JP7425400B2 - Method for manufacturing porous glass member - Google Patents

Method for manufacturing porous glass member Download PDF

Info

Publication number
JP7425400B2
JP7425400B2 JP2019203901A JP2019203901A JP7425400B2 JP 7425400 B2 JP7425400 B2 JP 7425400B2 JP 2019203901 A JP2019203901 A JP 2019203901A JP 2019203901 A JP2019203901 A JP 2019203901A JP 7425400 B2 JP7425400 B2 JP 7425400B2
Authority
JP
Japan
Prior art keywords
porous glass
base material
glass member
content
glass base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019203901A
Other languages
Japanese (ja)
Other versions
JP2021075424A (en
Inventor
孝志 相徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2019203901A priority Critical patent/JP7425400B2/en
Publication of JP2021075424A publication Critical patent/JP2021075424A/en
Application granted granted Critical
Publication of JP7425400B2 publication Critical patent/JP7425400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Description

本発明は、多孔質ガラス部材の製造方法に関する。 The present invention relates to a method for manufacturing a porous glass member.

近年、多孔質ガラスは、シャープな細孔分布と大きな比表面積を持ち、耐熱性、耐有機溶媒性を持つため、分離膜、散気管、電極材料や触媒の担持体など幅広い用途への利用が検討されている。一般に、多孔質ガラスは、アルカリホウケイ酸ガラスからなるガラス母材を熱処理してシリカリッチ相と酸化ホウ素リッチ相の2相に分離し、酸化ホウ素リッチ相を酸で除去することにより作製される(例えば、特許文献1参照)。 In recent years, porous glass has a sharp pore distribution, large specific surface area, heat resistance, and organic solvent resistance, so it has been used for a wide range of applications such as separation membranes, air diffusers, electrode materials, and catalyst supports. It is being considered. Generally, porous glass is produced by heat-treating a glass base material made of alkali borosilicate glass to separate it into two phases, a silica-rich phase and a boron oxide-rich phase, and removing the boron oxide-rich phase with acid ( For example, see Patent Document 1).

特開昭48-101409号公報Japanese Unexamined Patent Publication No. 48-101409

上述した多孔質ガラスの用途のなかには、アルカリ性の環境下で使用する場合もあり、そのような用途への応用を考慮すると、多孔質ガラスには耐アルカリ性が必要となってくる。しかしながら、従来の多孔質ガラスは耐アルカリ性に劣るという問題がある。 Some of the above-mentioned uses of porous glass include use in alkaline environments, and when such applications are taken into consideration, porous glass is required to have alkali resistance. However, conventional porous glass has a problem of poor alkali resistance.

以上に鑑み、本発明は、優れた耐アルカリ性を有する多孔質ガラス部材を作製することが可能な多孔質ガラス部材の製造方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a method for producing a porous glass member that can produce a porous glass member having excellent alkali resistance.

本発明者は鋭意検討した結果、多孔質ガラス部材の母材の組成を厳密に規制することにより、上記技術的課題を解決し得ることを見出した。 As a result of extensive studies, the inventors of the present invention have found that the above technical problem can be solved by strictly regulating the composition of the base material of the porous glass member.

即ち、本発明の多孔質ガラス部材の製造方法は、モル%で、SiO 40~80%、B 0超~40%、LiO 0~20%、NaO 0~20%、KO 0超~20%、ZrO 0超~20%、Al 0~10%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有し、モル比でKO/(LiO+NaO+KO)が0.1~0.5であるガラス母材を熱処理して2相に分相させる工程、及び、一方の相を酸で除去する工程、を含むことを特徴とする。 That is, the method for producing a porous glass member of the present invention includes, in mol%, SiO 2 40-80%, B 2 O 30-40 %, Li 2 O 0-20%, Na 2 O 0-20%. , K 2 O more than 0 to 20%, ZrO 2 more than 0 to 20%, Al 2 O 3 0 to 10%, and RO (R is at least one selected from Mg, Ca, Sr, and Ba) 0 to a step of heat-treating a glass base material containing 20% and having a molar ratio of K 2 O/(Li 2 O + Na 2 O + K 2 O) of 0.1 to 0.5 to separate into two phases; The method is characterized by including a step of removing the phase with an acid.

なお本明細書において、「x+y+・・・」は、x、y・・・の各成分の合量を意味する。また「x/y」はxの含有量をyの含有量を除した値を意味する。 In addition, in this specification, "x+y+..." means the total amount of each component of x, y... Moreover, "x/y" means the value obtained by dividing the content of x by the content of y.

本発明の多孔質ガラス部材の製造方法は、ガラス母材が、2~1000のアスペクト比を有することが好ましい。なお、アスペクト比は下記の式により算出する。 In the method for producing a porous glass member of the present invention, the glass base material preferably has an aspect ratio of 2 to 1000. Note that the aspect ratio is calculated using the following formula.

アスペクト比=(ガラス母材の底面積)1/2/ガラス母材の厚み Aspect ratio = (bottom area of glass base material) 1/2 /thickness of glass base material

本発明の多孔質ガラス部材の製造方法は、熱処理温度が500~800℃であることが好ましい。 In the method for producing a porous glass member of the present invention, the heat treatment temperature is preferably 500 to 800°C.

