WO2023017772A1 - Porous glass particles and method for manufacturing same - Google Patents

Porous glass particles and method for manufacturing same Download PDF

Info

Publication number
WO2023017772A1
WO2023017772A1 PCT/JP2022/029934 JP2022029934W WO2023017772A1 WO 2023017772 A1 WO2023017772 A1 WO 2023017772A1 JP 2022029934 W JP2022029934 W JP 2022029934W WO 2023017772 A1 WO2023017772 A1 WO 2023017772A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass particles
porous glass
particles
content
particles according
Prior art date
Application number
PCT/JP2022/029934
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 相徳
清行 奥長
俊介 小松谷
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022102356A external-priority patent/JP2023026324A/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023017772A1 publication Critical patent/WO2023017772A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to porous glass particles and manufacturing methods.
  • porous glass has a sharp pore distribution, a large specific surface area, heat resistance, and resistance to organic solvents. being considered.
  • Particulate porous glass has also been proposed and used as a column packing material. Silica gel particles are known as such particulate porous glass (see, for example, Patent Document 1).
  • Silica gel particles have low alkali resistance, making them difficult to use for the analysis of alkaline solutions.
  • an object of the present invention is to provide porous glass particles having excellent alkali resistance.
  • the porous glass particles of the present invention are characterized by containing ZrO 2 as a glass composition. By doing so, the alkali resistance of the porous glass particles can be enhanced, making them suitable as a column packing material for alkaline solution analysis.
  • the porous glass particles of the present invention preferably contain 1% or more of ZrO 2 in mass %.
  • the porous glass particles of the present invention further contain, in mass %, SiO 2 50-99%, Na 2 O 0-15%, K 2 O 0-10%, P 2 O 5 0-10%, Al 2 O 3 It preferably contains more than 0 to 20% and RO (R is at least one selected from Mg, Ca, Sr and Ba) 0 to 20%.
  • the porous glass particles of the present invention preferably have a pore size of 10 to 50 nm.
  • the porous glass particles of the present invention preferably have an average particle size of 0.1 to 100 ⁇ m.
  • the porous glass particles of the present invention preferably have a specific surface area of 10 m 2 /g or more.
  • the porous glass particles of the present invention are preferably substantially spherical.
  • porous glass particles of the present invention are preferably used as column packing material or porous carrier material.
  • the method for producing porous glass particles of the present invention is a method for producing the porous glass particles described above, comprising a step of pulverizing a glass base material to obtain precursor particles; and a step of removing one of the phases with an acid after separating into two phases by heat treatment.
  • the method for producing porous glass particles of the present invention preferably further includes a step of spheroidizing the precursor particles by flame polishing.
  • inorganic nanoparticles In the method for producing porous glass particles of the present invention, it is preferable to mix inorganic nanoparticles with the precursor particles when performing the heat treatment.
  • the glass base material contains, in mol %, SiO 2 40 to 80%, B 2 O 3 0 to 40%, Li 2 O 0 to 20%, and Na 2 O 0-20% K 2 O 0-20% P 2 O 5 0-2% ZrO 2 above 0-20% Al 2 O 0-10 % and RO (where R is Mg, Ca, Sr and at least one selected from Ba) preferably contains 0 to 20%.
  • porous glass particles having excellent alkali resistance can be provided.
  • the porous glass particles of the present invention are characterized by containing ZrO 2 as a glass composition.
  • the content of ZrO 2 is preferably 1% or more, 3% or more, 5% or more, 6% or more, 7% or more, and particularly 8% or more in mass %. If ZrO2 is too small, alkali resistance tends to decrease. Although the upper limit is not particularly limited, if the content of ZrO 2 is too large, devitrification tends to occur, so it is preferably 30% or less, 25% or less, and particularly 20% or less.
  • the porous glass particles of the present invention further contain, in mass %, SiO 2 50-99%, Na 2 O 0-15%, K 2 O 0-10%, P 2 O 5 0-10%, Al 2 O 3 It preferably contains more than 0 to 20% and RO (R is at least one selected from Mg, Ca, Sr and Ba) 0 to 20%.
  • RO is at least one selected from Mg, Ca, Sr and Ba
  • SiO2 is a component that forms a glass network.
  • the content of SiO 2 is 50-99%, 60-98%, preferably 65-97%, especially 65-95%. If the content of SiO 2 is too low, the weather resistance and mechanical strength of the porous glass particles tend to deteriorate. On the other hand, if the content of SiO 2 is too high, it becomes difficult to separate phases in the production process, making it difficult to obtain desired porous glass particles.
  • Na 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation.
  • the content of Na 2 O is preferably 0-15%, more than 0-10%, 0.1-5%, especially 0.2-3%. If the content of Na 2 O is too high, it becomes difficult to separate the phases.
  • K 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation. It is also a component that increases the ZrO2 content in the silica-rich phase. Therefore, by including K 2 O, the content of ZrO 2 in the obtained porous glass particles is increased, and the alkali resistance can be improved.
  • the content of K 2 O is preferably 0-10%, more than 0-5%, especially 0.1-3%. If the K 2 O content is too high, phase separation becomes difficult.
  • P 2 O 5 is a component that promotes phase separation.
  • the content of P 2 O 5 is preferably 0-10%, 0.01-8%, especially 0.05-7%. If the content of P 2 O 5 is too high, crystallization may occur.
  • Al 2 O 3 is a component that improves the weather resistance and mechanical strength of porous glass particles.
  • the content of Al 2 O 3 is preferably greater than 0 to 20%, 0.1 to 10%, 1 to 5%, especially 1.5 to 4%. If the content of Al 2 O 3 is too small, it becomes difficult to obtain the above effects. On the other hand, if the content of Al 2 O 3 is too high, the melting temperature tends to rise and the meltability tends to decrease.
  • RO is at least one selected from Mg, Ca, Sr and Ba
  • RO is a component that increases the ZrO2 content in the silica-rich phase. Therefore, by including RO, the ZrO 2 content in the obtained porous glass particles increases, and the alkali resistance can be improved.
  • RO is a component that improves the weather resistance of the porous glass particles.
  • the content of RO (total amount of MgO, CaO, SrO and BaO) is 0-20%, more than 0-10%, 0.1-7%, 0.5-5, especially 0.5-3% is preferred. When the content of RO is too high, phase separation becomes difficult.
  • the content of MgO, CaO, SrO and BaO is preferably 0 to 20%, more than 0 to 10%, 0.1 to 7%, 0.5 to 5, and particularly preferably 0.5 to 3%. .
  • the total amount is 0 to 20%, more than 0 to 10%, 0.1 to 7%, 0.5 to 5 , particularly preferably 0.5 to 3%.
  • ROs it is preferable to use CaO because it has a particularly large effect of improving the alkali resistance of the porous glass particles.
  • the porous glass particles of the present invention may contain Li 2 O, ZnO, TiO 2 , La 2 O 3 , Ta 2 O 5 , TeO 2 , Nb 2 O 5 , Gd 2 O 3 and Y 2 in addition to the above components.
  • O 3 , Eu 2 O 3 , Sb 2 O 3 , SnO 2 and Bi 2 O 3 may be contained in an amount of 10% or less each, particularly 5% or less each, and 20% or less in total.
  • PbO is an environmentally hazardous substance
  • substantially does not contain means that it is not intentionally contained as a raw material, and objectively refers to a case where the content is less than 0.1%.
  • the pore diameter (median value of pore distribution) of the porous glass particles is preferably 10 to 100 nm, 11 to 80 nm, and particularly preferably 12 to 50 nm. If the pore size of the porous glass particles is too small, it becomes difficult for substances to enter the pores, making it difficult to use the particles as a column packing material. On the other hand, when the pore size of the porous glass particles is too large, the function of separating substances becomes poor, making it difficult to use them as a column packing material.
  • the average particle diameter (D 50 ) of the porous glass particles is preferably 0.1-100 ⁇ m, 0.5-80 ⁇ m, particularly preferably 1-50 ⁇ m. If the average particle size of the porous glass particles is too small, the specific surface area will be too large, and there is a risk that the particles will dissolve in a liquid such as an alkaline solution, making it difficult to use them as a column packing material. On the other hand, if the average particle size of the porous glass particles is too large, there is a tendency for the packing rate to decrease when used as a column packing material.
  • the specific surface area of the porous glass particles is preferably 10 m 2 /g or more, 30 m 2 /g or more, particularly 50 m 2 /g or more. If the specific surface area of the porous glass particles is too small, it will be difficult to use them as a column packing material because they will be poor in their ability to separate substances. Although the upper limit of the specific surface area of the porous glass particles is not particularly limited, it is practically 600 m 2 /g or less.
  • the shape of the porous glass particles is not particularly limited, it is preferable that the particles are approximately spherical, since the filling rate when used as a column packing material is high.
  • the method for producing porous glass particles of the present invention comprises the steps of: pulverizing a glass base material to obtain precursor particles; and removing with.
  • the glass base material examples include, in mol %, SiO 2 40 to 80%, B 2 O 3 0 to 40%, Li 2 O 0 to 20%, Na 2 O 0 to 20%, K 2 O 0 to 20. %, P 2 O 5 0-2%, ZrO 2 more than 0-20%, Al 2 O 3 0-10%, and RO (R is at least one selected from Mg, Ca, Sr and Ba) 0 and those containing ⁇ 20%.
  • R is at least one selected from Mg, Ca, Sr and Ba
  • SiO2 is a component that forms a glass network.
  • the content of SiO 2 is 40-80%, preferably 45-75%, in particular 47-65%. If the content of SiO 2 is too low, the weather resistance and mechanical strength of the porous glass particles tend to deteriorate. On the other hand, if the content of SiO2 is too high, phase separation becomes difficult.
  • B 2 O 3 is a component that forms a glass network and promotes phase separation.
  • the content of B 2 O 3 is more than 0 to 40%, preferably 10 to 30%, especially 13 to 25%. If the content of B 2 O 3 is too small, it is difficult to obtain the above effects. On the other hand, if the content of B 2 O 3 is too large, the weather resistance of the glass base material tends to deteriorate.
  • Li 2 O is a component that lowers the melting temperature to improve the meltability and promotes phase separation.
  • the content of Li 2 O is 0-20%, preferably 0.3-15%, particularly 0.6-10%. When the content of Li 2 O is too high, phase separation becomes difficult.
  • Na 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation.
  • the content of Na 2 O is 0-20%, preferably greater than 0-15%, especially 4-10%. If the content of Na 2 O is too small, it is difficult to obtain the above effects. On the other hand, when the content of Na 2 O is too high, phase separation becomes difficult.
  • K 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation. It is also a component that increases the ZrO2 content in the silica-rich phase. Therefore, by including K 2 O, the content of ZrO 2 in the obtained porous glass particles is increased, and the alkali resistance can be improved.
  • the content of K 2 O is preferably greater than 0 to 20%, preferably 0.3 to 5%, especially 0.5 to 3%. If the content of K 2 O is too small, it will be difficult to obtain the above effects. On the other hand, when the content of K 2 O is too large, phase separation becomes difficult.
  • the content of Li 2 O+Na 2 O+K 2 O is preferably greater than 0 to 20%, 2 to 15%, 4 to 12%, especially 5 to 10%. If the content of Li 2 O+Na 2 O+K 2 O is too small, the melting temperature may increase and the meltability may deteriorate. In addition, phase separation becomes difficult. When the content of Li 2 O+Na 2 O+K 2 O is too large, phase separation becomes difficult.
  • K 2 O/(Li 2 O+Na 2 O+K 2 O) is 0.1 to 0.5, preferably 0.13 to 0.45, particularly 0.15 to 0.4. If K 2 O/(Li 2 O+Na 2 O+K 2 O) is too small, it becomes difficult to obtain the effect of increasing the ZrO 2 content in the silica-rich phase. On the other hand, if K 2 O/(Li 2 O+Na 2 O+K 2 O) is too large, the state of phase separation changes from spinodal phase separation to binodal phase separation, or phase separation does not occur. As a result, it becomes difficult to obtain porous glass particles having desired communicating pores.
  • Na 2 O/B 2 O 3 is preferably 0.1-0.5, 0.15-0.45, especially 0.2-0.4. In this way, in the production process, the amount of expansion due to hydration of the silica gel and the amount of shrinkage due to elution of Na 2 O from the silica-rich phase are balanced, and cracks are less likely to occur in the porous glass particles. .
  • ZrO 2 is a component that improves the weather resistance of the glass base material and the alkali resistance of the porous glass particles.
  • the content of ZrO 2 is greater than 0-20%, preferably 2-19%, especially 2.5-18%. If the content of ZrO 2 is too small, it is difficult to obtain the above effects. On the other hand, if the content of ZrO 2 is too high, devitrification tends to occur and phase separation becomes difficult.
  • Al 2 O 3 is a component that improves the weather resistance and mechanical strength of porous glass particles.
  • the content of Al 2 O 3 is 0-10%, preferably 0.1-7%, especially 1-5%. If the content of Al 2 O 3 is too high, the melting temperature tends to rise and the meltability tends to decrease.
  • RO is at least one selected from Mg, Ca, Sr and Ba
  • RO is a component that increases the ZrO2 content in the silica-rich phase. Therefore, by including RO, the ZrO 2 content in the obtained porous glass particles increases, and the alkali resistance can be improved.
  • RO is a component that improves the weather resistance of the porous glass particles.
  • the content of RO (total amount of MgO, CaO, SrO and BaO) is 0-20%, 1-17%, 3-15%, 4-13%, 5-12%, especially 6.5-12 is preferably When the content of RO is too high, phase separation becomes difficult.
  • the contents of MgO, CaO, SrO and BaO are preferably 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13% and 5 to 12%, and particularly preferably 6.5 to 12%. . Further, when containing at least two components selected from MgO, CaO, SrO and BaO, the total amount is 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13%, 5 to 12 %, especially 6.5-12. Among ROs, it is preferable to use CaO because it has a particularly large effect of improving the alkali resistance of the porous glass particles.
  • the glass base material can contain the following components in addition to the above components.
  • ZnO is a component that increases the ZrO2 content in the silica-rich phase. It also has the effect of improving the weather resistance of the porous glass particles.
  • the content of ZnO is preferably 0-20%, 0-10%, especially 0-3%. If the ZnO content is too high, phase separation will be difficult.
  • P 2 O 5 is a component that promotes phase separation.
  • the content of P 2 O 5 is preferably 0-10%, 0.01-5%, especially 0.05-3%. If the content of P 2 O 5 is too high, crystallization may occur.
  • TiO2 , La2O3 , Ta2O5 , TeO2 , Nb2O5 , Gd2O3 , Y2O3 , Eu2O3 , Sb2O3 , SnO2 and Bi2O3 etc. may be contained in the range of 15% or less each, 10% or less each, particularly 5% or less each, and 30% or less in total.
  • a glass batch prepared to have the above glass composition is melted at, for example, 1300 to 1600°C for 2 to 12 hours.
  • the glass base material is pulverized to obtain precursor particles.
  • Precursor particles having a desired particle size can be obtained by classifying the pulverized material as necessary.
  • the precursor particles may be spheroidized by flame polishing.
  • the heat treatment temperature is preferably 500 to 800°C, particularly 600 to 780°C. If the heat treatment temperature is too high, the precursor particles may be softened and deformed. On the other hand, if the heat treatment temperature is too low, it becomes difficult to separate the phases of the precursor particles.
  • the heat treatment time is preferably 1 minute or longer, 10 minutes or longer, particularly 30 minutes or longer. If the heat treatment time is too short, it becomes difficult to separate the phases of the precursor particles.
  • the upper limit of the heat treatment time is not particularly limited, it is practically 180 hours or less because the phase separation does not progress beyond a certain level even if the heat treatment is performed for a long time.
  • inorganic nanoparticles include alumina fine particles and zirconia fine particles.
  • the average particle size of the inorganic nanoparticles is not particularly limited, it is preferable to use, for example, 1 to 100 nm, 5 to 50 nm, particularly 10 to 40 nm. If the average particle size of the inorganic nanoparticles is too small, they tend to aggregate and become difficult to handle. On the other hand, if the average particle size of the inorganic nanoparticles is too large, it becomes difficult to obtain the effect of suppressing fusion between the precursor particles.
  • the amount of the inorganic nanoparticles to be added is preferably 0.5 parts by mass or more, 1 part by mass or more, particularly 2 parts by mass or more with respect to 100 parts by mass of the precursor particles. If the amount of the inorganic nanoparticles added is too small, it becomes difficult to obtain the effect of suppressing fusion between the precursor particles. In addition, when the particle size of the precursor particles is small, the precursor particles are likely to fuse together, so it is preferable to increase the amount of the inorganic nanoparticles added. Specifically, the amount of inorganic nanoparticles to be added may be 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, or even 30 parts by mass or more. On the other hand, the upper limit of the amount of the inorganic nanoparticles to be added is not particularly limited.
  • the precursor particles phase-separated into two phases are immersed in acid to remove the boron oxide-rich phase to obtain porous glass particles.
  • Hydrochloric acid or nitric acid can be used as the acid. In addition, you may mix and use these acids.
  • the concentration of the acid is preferably 0.1 to 5N, more preferably 0.5 to 3N.
  • the acid immersion time is preferably 0.1 hour or longer, particularly 0.2 hour or longer. If the immersion time is too short, etching will be insufficient, making it difficult to obtain porous glass particles having desired continuous pores. On the other hand, if the immersion time is too long, the precursor particles may be dissolved in the acid, so the immersion time is preferably 20 hours or less, particularly 10 hours or less.
  • the immersion temperature is preferably 20° C.
  • the immersion temperature is too low, etching will be insufficient, making it difficult to obtain porous glass particles having desired continuous pores.
  • the upper limit of the immersion temperature is not particularly limited, it is practically 99° C. or less.
  • a silica-containing layer (a layer containing approximately 80 mol % or more of silica) may be formed on the surface of the precursor particles. Since the silica-containing layer is difficult to remove with an acid, when the silica-containing layer is formed on the surface of the precursor particles after phase separation, it is preferably immersed in hydrofluoric acid for a short period of time to remove the silica-containing layer.
  • ZrO2 colloids can be removed, for example, by soaking the precursor particles in sulfuric acid.
  • concentration of sulfuric acid is preferably 0.1 to 5N, more preferably 1 to 5N.
  • the immersion time in sulfuric acid is preferably 0.1 hour or longer, particularly 0.2 hour or longer. If the immersion time is too short, it will be difficult to remove the ZrO2 colloid.
  • the upper limit of the immersion time is not particularly limited, it is practically 20 hours or less, further 10 hours or less.
  • the immersion temperature is preferably 20° C. or higher, 25° C. or higher, particularly 30° C. or higher. If the soaking temperature is too low, it will be difficult to remove the ZrO2 colloid.
  • the upper limit of the immersion temperature is not particularly limited, it is practically 99° C. or less.
  • SiO2 colloids can be removed, for example, by immersing the precursor particles in an alkaline aqueous solution.
  • an alkaline aqueous solution a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or the like can be used. In addition, you may mix and use these alkaline aqueous solutions.
  • the immersion time in the alkaline aqueous solution is preferably 0.1 hours or more, particularly 0.2 hours or more. If the immersion time is too short, it will be difficult to remove the SiO2 colloid.
  • the upper limit of the immersion time is not particularly limited, it is practically 20 hours or less, further 10 hours or less.
  • the immersion temperature is preferably 15° C. or higher, particularly 20° C. or higher. If the immersion temperature is too low, it will be difficult to remove the SiO2 colloid. Although the upper limit of the immersion temperature is not particularly limited, it is practically 99° C. or less.
  • Table 1 shows Examples 1 to 5 and Comparative Examples.
  • Example 1 In mol %, SiO2 57.65%, Al2O3 1.7 %, B2O3 17 %, Na2O 6%, K2O 0.8%, CaO 9%, ZrO2 6 %, A raw material prepared to have a composition of 0.15% P 2 O 5 and 1.7% TiO 2 was placed in a platinum crucible and then melted at 1500° C. for 3 hours. When the raw material was melted, it was homogenized by stirring using a platinum stirrer. Then, the molten glass was formed into a film by flowing it between a pair of cooling rollers. The obtained film-like glass was pulverized by a ball mill and then classified by an air classifier to obtain glass particles having an average particle size of 30 ⁇ m.
  • the obtained glass particles were fed into the furnace with a table feeder and heated at about 1000 to 3000°C with an air burner to be softened and flowed to be spherical.
  • alumina fine particles manufactured by Aerosil Co., Ltd.
  • the glass particles after phase separation were immersed in 10 mass % hydrofluoric acid for several seconds to 300 seconds. This removed the heterogeneous layer (silica-rich phase) formed on the surface of the glass particles in the phase separation step.
  • the resulting glass particles were etched as follows.
  • the glass particles were immersed in 1N nitric acid (96°C) for 0.5 to 5 hours, washed with deionized water, and then immersed in 3N sulfuric acid (96°C) for 0.5 to 5 hours. After that, it was washed with ion-exchanged water, further immersed in a 0.5N sodium hydroxide aqueous solution (room temperature) for 0.5 to 5 hours, and then washed with ion-exchanged water.
  • a 0.5N sodium hydroxide aqueous solution room temperature
  • porous glass particles When the resulting porous glass particles were observed with an FE-SEM (Field Emission Scanning Electron Microscope, SU-8220 manufactured by Hitachi, Ltd.), they had a skeleton structure based on spinodal phase separation.
  • the porous glass particles had a pore diameter of 20 nm and a specific surface area of 100 m 2 /g or more. The pore diameter and specific surface area were measured as follows.
  • the pore size was measured with a pore distribution measuring device (QUADRASORB SI manufactured by Anton Paar). The median value of the obtained pore size distribution was taken as the pore diameter.
  • the specific surface area was measured using QUADRASORB SI manufactured by Anton Paar.
  • the porous glass particles were analyzed by EDX (energy dispersive X-ray spectrometer, EX-370X-Max N 150 manufactured by Horiba, Ltd.) to measure the composition of the porous glass particles.
  • the porous glass particles were, in weight percent, SiO2 85.1%, Al2O3 2.8 %, ZrO2 8.8%, P2O5 0.8 %, TiO2 1.1%. , Na 2 O 0.4%, K 2 O 0.1%, CaO 0.9%.
  • the obtained porous glass particles were evaluated for alkali resistance as follows.
  • the porous glass particles were immersed for 10 minutes in a 0.5N sodium hydroxide aqueous solution maintained at 80°C.
  • the amount of weight loss per specific surface area before and after immersion was less than 6 mg/m 2 , indicating excellent alkali resistance (the evaluation of alkali resistance is indicated by “ ⁇ ” in the table).
  • Example 2 Glass particles were produced in the same manner as in Example 1, except that the conditions for ball milling and air classification were changed. Thereby, glass particles having an average particle size of 2 ⁇ m were obtained. After that, according to the same method as in Example 1, the glass particles were sphericalized, phase separated, immersed in hydrofluoric acid, and etched to obtain porous glass particles having an average particle size of 2 ⁇ m. However, the heat treatment conditions in the phase separation step were set to 680° C. for 6 hours, and the amount of the alumina fine particles added was set to 50 parts by weight with respect to 100 parts by weight of the glass particles.
  • porous glass particles When the obtained porous glass particles were observed by FE-SEM, they had a skeleton structure based on spinodal phase separation.
  • the porous glass particles had a pore size of 17 nm and a specific surface area of 75 m 2 /g.
  • the composition of the porous glass particles was as shown in Table 1.
  • Alkalinity of the resulting porous glass particles was evaluated in the same manner as in Example 1.
  • the amount of weight loss per specific surface area was less than 6 mg/m 2 , indicating excellent alkali resistance.
  • Example 3 Glass particles were produced in the same manner as in Example 1, except that raw materials prepared so as to have the composition of the porous glass base material shown in Table 1 were used and the air classification conditions were changed. As a result, glass particles having an average particle size of 15 ⁇ m were obtained. After that, according to the same method as in Example 1, the glass particles were sphericalized, phase separated, immersed in hydrofluoric acid, and etched to obtain porous glass particles having an average particle size of 15 ⁇ m. However, the amount of the fine alumina particles added was 15 parts by weight with respect to 100 parts by weight of the glass particles.
  • porous glass particles When the obtained porous glass particles were observed by FE-SEM, they had a skeleton structure based on spinodal phase separation.
  • the porous glass particles had a pore diameter of 19 nm and a specific surface area of 100 m 2 /g or more.
  • the composition of the porous glass particles was as shown in Table 1.
  • Alkalinity of the resulting porous glass particles was evaluated in the same manner as in Example 1.
  • the amount of weight loss per specific surface area was less than 6 mg/m 2 , indicating excellent alkali resistance.
  • Example 4 Glass particles were produced in the same manner as in Example 1, except that raw materials prepared so as to have the composition of the porous glass base material shown in Table 1 were used and the air classification conditions were changed. Thereby, glass particles having an average particle size of 5 ⁇ m were obtained. After that, according to the same method as in Example 1, the glass particles were sphericalized, phase separated, immersed in hydrofluoric acid, and etched to obtain porous glass particles having an average particle size of 5 ⁇ m. However, the amount of the fine alumina particles added was 25 parts by weight with respect to 100 parts by weight of the glass particles.
  • porous glass particles When the obtained porous glass particles were observed by FE-SEM, they had a skeleton structure based on spinodal phase separation.
  • the porous glass particles had a pore diameter of 21 nm and a specific surface area of 100 m 2 /g or more.
  • the composition of the porous glass particles was as shown in Table 1.
  • Alkalinity of the resulting porous glass particles was evaluated in the same manner as in Example 1.
  • the amount of weight loss per specific surface area was less than 6 mg/m 2 , indicating excellent alkali resistance.
  • Example 5 Glass particles were produced in the same manner as in Example 1, except that raw materials prepared so as to have the composition of the porous glass base material shown in Table 1 were used and the air classification conditions were changed. Thereby, glass particles having an average particle diameter of 5 ⁇ m were obtained. After that, according to the same method as in Example 1, the glass particles were sphericalized, phase separated, immersed in hydrofluoric acid, and etched to obtain porous glass particles having an average particle size of 5 ⁇ m. The amount of the fine alumina particles added was 25 parts by weight with respect to 100 parts by weight of the glass particles.
  • porous glass particles When the obtained porous glass particles were observed by FE-SEM, they had a skeleton structure based on spinodal phase separation.
  • the porous glass particles had a pore diameter of 18 nm and a specific surface area of 100 m 2 /g or more.
  • the composition of the porous glass particles was as shown in Table 1.
  • Alkalinity of the resulting porous glass particles was evaluated in the same manner as in Example 1.
  • the amount of weight loss per specific surface area was less than 6 mg/m 2 , indicating excellent alkali resistance.
  • porous silica beads As a comparative example, commercially available porous silica beads were prepared.
  • the porous silica beads have an average particle diameter of 50 ⁇ m, a pore diameter of 5.6 nm, a specific surface area of 670 m 2 /g, and a composition, in mass %, of SiO 2 98.9% and Al 2 O 3 1.1. %Met. Further, when observed by FE-SEM, it had a skeleton structure based on spinodal phase separation.
  • porous glass particles of the present invention can be used as carrier materials for antibacterial agents and antiviral agents in addition to column packing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention provides porous glass particles having excellent alkali resistance. The porous glass particles are characterized by containing ZrO2 as a glass composition.

Description

多孔質ガラス粒子及びその製造方法Porous glass particles and method for producing the same
 本発明は、多孔質ガラス粒子及び製造方法に関する。 The present invention relates to porous glass particles and manufacturing methods.
 近年、多孔質ガラスは、シャープな細孔分布と大きな比表面積を持ち、耐熱性、耐有機溶媒性を持つため、分離膜、散気管、電極材料や触媒の担持体など幅広い用途への利用が検討されている。多孔質ガラスとして粒子状のものも提案されており、カラム充填剤等に利用されている。そのような粒子状多孔質ガラスとして、シリカゲル粒子が知られている(例えば特許文献1参照)。 In recent years, porous glass has a sharp pore distribution, a large specific surface area, heat resistance, and resistance to organic solvents. being considered. Particulate porous glass has also been proposed and used as a column packing material. Silica gel particles are known as such particulate porous glass (see, for example, Patent Document 1).
特開2009-292938号公報JP 2009-292938 A
 シリカゲル粒子は耐アルカリ性が低いため、アルカリ性溶液の分析には使用が困難である。 Silica gel particles have low alkali resistance, making them difficult to use for the analysis of alkaline solutions.
 以上に鑑み、本発明は、優れた耐アルカリ性を有する多孔質ガラス粒子を提供することを目的とする。 In view of the above, an object of the present invention is to provide porous glass particles having excellent alkali resistance.
 本発明の多孔質ガラス粒子は、ガラス組成としてZrOを含有することを特徴とする。このようにすれば多孔質ガラス粒子の耐アルカリ性を高めることができ、アルカリ性溶液分析用のカラム充填剤として好適となる。 The porous glass particles of the present invention are characterized by containing ZrO 2 as a glass composition. By doing so, the alkali resistance of the porous glass particles can be enhanced, making them suitable as a column packing material for alkaline solution analysis.
 本発明の多孔質ガラス粒子は、質量%で、ZrOを1%以上含有することが好ましい。 The porous glass particles of the present invention preferably contain 1% or more of ZrO 2 in mass %.
 本発明の多孔質ガラス粒子は、さらに質量%で、SiO 50~99%、NaO 0~15%、KO 0~10%、P 0~10%、Al 0超~20%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有することが好ましい。 The porous glass particles of the present invention further contain, in mass %, SiO 2 50-99%, Na 2 O 0-15%, K 2 O 0-10%, P 2 O 5 0-10%, Al 2 O 3 It preferably contains more than 0 to 20% and RO (R is at least one selected from Mg, Ca, Sr and Ba) 0 to 20%.
 本発明の多孔質ガラス粒子は、細孔径が10~50nmであることが好ましい。 The porous glass particles of the present invention preferably have a pore size of 10 to 50 nm.
 本発明の多孔質ガラス粒子は、平均粒子径が0.1~100μmであることが好ましい。 The porous glass particles of the present invention preferably have an average particle size of 0.1 to 100 µm.
 本発明の多孔質ガラス粒子は、比表面積が10m/g以上であることが好ましい。 The porous glass particles of the present invention preferably have a specific surface area of 10 m 2 /g or more.
 本発明の多孔質ガラス粒子は、略球状であることが好ましい。 The porous glass particles of the present invention are preferably substantially spherical.
 本発明の多孔質ガラス粒子は、カラム充填材または多孔質担体材料として使用されることが好ましい。 The porous glass particles of the present invention are preferably used as column packing material or porous carrier material.
 本発明の多孔質ガラス粒子の製造方法は、上記の多孔質ガラス粒子を製造するための方法であって、ガラス母材を粉砕することにより前駆体粒子を得る工程、及び、前記前駆体粒子を熱処理して2相に分相させた後、一方の相を酸で除去する工程、を備えることを特徴とする。 The method for producing porous glass particles of the present invention is a method for producing the porous glass particles described above, comprising a step of pulverizing a glass base material to obtain precursor particles; and a step of removing one of the phases with an acid after separating into two phases by heat treatment.
 本発明の多孔質ガラス粒子の製造方法は、さらに、前記前駆体粒子を火炎研磨することにより球状化する工程を含むことが好ましい。 The method for producing porous glass particles of the present invention preferably further includes a step of spheroidizing the precursor particles by flame polishing.
 本発明の多孔質ガラス粒子の製造方法は、前記熱処理を行う際に、前記前駆体粒子に対し無機ナノ粒子を混合することが好ましい。 In the method for producing porous glass particles of the present invention, it is preferable to mix inorganic nanoparticles with the precursor particles when performing the heat treatment.
 本発明の多孔質ガラス粒子の製造方法は、前記ガラス母材が、モル%で、SiO 40~80%、B 0超~40%、LiO 0~20%、NaO 0~20%、KO 0~20%、P 0~2%、ZrO 0超~20%、Al 0~10%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有することが好ましい。 In the method for producing porous glass particles of the present invention, the glass base material contains, in mol %, SiO 2 40 to 80%, B 2 O 3 0 to 40%, Li 2 O 0 to 20%, and Na 2 O 0-20% K 2 O 0-20% P 2 O 5 0-2% ZrO 2 above 0-20% Al 2 O 0-10 % and RO (where R is Mg, Ca, Sr and at least one selected from Ba) preferably contains 0 to 20%.
 本発明によれば、優れた耐アルカリ性を有する多孔質ガラス粒子を提供することができる。 According to the present invention, porous glass particles having excellent alkali resistance can be provided.
 (多孔質ガラス粒子)
 本発明の多孔質ガラス粒子は、ガラス組成としてZrOを含有することを特徴とする。ZrOの含有量は、質量%で、1%以上、3%以上、5%以上、6%以上、7%以上、特に8%以上であることが好ましい。ZrOが少なすぎると耐アルカリ性が低下しやすくなる。上限は特に限定されないが、ZrOの含有量が多すぎると失透しやすくなるため、30%以下、25%以下、特に20%以下であることが好ましい。
(Porous glass particles)
The porous glass particles of the present invention are characterized by containing ZrO 2 as a glass composition. The content of ZrO 2 is preferably 1% or more, 3% or more, 5% or more, 6% or more, 7% or more, and particularly 8% or more in mass %. If ZrO2 is too small, alkali resistance tends to decrease. Although the upper limit is not particularly limited, if the content of ZrO 2 is too large, devitrification tends to occur, so it is preferably 30% or less, 25% or less, and particularly 20% or less.
 本発明の多孔質ガラス粒子は、さらに質量%で、SiO 50~99%、NaO 0~15%、KO 0~10%、P 0~10%、Al 0超~20%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有することが好ましい。このようにガラス組成を限定した理由を以下に説明する。なお、以下の多孔質ガラス粒子の成分含有量に関する説明において、特に断りがない限り「%」は「質量%」を意味する。 The porous glass particles of the present invention further contain, in mass %, SiO 2 50-99%, Na 2 O 0-15%, K 2 O 0-10%, P 2 O 5 0-10%, Al 2 O 3 It preferably contains more than 0 to 20% and RO (R is at least one selected from Mg, Ca, Sr and Ba) 0 to 20%. The reason why the glass composition is limited in this way will be explained below. In addition, in the following description of the component content of the porous glass particles, "%" means "% by mass" unless otherwise specified.
 SiOはガラスネットワークを形成する成分である。SiOの含有量は50~99%、60~98%であり、65~97%、特に65~95%であることが好ましい。SiOの含有量が少なすぎると、多孔質ガラス粒子の耐候性や機械的強度が低下する傾向がある。一方、SiOの含有量が多すぎると、製造工程において分相しにくくなり、所望の多孔質ガラス粒子を得にくくなる。 SiO2 is a component that forms a glass network. The content of SiO 2 is 50-99%, 60-98%, preferably 65-97%, especially 65-95%. If the content of SiO 2 is too low, the weather resistance and mechanical strength of the porous glass particles tend to deteriorate. On the other hand, if the content of SiO 2 is too high, it becomes difficult to separate phases in the production process, making it difficult to obtain desired porous glass particles.
 NaOは溶融温度を低下させて溶融性を改善する成分であるとともに、分相を促進させる成分である。NaOの含有量は0~15%、0超~10%、0.1~5%、特に0.2~3%であることが好ましい。NaOの含有量が多すぎると、逆に分相しにくくなる。 Na 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation. The content of Na 2 O is preferably 0-15%, more than 0-10%, 0.1-5%, especially 0.2-3%. If the content of Na 2 O is too high, it becomes difficult to separate the phases.
 KOは溶融温度を低下させて溶融性を改善する成分であるとともに、分相を促進させる成分である。また、シリカリッチ相中のZrO含有量を増加させる成分である。そのため、KOを含有させることにより、得られる多孔質ガラス粒子中のZrO含有量が増加し、耐アルカリ性を向上させることができる。KOの含有量は0~10%、0超~5%、特に0.1~3%であることが好ましい。KOの含有量が多すぎると、逆に分相しにくくなる。 K 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation. It is also a component that increases the ZrO2 content in the silica-rich phase. Therefore, by including K 2 O, the content of ZrO 2 in the obtained porous glass particles is increased, and the alkali resistance can be improved. The content of K 2 O is preferably 0-10%, more than 0-5%, especially 0.1-3%. If the K 2 O content is too high, phase separation becomes difficult.
 Pは分相を促進させる成分である。Pの含有量は0~10%、0.01~8%、特に0.05~7%であることが好ましい。Pの含有量が多すぎると、結晶化する恐れがある。 P 2 O 5 is a component that promotes phase separation. The content of P 2 O 5 is preferably 0-10%, 0.01-8%, especially 0.05-7%. If the content of P 2 O 5 is too high, crystallization may occur.
 Alは多孔質ガラス粒子の耐候性や機械的強度を向上させる成分である。Alの含有量は0超~20%、0.1~10%、1~5%、特に1.5~4%であることが好ましい。Alの含有量が少なすぎると、上記効果を得にくくなる。一方、Alの含有量が多すぎると、溶融温度が上昇し溶融性が低下しやすくなる。 Al 2 O 3 is a component that improves the weather resistance and mechanical strength of porous glass particles. The content of Al 2 O 3 is preferably greater than 0 to 20%, 0.1 to 10%, 1 to 5%, especially 1.5 to 4%. If the content of Al 2 O 3 is too small, it becomes difficult to obtain the above effects. On the other hand, if the content of Al 2 O 3 is too high, the melting temperature tends to rise and the meltability tends to decrease.
 RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種)は、シリカリッチ相中のZrO含有量を増加させる成分である。そのため、ROを含有させることにより、得られる多孔質ガラス粒子中のZrO含有量が増加し、耐アルカリ性を向上させることができる。また、ROは多孔質ガラス粒子の耐候性を向上させる成分である。ROの含有量(MgO、CaO、SrO及びBaOの合量)は0~20%、0超~10%、0.1~7%、0.5~5、特に0.5~3%であることが好ましい。ROの含有量が多すぎると、分相しにくくなる。なお、MgO、CaO、SrO及びBaOの含有量は各々0~20%、0超~10%、0.1~7%、0.5~5、特に0.5~3%であることが好ましい。また、MgO、CaO、SrO及びBaOから選択される少なくとも2種の成分を含有させる場合、その合量は0~20%、0超~10%、0.1~7%、0.5~5、特に0.5~3%であることが好ましい。ROのなかで、多孔質ガラス粒子の耐アルカリ性を向上させる効果が特に大きいという点で、CaOを使用することが好ましい。 RO (R is at least one selected from Mg, Ca, Sr and Ba) is a component that increases the ZrO2 content in the silica-rich phase. Therefore, by including RO, the ZrO 2 content in the obtained porous glass particles increases, and the alkali resistance can be improved. Moreover, RO is a component that improves the weather resistance of the porous glass particles. The content of RO (total amount of MgO, CaO, SrO and BaO) is 0-20%, more than 0-10%, 0.1-7%, 0.5-5, especially 0.5-3% is preferred. When the content of RO is too high, phase separation becomes difficult. The content of MgO, CaO, SrO and BaO is preferably 0 to 20%, more than 0 to 10%, 0.1 to 7%, 0.5 to 5, and particularly preferably 0.5 to 3%. . In addition, when containing at least two components selected from MgO, CaO, SrO and BaO, the total amount is 0 to 20%, more than 0 to 10%, 0.1 to 7%, 0.5 to 5 , particularly preferably 0.5 to 3%. Among ROs, it is preferable to use CaO because it has a particularly large effect of improving the alkali resistance of the porous glass particles.
 本発明の多孔質ガラス粒子には、上記成分以外にも、LiO、ZnO、TiO、La、Ta、TeO、Nb、Gd、Y、Eu、Sb、SnO及びBi等を各々10%以下、特に各々5%以下、合量で20%以下の範囲で含有させてもよい。 The porous glass particles of the present invention may contain Li 2 O, ZnO, TiO 2 , La 2 O 3 , Ta 2 O 5 , TeO 2 , Nb 2 O 5 , Gd 2 O 3 and Y 2 in addition to the above components. O 3 , Eu 2 O 3 , Sb 2 O 3 , SnO 2 and Bi 2 O 3 may be contained in an amount of 10% or less each, particularly 5% or less each, and 20% or less in total.
 なお、PbOは環境負荷物質であるため、実質的に含有しないことが好ましい。ここで「実質的に含有しない」とは、意図的に原料として含有させないことを意味し、客観的には含有量が0.1%未満の場合を指す。 In addition, since PbO is an environmentally hazardous substance, it is preferable not to substantially contain it. Here, "substantially does not contain" means that it is not intentionally contained as a raw material, and objectively refers to a case where the content is less than 0.1%.
 多孔質ガラス粒子の細孔径(細孔分布の中央値)は、10~100nm、11~80nm、特に12~50nmであることが好ましい。多孔質ガラス粒子の細孔径が小さすぎると、細孔内に物質が入りにくくなるため、カラム充填剤としての利用が困難になる。一方、多孔質ガラス粒子の細孔径が大きすぎる場合も、物質の分離機能に乏しくなるため、カラム充填剤としての利用が困難となる。 The pore diameter (median value of pore distribution) of the porous glass particles is preferably 10 to 100 nm, 11 to 80 nm, and particularly preferably 12 to 50 nm. If the pore size of the porous glass particles is too small, it becomes difficult for substances to enter the pores, making it difficult to use the particles as a column packing material. On the other hand, when the pore size of the porous glass particles is too large, the function of separating substances becomes poor, making it difficult to use them as a column packing material.
 多孔質ガラス粒子の平均粒子径(D50)は0.1~100μm、0.5~80μm、特に1~50μmであることが好ましい。多孔質ガラス粒子の平均粒子径が小さすぎると、比表面積が大きくなりすぎてアルカリ性溶液等の液体に溶解する恐れがあるため、カラム充填剤としての使用が困難になる。一方、多孔質ガラス粒子の平均粒子径が大きすