、特に4~10%であることが好ましい。NaO+Alが少なすぎても多すぎても、多孔質ガラス部材に割れが発生しやすくなる。 Note that Na 2 O+Al 2 O 3 (the total amount of Na 2 O and Al 2 O 3 ) affects cracking of the porous glass member. Na 2 O+Al 2 O 3 is preferably greater than 0 to 20%, 2 to 15%, especially 4 to 10%. If Na 2 O+Al 2 O 3 is too small or too large, the porous glass member is likely to crack.

RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種)は、シリカリッチ相のZrO含有量を増加し、耐候性を向上させる成分である。ROの含有量(MgO、CaO、SrO、BaOの合量)は0.5~20%であり、1~17%、3~15%、4~13%、特に5~10%であることが好ましい。ROの含有量が少なすぎると、上記効果が得られにくい。一方、ROの含有量が多すぎると、分相しにくくなる。なお、MgO、CaO、SrO及びBaOの含有量は各々0~20%、1~17%、3~15%、4~13%、特に5~10%であることが好ましい。なかでも耐候性を向上させる効果が特に大きいという点でCaOを使用することが好ましい。 RO (R is at least one selected from Mg, Ca, Sr and Ba) is a component that increases the ZrO2 content of the silica - rich phase and improves weather resistance. The content of RO (total amount of MgO, CaO, SrO and BaO) is 0.5 to 20%, preferably 1 to 17%, 3 to 15%, 4 to 13%, and particularly 5 to 10%. preferable. If the RO content is too low, the above effects are difficult to obtain. On the other hand, when the content of RO is too high, phase separation becomes difficult. The contents of MgO, CaO, SrO and BaO are preferably 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13%, particularly 5 to 10%, respectively. Among them, it is preferable to use CaO because the effect of improving the weather resistance is particularly large.

本発明の多孔質ガラス部材用ガラス母材には、上記成分以外にも下記の成分を含有させることができる。 The glass base material for a porous glass member of the present invention can contain the following components in addition to the components described above.

Oは、溶融温度を低下させて溶融性を改善する成分であるとともに分相を促進させる成分である。KOの含有量は0~20%、3~10%、特に4~8%であることが好ましい。KOの含有量が多すぎると、逆に分相しにくくなる。 K 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation. The content of K 2 O is preferably 0-20%, 3-10%, especially 4-8%. If the K 2 O content is too high, phase separation becomes difficult.

ZnOは、シリカリッチ相のZrO含有量を増加し、耐候性を向上させる成分である。ZnOの含有量は、0~20%、0~10%、特に0~3%未満であることが好ましい。ZnOの含有量が多すぎると、分相しにくくなる。 ZnO is a component that increases the ZrO2 content of the silica - rich phase and improves weather resistance. The content of ZnO is preferably 0-20%, 0-10%, especially 0-3%. If the ZnO content is too high, phase separation will be difficult.

上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を含有させることができる。例えば、TiO、La、Ta、TeO、Nb、Gd、Y、Eu、Sb、SnO、P及びBi等をそれぞれ15%以下、さらには10%以下、特に5%以下、合量で30%以下の範囲で含有させてもよい。 In addition to the above components, various components can be contained within a range that does not impair the effects of the present invention. For example, TiO2 , La2O3 , Ta2O5 , TeO2 , Nb2O5 , Gd2O3 , Y2O3 , Eu2O3 , Sb2O3 , SnO2 , P2O5 and Bi 2 O 3 and the like may be contained in a range of 15% or less, further 10% or less, particularly 5% or less, and a total amount of 30% or less.

次に、調合したガラスバッチを、1300~1600℃で4~12時間溶融する。次いで、溶融ガラスを板状に成形した後、400~600℃で10分~10時間徐冷を行いガラス母材を得る。得られたガラス母材の形状は特に限定されないが、表面形状が矩形や円形の板状であることが好ましい。なお、得られたガラス母材を所望の形状にするために、切削、研磨等の加工を施しても構わない。また、耐火物炉による連続生産でも構わない。ガラスの溶融および成形の方法は、上記の方法に限定されるものではない。 The prepared glass batch is then melted at 1300-1600° C. for 4-12 hours. Next, after forming the molten glass into a plate, it is slowly cooled at 400 to 600° C. for 10 minutes to 10 hours to obtain a glass base material. The shape of the obtained glass base material is not particularly limited, but the surface shape is preferably rectangular or circular plate-like. In order to form the obtained glass base material into a desired shape, processing such as cutting and polishing may be performed. Continuous production using a refractory furnace may also be used. The method of melting and forming the glass is not limited to the methods described above.

得られたガラス母材は、アスペクト比が2~1000、特に5~500であることが好ましい。アスペクト比が小さすぎると、酸化ホウ素リッチ相を酸により除去する工程において、ガラス母材の表面と内部にて酸化ホウ素リッチ相を除去する速度に大きな差が出るため、応力が発生しやすく多孔質ガラス部材が割れやすくなる。一方、アスペクト比が大きすぎると、取り扱いにくくなる。 The obtained glass base material preferably has an aspect ratio of 2 to 1,000, particularly 5 to 500. If the aspect ratio is too small, in the process of removing the boron oxide-rich phase with an acid, there will be a large difference in the removal rate of the boron oxide-rich phase between the surface and the inside of the glass base material, so stress will easily occur and the glass will become porous. The glass member becomes easily broken. On the other hand, if the aspect ratio is too large, it becomes difficult to handle.

なお、得られたガラス母材の底面積と厚みは、上記アスペクト比となるように適宜調整すればよい。例えば、底面積は1~1000mm、特に5~500mmであることが好ましく、厚みは0.1~1mm、特に0.2~0.5mmであることが好ましい。 The bottom area and thickness of the obtained glass base material may be appropriately adjusted so as to achieve the above aspect ratio. For example, the base area is preferably 1 to 1000 mm 2 , especially 5 to 500 mm 2 , and the thickness is preferably 0.1 to 1 mm, especially 0.2 to 0.5 mm.

次に、得られたガラス母材を熱処理し、シリカリッチ相と酸化ホウ素リッチ相の2相に分相させる。熱処理温度は、500~800℃、特に600~700℃であることが好ましい。熱処理温度が高すぎると、ガラス母材が軟化し、所望の形状を得にくくなる。一方、熱処理温度が低すぎると、ガラス母材を分相させにくくなる。熱処理時間は、10分以上、1時間以上、特に3時間以上であることが好ましい。熱処理時間が短すぎると、ガラス母材を分相させにくくなる。熱処理時間の上限は特に限定されないが、長時間熱処理しても分相はある一定以上は進まなくなるため、現実的には、180時間以下である。 Next, the obtained glass base material is heat-treated to separate into two phases, a silica-rich phase and a boron oxide-rich phase. The heat treatment temperature is preferably 500 to 800°C, particularly 600 to 700°C. If the heat treatment temperature is too high, the glass base material will soften, making it difficult to obtain the desired shape. On the other hand, if the heat treatment temperature is too low, it becomes difficult to separate the phases of the glass base material. The heat treatment time is preferably 10 minutes or more, 1 hour or more, particularly 3 hours or more. If the heat treatment time is too short, it becomes difficult to separate the phases of the glass base material. Although the upper limit of the heat treatment time is not particularly limited, it is practically 180 hours or less because the phase separation does not progress beyond a certain level even if the heat treatment is performed for a long time.

次に、2相に分相させたガラス母材を酸に浸漬させ、酸化ホウ素リッチ相を除去し、多孔質ガラス部材を得る。酸としては、塩酸、硝酸を用いることができる。なお、これらの酸を混合して用いてもよい。酸の濃度は0.1~5規定、特に0.5~3規定であることが好ましい。酸の浸漬時間は1時間以上、10時間以上、特に20時間以上であることが好ましい。浸漬時間が短すぎると、多孔質ガラス部材を得にくくなる。浸漬時間の上限は特に限定されないが、現実的には、100時間以下である。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、多孔質ガラス部材を得にくくなる。浸漬温度の上限は特に限定されないが、現実的には、95℃以下である。 Next, the glass base material phase-separated into two phases is immersed in acid to remove the boron oxide-rich phase, thereby obtaining a porous glass member. Hydrochloric acid and nitric acid can be used as the acid. In addition, you may mix and use these acids. The concentration of the acid is preferably 0.1 to 5N, more preferably 0.5 to 3N. The acid immersion time is preferably 1 hour or more, 10 hours or more, particularly 20 hours or more. If the immersion time is too short, it becomes difficult to obtain a porous glass member. Although the upper limit of the immersion time is not particularly limited, it is practically 100 hours or less. The immersion temperature is preferably 20° C. or higher, 25° C. or higher, particularly 30° C. or higher. If the immersion temperature is too low, it becomes difficult to obtain a porous glass member. Although the upper limit of the immersion temperature is not particularly limited, it is practically 95° C. or less.

なお、ガラス母材を熱処理し、シリカリッチ相と酸化ホウ素リッチ相の2相に分相させる工程において、ガラス母材の最表面にシリカ含有層(シリカを概ね80質量%以上含有する層)が形成される傾向がある。シリカ含有層は酸で除去し難いため、シリカ含有層が形成された際は、分相させたガラス母材を切削、研磨し、シリカ含有層を除去した後に酸に浸漬させると、酸化ホウ素リッチ相を除去しやすくなる。 In the step of heat-treating the glass base material and separating it into two phases, a silica-rich phase and a boron oxide-rich phase, a silica-containing layer (a layer containing approximately 80% by mass or more of silica) is formed on the outermost surface of the glass base material. tend to be formed. Since the silica-containing layer is difficult to remove with an acid, when the silica-containing layer is formed, the phase-separated glass base material is cut and polished, and after the silica-containing layer is removed, it is immersed in an acid. Easier to remove the phase.

さらに、得られた多孔質ガラスの細孔中に残留するZrOコロイド、SiOコロイドを除去することが好ましい。以下に、ZrOコロイド、SiOコロイドの除去方法を説明するが、これらの方法に限定されるものではない。 Furthermore, it is preferable to remove ZrO 2 colloids and SiO 2 colloids remaining in the pores of the obtained porous glass. Methods for removing ZrO 2 colloids and SiO 2 colloids are described below, but are not limited to these methods.

ZrOコロイドは、例えば硫酸にて除去することができる。硫酸の濃度は0.1~5規定、特に1~5規定であることが好ましい。硫酸の浸漬時間は1時間以上、特に10時間以上であることが好ましい。浸漬時間が短すぎると、ZrOコロイドを除去しにくくなる。浸漬時間の上限は特に限定されないが、現実的には、100時間以下である。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、ZrOコロイドを除去しにくくなる。浸漬温度の上限は特に限定されないが、現実的には、95℃以下である。 ZrO 2 colloids can be removed, for example, with sulfuric acid. The concentration of sulfuric acid is preferably 0.1 to 5N, more preferably 1 to 5N. The immersion time in sulfuric acid is preferably 1 hour or more, particularly 10 hours or more. If the immersion time is too short, it will be difficult to remove the ZrO2 colloid. Although the upper limit of the immersion time is not particularly limited, it is practically 100 hours or less. The immersion temperature is preferably 20° C. or higher, 25° C. or higher, particularly 30° C. or higher. If the soaking temperature is too low, it will be difficult to remove the ZrO2 colloid. Although the upper limit of the immersion temperature is not particularly limited, it is practically 95° C. or less.

SiOコロイドは、例えばアルカリ水溶液にて除去することができる。アルカリとしては、水酸化ナトリウム、水酸化カリウム等を用いることができる。なお、これらのアルカリを混合して用いてもよい。アルカリ水溶液の浸漬時間は10分間以上、特に30分間以上であることが好ましい。浸漬時間が短すぎると、SiOコロイドを除去しにくくなる。浸漬時間の上限は特に限定されないが、現実的には、100時間以下である。浸漬温度は15℃以上、特に20℃以上であることが好ましい。浸漬温度が低すぎると、SiOコロイドを除去しにくくなる。浸漬温度の上限は特に限定されないが、現実的には、95℃以下である。 SiO2 colloids can be removed, for example, with an aqueous alkaline solution. Sodium hydroxide, potassium hydroxide, or the like can be used as the alkali. In addition, you may mix and use these alkalis. The immersion time in the alkaline aqueous solution is preferably 10 minutes or more, particularly 30 minutes or more. If the immersion time is too short, it will be difficult to remove the SiO2 colloid. Although the upper limit of the immersion time is not particularly limited, it is practically 100 hours or less. The immersion temperature is preferably 15° C. or higher, particularly 20° C. or higher. If the immersion temperature is too low, it will be difficult to remove the SiO2 colloid. Although the upper limit of the immersion temperature is not particularly limited, it is practically 95° C. or less.

得られた多孔質ガラス部材は、質量%で、SiO 85~99%、Al 0~5%、ZrO 1~10%を含有することが好ましい。なお、多孔質ガラス部材は、SiO、ZrOの含有量が多いため、耐アルカリ性に優れている。 The obtained porous glass member preferably contains 85 to 99% by mass of SiO 2 , 0 to 5% by mass of Al 2 O 3 and 1 to 10% by mass of ZrO 2 . In addition, since the porous glass member contains a large amount of SiO 2 and ZrO 2 , it is excellent in alkali resistance.

多孔質ガラス部材の細孔分布の中央値は、1μm以下、200nm以下、150nm以下、120nm以下、100nm以下、90nm以下、80nm以下、特に70nm以下であることが好ましい。細孔分布の中央値の下限は特に限定されないが、現実的には1nm以上、2nm以上、さらには4nm以上である。また、孔は、真球状、略楕円体、チューブ状等の様々な形状を有する。なお、多孔質ガラス部材の厚み、アスペクト比は、ガラス母材と同等である。 The median value of the pore size distribution of the porous glass member is preferably 1 μm or less, 200 nm or less, 150 nm or less, 120 nm or less, 100 nm or less, 90 nm or less, 80 nm or less, particularly 70 nm or less. Although the lower limit of the median value of the pore size distribution is not particularly limited, it is practically 1 nm or more, 2 nm or more, and further 4 nm or more. Moreover, the hole has various shapes such as a spherical shape, a substantially ellipsoidal shape, and a tubular shape. The thickness and aspect ratio of the porous glass member are the same as those of the glass base material.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described below based on examples, but the present invention is not limited to these examples.

表1は、本発明の実施例(試料No.1~6)、及び比較例(試料No.7)を示している。
Table 1 shows examples of the present invention (Sample Nos. 1 to 6) and Comparative Example (Sample No. 7).

Figure 0007168901000001
Figure 0007168901000001

表中の各組成になるように調合した原料を白金坩堝に入れた後、1450℃で6時間溶融した。ガラスバッチの溶融に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、500℃で30分間徐冷しガラス母材を得た。 Raw materials prepared so as to have the respective compositions in the table were placed in a platinum crucible and then melted at 1450° C. for 6 hours. When the glass batch was melted, it was homogenized by stirring using a platinum stirrer. Next, the molten glass was poured onto a carbon plate, formed into a plate shape, and then gradually cooled at 500° C. for 30 minutes to obtain a glass base material.

得られたガラス母材を電気炉にて695℃で24時間熱処理し、分相させた。分相後のガラス母材を、切削、研磨し、5mm×5mm×0.5mm(厚み)にした。次いで、1規定の硝酸(90℃)中に48時間浸漬した後、イオン交換水で洗浄し、多孔質ガラス部材を得た。 The resulting glass base material was heat-treated in an electric furnace at 695° C. for 24 hours to separate the phases. The glass base material after phase separation was cut and polished to a size of 5 mm×5 mm×0.5 mm (thickness). Then, after being immersed in 1N nitric acid (90° C.) for 48 hours, it was washed with deionized water to obtain a porous glass member.

得られた多孔質ガラス部材の表面をFE-SEM(日立製作所製SU-8220)で観察したところ、いずれのガラスも、スピノーダル分解に基づいたスケルトン構造を有していた。また、細孔分布の中央値、割れを評価した。 When the surfaces of the obtained porous glass members were observed with an FE-SEM (SU-8220 manufactured by Hitachi, Ltd.), each glass had a skeleton structure based on spinodal decomposition. In addition, the median value of pore size distribution and cracking were evaluated.

細孔分布の中央値は、細孔分布測定装置(カンタクローム社製 QUADRASORB SI)により測定した。 The median value of the pore size distribution was measured with a pore size distribution measuring device (QUADRASORB SI manufactured by Quantachrome).

割れは、多孔質ガラス部材に割れが確認されなかったものを「○」、割れが確認されたものを「×」として評価した。 Cracks were evaluated as "O" when no cracks were observed in the porous glass member, and as "X" when cracks were confirmed.

本発明の実施例であるNo.1~6の試料は、割れが確認されなかった。一方、比較例であるNo.7の試料は、割れが確認された。 No. 4, which is an embodiment of the present invention. No cracks were observed in samples 1 to 6. On the other hand, no. No. 7 sample was confirmed to have cracks.

本発明の製造方法は、分離膜、散気管、電極材料や触媒の担持体など幅広い用途に利用される多孔質ガラス部材の製造方法として好適である。 INDUSTRIAL APPLICABILITY The production method of the present invention is suitable as a method for producing porous glass members that are used in a wide range of applications such as separation membranes, air diffusers, electrode materials, and catalyst supports.

Claims (6)

質量%で、SiO 50~80%、B 0超~40%、NaO 0超~20%、ZrO 3超~10%、Al 0~3%未満、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0.5~20%を含有し、質量比でNaO/Bが0.25~0.5であるガラス母材を熱処理し、2相に分相させる工程、及び、一方の相を酸で除去する工程を含むことを特徴とする多孔質ガラス部材の製造方法。 % by mass, SiO 2 50-80 %, B 2 O 3 >0-40%, Na 2 O >0-20%, ZrO 2 >3-10%, Al 2 O 3 0-3%, RO ( R is at least one selected from Mg, Ca, Sr and Ba), and a glass matrix containing 0.5 to 20% and having a mass ratio of Na 2 O/B 2 O 3 of 0.25 to 0.5. A method for producing a porous glass member, comprising the steps of heat-treating a material to separate it into two phases, and removing one of the phases with an acid. ガラス母材が、2~1000のアスペクト比を有することを特徴とする請求項1に記載の多孔質ガラス部材の製造方法。 2. The method for producing a porous glass member according to claim 1, wherein the glass base material has an aspect ratio of 2-1,000. 熱処理温度が500~800℃であることを特徴とする請求項1又は2に記載の多孔質ガラス部材の製造方法。 3. The method for producing a porous glass member according to claim 1, wherein the heat treatment temperature is 500 to 800.degree. 質量%で、さらにMgO 0~20%、CaO 0~20%、SrO 0~20%、BaO 0~20%を含有することを特徴とする請求項1~3のいずれか一項に記載の多孔質ガラス部材の製造方法。 The porous body according to any one of claims 1 to 3, further comprising 0-20% MgO, 0-20% CaO, 0-20% SrO, 0-20% BaO, in % by weight. A method for manufacturing a quality glass member. 多孔質ガラス部材の製造に使用される多孔質ガラス部材用ガラス母材であって、質量%で、SiO 50~80%、B 0超~40%、NaO 0超~20%、ZrO 3超~10%、Al 0~3%未満、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0.5~20%を含有し、質量比でNaO/Bが0.25~0.5であることを特徴とする多孔質ガラス部材用ガラス母材。 A glass base material for a porous glass member used for manufacturing a porous glass member, comprising, in mass %, SiO 2 50 to 80%, B 2 O 3 more than 0 to 40%, and Na 2 O more than 0 to 20. %, ZrO 2 more than 3 to 10%, Al 2 O 3 0 to less than 3%, RO (R is at least one selected from Mg, Ca, Sr and Ba) 0.5 to 20%, mass A glass base material for a porous glass member, characterized in that the Na 2 O/B 2 O 3 ratio is from 0.25 to 0.5. 質量%で、さらにMgO 0~20%、CaO 0~20%、SrO 0~20%、BaO 0~20%を含有することを特徴とする請求項5に記載の多孔質ガラス部材用ガラス母材。 6. The glass base material for a porous glass member according to claim 5, further containing 0 to 20% MgO, 0 to 20% CaO, 0 to 20% SrO, and 0 to 20% BaO in terms of mass %. .
JP2018128188A 2018-07-05 2018-07-05 Method for manufacturing porous glass member Active JP7168901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128188A JP7168901B2 (en) 2018-07-05 2018-07-05 Method for manufacturing porous glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128188A JP7168901B2 (en) 2018-07-05 2018-07-05 Method for manufacturing porous glass member

Publications (2)

Publication Number Publication Date
JP2020007180A JP2020007180A (en) 2020-01-16
JP7168901B2 true JP7168901B2 (en) 2022-11-10

Family

ID=69150439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128188A Active JP7168901B2 (en) 2018-07-05 2018-07-05 Method for manufacturing porous glass member

Country Status (1)

Country Link
JP (1) JP7168901B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246345A1 (en) * 2020-06-03 2021-12-09 Agc株式会社 Method for manufacturing high silicate glass substrate, high silicate glass substrate and porous glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000764A (en) 2017-06-12 2019-01-10 株式会社環境レジリエンス Cesium strontium adsorbent, manufacturing method therefor, and adsorption removal system using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106437A (en) * 1984-10-26 1986-05-24 Asahi Glass Co Ltd Glass composition for porosity and porous glass
JPS62202839A (en) * 1985-10-14 1987-09-07 Agency Of Ind Science & Technol Chemical-resistant porous glass and production thereof
JPS63265837A (en) * 1987-04-23 1988-11-02 Asahi Glass Co Ltd Production of porous glass
JPH0375242A (en) * 1989-08-16 1991-03-29 Central Glass Co Ltd Composition for porous glass
JPH0446037A (en) * 1990-06-13 1992-02-17 Central Glass Co Ltd Composition for porous glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000764A (en) 2017-06-12 2019-01-10 株式会社環境レジリエンス Cesium strontium adsorbent, manufacturing method therefor, and adsorption removal system using the same

Also Published As

Publication number Publication date
JP2020007180A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5318748B2 (en) Anodic bonding glass
US4665039A (en) Porous glass, process for its production and glass material used for the production
JP2011241130A (en) Phase-separated glass and porous glass
TW201130755A (en) Glass plate for display device, plate glass for display device and production process thereof
US9359244B2 (en) Alumina-rich glasses and methods for making the same
KR20150123841A (en) Laminated glass articles with phase-separated cladding and methods for forming the same
JP2010275126A (en) Glass plate for display device
JP5950587B2 (en) Method for producing porous glass and method for producing optical member
JP7466729B2 (en) Electronic grade glass fiber composition, glass fiber and electronic grade glass fiber fabric
JPH0676224B2 (en) Tempered glass manufacturing method
TW202016040A (en) Low dielectric constant glass composition with low bubble number and glass fiber wherein the glass fiber is provided with low dielectric constant and reduced number of bubbles to prevent a printed circuit board from short circuit
JP7280547B2 (en) Method for manufacturing porous glass member
CN103723926A (en) Low-expansion lithium aluminum silicon transparent glass ceramic
JPWO2015111524A1 (en) Tempered glass composition, tempered glass article and method for producing the same
WO2021095544A1 (en) Porous glass member production method
JP7168901B2 (en) Method for manufacturing porous glass member
JP4979047B2 (en) High zirconia refractories
WO2014115789A1 (en) Glass material for chemical strengthening, chemically strengthened glass and cover glass
JP7303480B2 (en) porous glass member
JP7425400B2 (en) Method for manufacturing porous glass member
WO2021095545A1 (en) Method for producing porous glass member
JP2012193067A (en) Borosilicate glass, porous glass, and method for producing the same
JP2024060430A (en) Method for producing porous glass material and porous glass material
JP2023004533A (en) Method for manufacturing porous glass member
JP7301284B2 (en) Aldehyde gas detection materials and nonanal gas detection materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221011

R150 Certificate of patent or registration of utility model

Ref document number: 7168901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150