本発明の多孔質ガラス部材用ガラス母材は、モル%で、SiO 40~80%、B 0超~40%、LiO 0~20%、NaO 0~20%、KO 0超~20%、ZrO 0超~20%、Al 0~10%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有し、モル比でKO/(LiO+NaO+KO)が0.1~0.5であることを特徴とする。 The glass base material for porous glass members of the present invention contains, in mol%, SiO 2 40 to 80%, B 2 O 3 more than 0 to 40%, Li 2 O 0 to 20%, Na 2 O 0 to 20%, K 2 O more than 0 to 20%, ZrO 2 more than 0 to 20%, Al 2 O 3 0 to 10%, and RO (R is at least one selected from Mg, Ca, Sr, and Ba) 0 to 20 %, and the molar ratio of K 2 O/(Li 2 O+Na 2 O+K 2 O) is 0.1 to 0.5.

本発明によれば、優れた耐アルカリ性を有する多孔質ガラス部材を作製することが可能な多孔質ガラス部材の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a porous glass member that can produce a porous glass member having excellent alkali resistance.

本発明の多孔質ガラス部材の製造方法は、モル%で、SiO 40~80%、B 0超~40%、LiO 0~20%、NaO 0~20%、KO 0超~20%、ZrO 0超~20%、Al 0~10%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有し、モル比でKO/(LiO+NaO+KO)が0.1~0.5であるガラス母材を熱処理して2相に分相させる工程、及び、一方の相を酸で除去する工程、を含むことを特徴とする。 The method for producing a porous glass member of the present invention includes, in mol%, SiO 2 40 to 80%, B 2 O 3 more than 0 to 40%, Li 2 O 0 to 20%, Na 2 O 0 to 20%, K 2 O more than 0 to 20%, ZrO 2 more than 0 to 20%, Al 2 O 3 0 to 10%, and RO (R is at least one selected from Mg, Ca, Sr, and Ba) 0 to 20% a step of heat-treating a glass base material containing the following and having a molar ratio of K 2 O/(Li 2 O+Na 2 O+K 2 O) of 0.1 to 0.5 to separate into two phases; The method is characterized in that it includes a step of removing with an acid.

以下に、ガラス母材における各成分の含有量を上記のように特定した理由を説明する。なお、特に断りがない場合、以下の成分含有量に関する説明において、「%」は「モル%」を意味する。 The reason why the content of each component in the glass base material was specified as described above will be explained below. In addition, unless otherwise specified, "%" means "mol%" in the following description of component content.

SiOはガラスネットワークを形成する成分である。SiOの含有量は40~80%であり、45~75%、47~60%、特に50~65%であることが好ましい。SiOの含有量が少なすぎると、多孔質ガラス部材の耐候性や機械的強度が低下する傾向がある。また、製造工程において、シリカゲルの水和による膨張量が、シリカリッチ相中からNaO等のアルカリ成分が溶出することによる収縮量より小さくなりやすく、多孔質ガラス部材に割れが発生しやすくなる。一方、SiOの含有量が多すぎると、分相しにくくなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is 40-80%, preferably 45-75%, 47-60%, particularly 50-65%. If the content of SiO 2 is too small, the weather resistance and mechanical strength of the porous glass member tend to decrease. Additionally, in the manufacturing process, the amount of expansion due to hydration of silica gel tends to be smaller than the amount of contraction due to the elution of alkaline components such as Na 2 O from the silica-rich phase, making it easier for cracks to occur in the porous glass member. . On the other hand, if the content of SiO 2 is too large, phase separation becomes difficult.

はガラスネットワークを形成し、分相を促進する成分である。Bの含有量は0超~40%であり、10~30%、特に15~25%であることが好ましい。Bの含有量が少なすぎると、上記効果を得にくい。一方、Bの含有量が多すぎると、ガラス母材の耐候性が低下しやすくなる。 B 2 O 3 is a component that forms a glass network and promotes phase separation. The content of B 2 O 3 is more than 0 to 40%, preferably 10 to 30%, particularly 15 to 25%. If the content of B 2 O 3 is too low, it will be difficult to obtain the above effects. On the other hand, if the content of B 2 O 3 is too large, the weather resistance of the glass base material tends to decrease.

LiOは溶融温度を低下させて溶融性を改善する成分であるとともに、分相を促進させる成分である。LiOの含有量は0~20%であり、0.3~15%、特に0.6~10%であることが好ましい。LiOの含有量が多すぎると、逆に分相しにくくなる。 Li 2 O is a component that lowers the melting temperature and improves meltability, as well as a component that promotes phase separation. The content of Li 2 O is 0 to 20%, preferably 0.3 to 15%, particularly 0.6 to 10%. If the content of Li 2 O is too large, on the contrary, phase separation becomes difficult.

NaOは溶融温度を低下させて溶融性を改善する成分であるとともに、分相を促進させる成分である。NaOの含有量は0~20%であり、0超~15%、特に4~10%であることが好ましい。NaOの含有量が少なすぎると、上記効果を得にくい。一方、NaOの含有量が多すぎると、逆に分相しにくくなる。 Na 2 O is a component that lowers the melting temperature and improves meltability, and is also a component that promotes phase separation. The content of Na 2 O is 0 to 20%, preferably more than 0 to 15%, particularly 4 to 10%. If the content of Na 2 O is too low, it will be difficult to obtain the above effects. On the other hand, if the content of Na 2 O is too large, it becomes difficult to cause phase separation.

Oは溶融温度を低下させて溶融性を改善する成分であるとともに、分相を促進させる成分である。また、シリカリッチ相中のZrO含有量を増加させる成分である。そのため、KOを含有させることにより、得られる多孔質ガラス部材中のZrO含有量が増加し、耐アルカリ性を向上させることができる。KOの含有量は0超~20%、0.3~5%、特に0.8~3%であることが好ましい。KOの含有量が少なすぎると、上記効果を得にくい。一方、KOの含有量が多すぎると、逆に分相しにくくなる。 K 2 O is a component that lowers the melting temperature and improves meltability, as well as a component that promotes phase separation. It is also a component that increases the ZrO 2 content in the silica-rich phase. Therefore, by including K 2 O, the ZrO 2 content in the obtained porous glass member increases, and the alkali resistance can be improved. The content of K 2 O is preferably more than 0 to 20%, 0.3 to 5%, particularly 0.8 to 3%. If the content of K 2 O is too small, it will be difficult to obtain the above effects. On the other hand, if the content of K 2 O is too large, phase separation becomes difficult.

LiO+NaO+KOの含有量は0超~20%、2~15%、4~12%、特に5~10%であることが好ましい。LiO+NaO+KOの含有量が少なすぎると、溶融温度が高くなり、溶融性が低下するおそれがある。また分相しにくくなる。LiO+NaO+KOの含有量が多すぎると、逆に分相しにくくなる。 The content of Li 2 O + Na 2 O + K 2 O is preferably more than 0 to 20%, 2 to 15%, 4 to 12%, particularly 5 to 10%. If the content of Li 2 O + Na 2 O + K 2 O is too small, the melting temperature may become high and the meltability may decrease. Also, phase separation becomes difficult. If the content of Li 2 O + Na 2 O + K 2 O is too large, on the contrary, phase separation becomes difficult.

O/(LiO+NaO+KO)は0.1~0.5であり、0.13~0.45、特に0.15~0.4であることが好ましい。KO/(LiO+NaO+KO)が小さすぎると、シリカリッチ相中のZrO含有量を増加させる効果を得にくくなる。一方、KO/(LiO+NaO+KO)が大きすぎると、スピノーダル分相からバイノーダル分相に分相状態が変化したり、分相しなくなる。その結果、所望の連通孔を有する多孔質ガラス部材が得にくくなる。 K 2 O/(Li 2 O+Na 2 O+K 2 O) is 0.1 to 0.5, preferably 0.13 to 0.45, particularly 0.15 to 0.4. If K 2 O/(Li 2 O+Na 2 O+K 2 O) is too small, it becomes difficult to obtain the effect of increasing the ZrO 2 content in the silica-rich phase. On the other hand, if K 2 O/(Li 2 O+Na 2 O+K 2 O) is too large, the phase separation state changes from spinodal phase separation to binodal phase separation, or phase separation does not occur. As a result, it becomes difficult to obtain a porous glass member having desired communicating pores.

NaO/Bは0.1~0.5、0.15~0.45、特に0.2~0.4であることが好ましい。このようにすれば、製造工程において、シリカゲルの水和による膨張量と、シリカリッチ相中からNaOが溶出することによる収縮量のバランスが取れ、多孔質ガラス部材に割れが発生しにくくなる。 Na 2 O/B 2 O 3 is preferably 0.1 to 0.5, 0.15 to 0.45, particularly 0.2 to 0.4. In this way, in the manufacturing process, the amount of expansion due to hydration of the silica gel and the amount of contraction due to elution of Na 2 O from the silica-rich phase can be balanced, making it difficult for cracks to occur in the porous glass member. .

(LiO+NaO+KO)/Bは0.2~0.5、0.29~0.45、0.31~0.42、特に0.33~0.42であることが好ましい。このようにすれば、製造工程において、シリカゲルの水和による膨張量と、シリカリッチ相中からアルカリ成分が溶出することによる収縮量のバランスが取れ、多孔質ガラス部材に割れが発生しにくくなる。 (Li 2 O + Na 2 O + K 2 O)/B 2 O 3 should be 0.2 to 0.5, 0.29 to 0.45, 0.31 to 0.42, especially 0.33 to 0.42. is preferred. In this way, in the manufacturing process, the amount of expansion due to hydration of the silica gel and the amount of contraction due to elution of alkaline components from the silica-rich phase are balanced, and cracks are less likely to occur in the porous glass member.

ZrOはガラス母材の耐候性や多孔質ガラス部材の耐アルカリ性を向上させる成分である。ZrOの含有量は0超~20%であり、2~15%、特に2.5~12%であることが好ましい。ZrOの含有量が少なすぎると、上記効果を得にくい。一方、ZrOの含有量が多すぎると、失透しやすくなるとともに分相しにくくなる。 ZrO 2 is a component that improves the weather resistance of the glass base material and the alkali resistance of the porous glass member. The content of ZrO 2 is more than 0 to 20%, preferably 2 to 15%, particularly 2.5 to 12%. If the content of ZrO 2 is too small, it is difficult to obtain the above effects. On the other hand, if the content of ZrO 2 is too large, devitrification tends to occur and phase separation becomes difficult.

Alは多孔質ガラス部材の耐候性や機械的強度を向上させる成分である。Alの含有量は0~10%であり、0.1~7%、特に1~5%であることが好ましい。Alの含有量が多すぎると、溶融温度が上昇し溶融性が低下しやすくなる。 Al 2 O 3 is a component that improves the weather resistance and mechanical strength of the porous glass member. The content of Al 2 O 3 is 0 to 10%, preferably 0.1 to 7%, particularly 1 to 5%. If the content of Al 2 O 3 is too large, the melting temperature will increase and the meltability will tend to decrease.

RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種)は、シリカリッチ相中のZrO含有量を増加させる成分である。そのため、ROを含有させることにより、得られる多孔質ガラス部材中のZrO含有量が増加し、耐アルカリ性を向上させることができる。また、ROは多孔質ガラス部材の耐候性を向上させる成分である。ROの含有量(MgO、CaO、SrO及びBaOの合量)は0~20%であり、1~17%、3~15%、4~13%、5~12%、特に6.5~12であることが好ましい。ROの含有量が多すぎると、分相しにくくなる。なお、MgO、CaO、SrO及びBaOの含有量は各々0~20%、1~17%、3~15%、4~13%、5~12%、特に6.5~12であることが好ましい。また、MgO、CaO、SrO及びBaOから選択される少なくとも2種の成分を含有させる場合、その合量は0~20%、1~17%、3~15%、4~13%、5~12%、特に6.5~12であることが好ましい。ROのなかで、多孔質ガラス部材の耐アルカリ性を向上させる効果が特に大きいという点で、CaOを使用することが好ましい。 RO (R is at least one selected from Mg, Ca, Sr, and Ba) is a component that increases the ZrO 2 content in the silica-rich phase. Therefore, by including RO, the ZrO 2 content in the obtained porous glass member increases, and the alkali resistance can be improved. Further, RO is a component that improves the weather resistance of the porous glass member. The content of RO (total amount of MgO, CaO, SrO and BaO) is 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13%, 5 to 12%, especially 6.5 to 12%. It is preferable that If the content of RO is too large, phase separation becomes difficult. Note that the content of MgO, CaO, SrO and BaO is preferably 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13%, 5 to 12%, particularly 6.5 to 12%. . Furthermore, when at least two components selected from MgO, CaO, SrO and BaO are contained, the total amount is 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13%, 5 to 12%. %, particularly preferably from 6.5 to 12. Among ROs, it is preferable to use CaO because it has a particularly large effect of improving the alkali resistance of the porous glass member.

ガラス母材には、上記成分以外にも下記の成分を含有させることができる。 The glass base material can contain the following components in addition to the above components.

ZnOはシリカリッチ相中のZrO含有量を増加させる成分である。また多孔質ガラス部材の耐候性を向上させる効果もある。ZnOの含有量は0~20%、0~10%、特に0~3%未満であることが好ましい。ZnOの含有量が多すぎると、分相しにくくなる。 ZnO is a component that increases the ZrO 2 content in the silica-rich phase. It also has the effect of improving the weather resistance of the porous glass member. The content of ZnO is preferably 0 to 20%, 0 to 10%, particularly 0 to less than 3%. If the ZnO content is too large, phase separation becomes difficult.

は分相を促進させる成分である。Pの含有量は0~10%、0.01~5%、特に0.05~2%であることが好ましい。Pの含有量が多すぎると、結晶化する恐れがある。 P 2 O 5 is a component that promotes phase separation. The content of P 2 O 5 is preferably 0 to 10%, 0.01 to 5%, particularly 0.05 to 2%. If the content of P 2 O 5 is too large, there is a risk of crystallization.

また、TiO、La、Ta、TeO、Nb、Gd、Y、Eu、Sb、SnO及びBi等を各々15%以下、各々10%以下、特に各々5%以下、合量で30%以下の範囲で含有させてもよい。 Also, TiO 2 , La 2 O 3 , Ta 2 O 5 , TeO 2 , Nb 2 O 5 , Gd 2 O 3 , Y 2 O 3 , Eu 2 O 3 , Sb 2 O 3 , SnO 2 and Bi 2 O 3 etc. may be contained in a range of 15% or less each, 10% or less each, particularly 5% or less each, and 30% or less in total.

なお、PbOは環境負荷物質であるため、実質的に含有しないことが好ましい。ここで「実質的に含有しない」とは、意図的に原料として含有させないことを意味し、客観的には含有量が0.1%未満の場合を指す。 Note that since PbO is an environmentally hazardous substance, it is preferable that it is substantially not contained. Here, "substantially not containing" means not intentionally containing it as a raw material, and objectively refers to a case where the content is less than 0.1%.

上記のガラス組成となるように調合したガラスバッチを、例えば1300~1600℃で4~12時間溶融する。次いで、溶融ガラスを成形した後、例えば400~600℃で10分~10時間徐冷を行うことによりガラス母材を得る。得られたガラス母材の形状は特に限定されないが、平面形状が矩形や円形の板状であることが好ましい。なお、得られたガラス母材を所望の形状にするために、切削、研磨等の加工を施しても構わない。 A glass batch prepared to have the above glass composition is melted, for example, at 1300 to 1600° C. for 4 to 12 hours. Next, after shaping the molten glass, it is slowly cooled, for example, at 400 to 600° C. for 10 minutes to 10 hours, thereby obtaining a glass base material. Although the shape of the obtained glass base material is not particularly limited, it is preferably a plate with a rectangular or circular planar shape. Note that in order to give the obtained glass base material a desired shape, processing such as cutting or polishing may be performed.

得られたガラス母材は、アスペクト比が2~1000、特に5~500であることが好ましい。アスペクト比が小さすぎると、酸化ホウ素リッチ相を酸により除去(エッチング)する工程において、ガラス母材の表面と内部にてエッチング速度に大きな差が出るため、多孔質ガラス部材内部に応力が発生しやすく、割れが発生しやすくなる。一方、アスペクト比が大きすぎると、取り扱いにくくなる。 The obtained glass base material preferably has an aspect ratio of 2 to 1000, particularly 5 to 500. If the aspect ratio is too small, there will be a large difference in the etching rate between the surface and the inside of the glass base material during the process of removing (etching) the boron oxide rich phase with acid, which will cause stress to occur inside the porous glass member. It becomes easy to crack and cracks occur easily. On the other hand, if the aspect ratio is too large, it becomes difficult to handle.

なお、得られたガラス母材の底面積と厚みは、上記アスペクト比となるように適宜調整すればよい。例えば、底面積は1~1000mm、特に5~500mmであることが好ましく、厚みは0.1~1mm、特に0.2~0.5mmであることが好ましい。 Note that the bottom area and thickness of the obtained glass base material may be adjusted as appropriate so as to have the above aspect ratio. For example, the base area is preferably 1 to 1000 mm 2 , particularly 5 to 500 mm 2 , and the thickness is preferably 0.1 to 1 mm, particularly 0.2 to 0.5 mm.

次に、得られたガラス母材を熱処理し、シリカリッチ相と酸化ホウ素リッチ相の2相に分相(スピノーダル分相)させる。熱処理温度は500~800℃、特に600~750℃であることが好ましい。熱処理温度が高すぎると、ガラス母材が軟化し、所望の形状を得にくくなる。一方、熱処理温度が低すぎると、ガラス母材を分相させにくくなる。熱処理時間は1分以上、10分以上、特に30分以上であることが好ましい。熱処理時間が短すぎると、ガラス母材を分相させにくくなる。熱処理時間の上限は特に限定されないが、長時間熱処理しても分相はある一定以上は進まなくなるため、現実的には180時間以下である。 Next, the obtained glass base material is heat-treated to separate into two phases, a silica-rich phase and a boron oxide-rich phase (spinodal phase separation). The heat treatment temperature is preferably 500 to 800°C, particularly 600 to 750°C. If the heat treatment temperature is too high, the glass base material will soften, making it difficult to obtain the desired shape. On the other hand, if the heat treatment temperature is too low, it will be difficult to phase separate the glass base material. The heat treatment time is preferably 1 minute or more, 10 minutes or more, particularly 30 minutes or more. If the heat treatment time is too short, it will be difficult to separate the phases of the glass base material. Although the upper limit of the heat treatment time is not particularly limited, it is realistically 180 hours or less because phase separation does not proceed beyond a certain point even if heat treatment is performed for a long time.

次に、2相に分相させたガラス母材を酸に浸漬させ、酸化ホウ素リッチ相を除去し、多孔質ガラス部材を得る。酸としては、塩酸や硝酸を用いることができる。なお、これらの酸を混合して用いてもよい。酸の濃度は0.1~5規定、特に0.5~3規定であることが好ましい。酸の浸漬時間は1時間以上、10時間以上、特に20時間以上であることが好ましい。浸漬時間が短すぎると、エッチングが不十分となり、所望の連続孔を有する多孔質ガラス部材を得にくくなる。浸漬時間の上限は特に限定されないが、現実的には100時間以下である。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、エッチングが不十分となり、所望の連続孔を有する多孔質ガラス部材を得にくくなる。浸漬温度の上限は特に限定されないが、現実的には、95℃以下である。 Next, the glass base material separated into two phases is immersed in acid to remove the boron oxide rich phase to obtain a porous glass member. As the acid, hydrochloric acid or nitric acid can be used. Note that a mixture of these acids may be used. The acid concentration is preferably 0.1 to 5N, particularly 0.5 to 3N. The acid immersion time is preferably 1 hour or more, 10 hours or more, particularly 20 hours or more. If the immersion time is too short, etching will be insufficient and it will be difficult to obtain a porous glass member with desired continuous pores. Although the upper limit of the immersion time is not particularly limited, it is realistically 100 hours or less. The immersion temperature is preferably 20°C or higher, 25°C or higher, particularly 30°C or higher. If the dipping temperature is too low, etching will be insufficient and it will be difficult to obtain a porous glass member with desired continuous pores. The upper limit of the immersion temperature is not particularly limited, but realistically it is 95°C or lower.

なお、ガラス母材を分相させる工程において、ガラス母材の最表面にシリカ含有層(シリカを概ね80モル%以上含有する層)が形成される場合がある。シリカ含有層は酸で除去し難いため、シリカ含有層が形成された際は、分相させたガラス母材を切削または研磨し、シリカ含有層を除去した後に酸に浸漬させると、酸化ホウ素リッチ相を除去しやすくなる。また、シリカ含有層を除去するために、分相後のガラス母材をフッ酸に短時間浸漬させてもよい。 In addition, in the step of phase-separating the glass base material, a silica-containing layer (a layer containing approximately 80 mol % or more of silica) may be formed on the outermost surface of the glass base material. The silica-containing layer is difficult to remove with acid, so when the silica-containing layer is formed, cutting or polishing the phase-separated glass base material, removing the silica-containing layer, and then immersing it in acid will result in boron oxide-rich Phases are easier to remove. Further, in order to remove the silica-containing layer, the glass base material after phase separation may be immersed in hydrofluoric acid for a short time.

さらに、得られた多孔質ガラスの細孔中に残留するZrOコロイドやSiOコロイドを除去することが好ましい。 Furthermore, it is preferable to remove ZrO 2 colloid and SiO 2 colloid remaining in the pores of the obtained porous glass.

ZrOコロイドは、例えばガラス母材を硫酸に浸漬させることで除去することができる。硫酸の濃度は0.1~5規定、特に1~5規定であることが好ましい。硫酸への浸漬時間は1時間以上、特に10時間以上であることが好ましい。浸漬時間が短すぎると、ZrOコロイドを除去しにくくなる。浸漬時間の上限は特に限定されないが、現実的には100時間以下である。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、ZrOコロイドを除去しにくくなる。浸漬温度の上限は特に限定されないが、現実的には95℃以下である。 The ZrO 2 colloid can be removed, for example, by immersing the glass base material in sulfuric acid. The concentration of sulfuric acid is preferably 0.1 to 5N, particularly 1 to 5N. The immersion time in sulfuric acid is preferably 1 hour or more, particularly 10 hours or more. If the immersion time is too short, it will be difficult to remove the ZrO2 colloid. Although the upper limit of the immersion time is not particularly limited, it is realistically 100 hours or less. The immersion temperature is preferably 20°C or higher, 25°C or higher, particularly 30°C or higher. If the soaking temperature is too low, it will be difficult to remove the ZrO2 colloid. Although the upper limit of the immersion temperature is not particularly limited, it is realistically 95°C or lower.

SiOコロイドは、例えばガラス母材をアルカリ水溶液に浸漬させることで除去することができる。アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液等を用いることができる。なお、これらのアルカリ水溶液を混合して用いてもよい。アルカリ水溶液への浸漬時間は10分間以上、特に30分間以上であることが好ましい。浸漬時間が短すぎると、SiOコロイドを除去しにくくなる。浸漬時間の上限は特に限定されないが、現実的には100時間以下である。浸漬温度は15℃以上、特に20℃以上であることが好ましい。浸漬温度が低すぎると、SiOコロイドを除去しにくくなる。浸漬温度の上限は特に限定されないが、現実的には95℃以下である。 The SiO 2 colloid can be removed, for example, by immersing the glass base material in an alkaline aqueous solution. As the alkaline aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, etc. can be used. Note that a mixture of these alkaline aqueous solutions may be used. The immersion time in the alkaline aqueous solution is preferably 10 minutes or more, particularly 30 minutes or more. If the immersion time is too short, it will be difficult to remove the SiO2 colloid. Although the upper limit of the immersion time is not particularly limited, it is realistically 100 hours or less. The immersion temperature is preferably 15°C or higher, particularly 20°C or higher. If the immersion temperature is too low, it will be difficult to remove the SiO2 colloid. Although the upper limit of the immersion temperature is not particularly limited, it is realistically 95°C or lower.

得られた多孔質ガラス部材は、質量%で、SiO 75~99%(さらには、80~95%)、NaO 0~15%(さらには、0~10%)、KO 0~5%(さらには、0~3%)、ZrO 4~20%(さらには、4.5~15%)、Al 0~5%(さらには、0超~4%)、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~5%(さらには、0~3%)を含有することが好ましい。このように多孔質ガラス部材がSiO及びZrOを所定量含有することにより、優れた耐アルカリ性を達成することができる。 The obtained porous glass member contains SiO 2 75 to 99% (furthermore, 80 to 95%), Na 2 O 0 to 15% (furthermore, 0 to 10%), and K 2 O 0 in mass %. ~5% (furthermore, 0 to 3%), ZrO 2 4 to 20% (furthermore, 4.5 to 15%), Al 2 O 3 0 to 5% (furthermore, more than 0 to 4%), It is also preferable to contain 0 to 5% (more preferably 0 to 3%) of RO (R is at least one selected from Mg, Ca, Sr, and Ba). When the porous glass member contains a predetermined amount of SiO 2 and ZrO 2 in this way, excellent alkali resistance can be achieved.

多孔質ガラス部材の細孔分布の中央値は、1μm以下、200nm以下、150nm以下、120nm以下、100nm以下、90nm以下、80nm以下、特に70nm以下であることが好ましい。細孔分布の中央値の下限は特に限定されないが、現実的には1nm以上、2nm以上、さらには4nm以上である。また、孔の形状としては、真球状や略楕円状の孔の連続体や、チューブ状等が挙げられる。なお、多孔質ガラス部材のアスペクト比、底面積、厚み等の寸法はガラス母材と同様である。 The median value of the pore distribution of the porous glass member is preferably 1 μm or less, 200 nm or less, 150 nm or less, 120 nm or less, 100 nm or less, 90 nm or less, 80 nm or less, particularly 70 nm or less. The lower limit of the median value of the pore distribution is not particularly limited, but realistically it is 1 nm or more, 2 nm or more, and even 4 nm or more. In addition, examples of the shape of the holes include a continuous body of spherical or substantially elliptical holes, a tube shape, and the like. Note that dimensions such as aspect ratio, bottom area, and thickness of the porous glass member are the same as those of the glass base material.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described below based on Examples, but the present invention is not limited to these Examples.

表1は、本発明の実施例(試料No.1~8)、及び比較例(試料No.9、10)を示している。 Table 1 shows Examples (Samples Nos. 1 to 8) of the present invention and Comparative Examples (Samples Nos. 9 and 10).

表中の各組成になるように調合した原料を白金坩堝に入れた後、1400℃~1500℃で4時間溶融した。原料の溶融に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスを金属板上に流し出して板状に成形した後、580℃~540℃で30分間徐冷しガラス母材を得た。 Raw materials prepared to have the respective compositions shown in the table were placed in a platinum crucible and melted at 1400°C to 1500°C for 4 hours. When melting the raw materials, they were stirred using a platinum stirrer to achieve homogenization. Next, the molten glass was poured onto a metal plate and formed into a plate shape, and then slowly cooled at 580°C to 540°C for 30 minutes to obtain a glass base material.

得られたガラス母材を5mm×5mm×0.5mmのサイズとなるよう切削及び研磨した。その後、電気炉にて650℃~750℃で30分~24時間熱処理し、分相させた。分相後のガラス母材を、1規定の硝酸(95℃)中に48時間浸漬した後、イオン交換水で洗浄し、続いて3規定の硫酸(95℃)中に48時間浸漬した後、イオン交換水で洗浄し、さらに0.5規定の水酸化ナトリウム水溶液(室温)中に3時間~5時間浸漬した後、イオン交換水で洗浄した。このようにして、多孔質ガラス部材を得た。 The obtained glass base material was cut and polished to a size of 5 mm x 5 mm x 0.5 mm. Thereafter, it was heat-treated in an electric furnace at 650° C. to 750° C. for 30 minutes to 24 hours to cause phase separation. After phase separation, the glass base material was immersed in 1N nitric acid (95°C) for 48 hours, washed with ion-exchanged water, and then immersed in 3N sulfuric acid (95°C) for 48 hours. It was washed with ion-exchanged water, further immersed in a 0.5N aqueous sodium hydroxide solution (room temperature) for 3 to 5 hours, and then washed with ion-exchanged water. In this way, a porous glass member was obtained.

得られた多孔質ガラス部材の断面をFE-SEM(日立製作所製SU-8220)で観察したところ、いずれのガラスもスピノーダル分相に基づいたスケルトン構造を有していた。 When the cross sections of the obtained porous glass members were observed using FE-SEM (SU-8220 manufactured by Hitachi, Ltd.), all glasses had a skeleton structure based on spinodal phase separation.

次に、多孔質ガラス部材をEDX(堀場製作所製EX-370X-Max150)により分析することにより多孔質ガラス部材の組成を測定した。なお分析は多孔質ガラス部材断面の中央部の3点について行い、その平均値を採用した。 Next, the composition of the porous glass member was measured by analyzing the porous glass member using EDX (EX-370X-Max N 150 manufactured by Horiba, Ltd.). The analysis was conducted at three points in the center of the cross section of the porous glass member, and the average value was used.

また多孔質ガラス部材について、以下のようにして耐アルカリ性を評価した。多孔質ガラス部材を80℃に保持した0.5規定の水酸化ナトリウム水溶液中に20分間浸漬した。浸漬前後での比表面積当たりの重量減少量が3mg/m未満のものを「○」、3mg/m以上のものを「×」として評価した。なお、比表面積はカンタクローム社製QUADRASORB SIを用いて測定した。 In addition, the alkali resistance of the porous glass member was evaluated as follows. The porous glass member was immersed for 20 minutes in a 0.5N aqueous sodium hydroxide solution maintained at 80°C. Those whose weight loss per specific surface area before and after immersion was less than 3 mg/m 2 were evaluated as "○", and those that were 3 mg/m 2 or more were evaluated as "x". Note that the specific surface area was measured using QUADRASORB SI manufactured by Quantachrome.

本発明の実施例であるNo.1~8では、多孔質ガラス部材中のZrOの含有量が4.8~8.2質量%と多く、耐アルカリ性に優れていた。一方、比較例であるNo.9、10では、ZrOの含有量が3.5質量%以下と少なく、耐アルカリ性に劣っていた。 No. 1, which is an embodiment of the present invention. In Nos. 1 to 8, the content of ZrO 2 in the porous glass member was as high as 4.8 to 8.2% by mass, and the alkali resistance was excellent. On the other hand, the comparative example No. In Nos. 9 and 10, the ZrO 2 content was as low as 3.5% by mass or less, and the alkali resistance was poor.

本発明の方法により製造される多孔質ガラス部材は、分離膜、散気管、電極材料や触媒の担持体等の用途に好適である。
The porous glass member produced by the method of the present invention is suitable for uses such as separation membranes, air diffusers, electrode materials, catalyst supports, and the like.

Claims (6)

モル%で、SiO 40~80%、B 0超~40%、LiO 0~20%、NaO 0~20%、K1.25~20%、ZrO 0超~20%、Al 0~10%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有し、モル比でKO/(LiO+NaO+KO)が0.1~0.5、(LiO+NaO+KO)/Bが0.35~0.5であるガラス母材を熱処理して2相に分相させる工程、及び、一方の相を酸で除去する工程、を含むことを特徴とする多孔質ガラス部材の製造方法。 In mol%, SiO 2 40-80%, B 2 O 3 >0-40%, Li 2 O 0-20%, Na 2 O 0-20%, K 2 O 1.25-20 %, ZrO 2 0 Contains >20%, Al 2 O 3 0-10%, and RO (R is at least one selected from Mg, Ca, Sr, and Ba) 0-20%, with a molar ratio of K 2 O/ A glass base material in which (Li 2 O + Na 2 O + K 2 O) is 0.1 to 0.5 and (Li 2 O + Na 2 O + K 2 O)/B 2 O 3 is 0.35 to 0.5 is heat-treated to obtain 2 A method for manufacturing a porous glass member, comprising the steps of separating the phases into phases, and removing one of the phases with an acid. ガラス母材が、2~1000のアスペクト比を有することを特徴とする請求項1に記載の多孔質ガラス部材の製造方法。 The method for producing a porous glass member according to claim 1, wherein the glass base material has an aspect ratio of 2 to 1,000. 熱処理温度が500~800℃であることを特徴とする請求項1または2に記載の多孔質ガラス部材の製造方法。 The method for producing a porous glass member according to claim 1 or 2, wherein the heat treatment temperature is 500 to 800°C. ガラス母材が、モル比でNaO/B 0.1~0.5であることを特徴とする請求項1~3のいずれか一項に記載の多孔質ガラス部材の製造方法。 The method for producing a porous glass member according to any one of claims 1 to 3, wherein the glass base material has a molar ratio of Na 2 O/B 2 O 3 of 0.1 to 0.5. . モル%で、SiO 40~80%、B 0超~40%、LiO 0~20%、NaO 0~20%、K1.25~20%、ZrO 0超~20%、Al 0~10%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有し、モル比でKO/(LiO+NaO+KO)が0.1~0.5、(LiO+NaO+KO)/Bが0.35~0.5であることを特徴とする多孔質ガラス部材用ガラス母材。 In mol%, SiO 2 40-80%, B 2 O 3 >0-40%, Li 2 O 0-20%, Na 2 O 0-20%, K 2 O 1.25-20 %, ZrO 2 0 Contains >20%, Al 2 O 3 0-10%, and RO (R is at least one selected from Mg, Ca, Sr, and Ba) 0-20%, with a molar ratio of K 2 O/ Porous glass characterized in that (Li 2 O + Na 2 O + K 2 O) is 0.1 to 0.5 and (Li 2 O + Na 2 O + K 2 O)/B 2 O 3 is 0.35 to 0.5 Glass base material for parts. モル比でNaO/B 0.1~0.5であることを特徴とする請求項5に記載の多孔質ガラス部材用ガラス母材。 The glass base material for a porous glass member according to claim 5, characterized in that the molar ratio of Na 2 O/B 2 O 3 is 0.1 to 0.5.
JP2019203901A 2019-11-11 2019-11-11 Method for manufacturing porous glass member Active JP7425400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203901A JP7425400B2 (en) 2019-11-11 2019-11-11 Method for manufacturing porous glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203901A JP7425400B2 (en) 2019-11-11 2019-11-11 Method for manufacturing porous glass member

Publications (2)

Publication Number Publication Date
JP2021075424A JP2021075424A (en) 2021-05-20
JP7425400B2 true JP7425400B2 (en) 2024-01-31

Family

ID=75899245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203901A Active JP7425400B2 (en) 2019-11-11 2019-11-11 Method for manufacturing porous glass member

Country Status (1)

Country Link
JP (1) JP7425400B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202839A (en) * 1985-10-14 1987-09-07 Agency Of Ind Science & Technol Chemical-resistant porous glass and production thereof
JPH0446037A (en) * 1990-06-13 1992-02-17 Central Glass Co Ltd Composition for porous glass

Also Published As

Publication number Publication date
JP2021075424A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP5444846B2 (en) Glass plate for display device
JP6794866B2 (en) Chemically tempered glass and its manufacturing method
US4665039A (en) Porous glass, process for its production and glass material used for the production
US20140242375A1 (en) Laminated glass articles with phase-separated claddings and methods for forming the same
US4282035A (en) Lead-free and cadmium-free frits
JP2015500194A (en) Ion-exchangeable glass with high crack initiation threshold
JP2003095697A (en) Sealing composition
JPH0676224B2 (en) Tempered glass manufacturing method
US11479503B2 (en) Chemically strengthened glass and method for manufacturing chemically strengthened glass
WO2021095544A1 (en) Porous glass member production method
JP2012116744A (en) Lead-free glass for sealing of semiconductor and overcoat tube for sealing of semiconductor
JPWO2015111524A1 (en) Tempered glass composition, tempered glass article and method for producing the same
JP7280547B2 (en) Method for manufacturing porous glass member
KR100861635B1 (en) High strain point glasses
JP7425400B2 (en) Method for manufacturing porous glass member
JP7168901B2 (en) Method for manufacturing porous glass member
WO2014115789A1 (en) Glass material for chemical strengthening, chemically strengthened glass and cover glass
JP7303480B2 (en) porous glass member
WO2022014268A1 (en) Porous glass member
WO2021095545A1 (en) Method for producing porous glass member
JP2023004533A (en) Method for manufacturing porous glass member
JP2024060430A (en) Method for producing porous glass material and porous glass material
JP7301284B2 (en) Aldehyde gas detection materials and nonanal gas detection materials
WO2023017772A1 (en) Porous glass particles and method for manufacturing same
JP2012193067A (en) Borosilicate glass, porous glass, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240102

R150 Certificate of patent or registration of utility model

Ref document number: 7425400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150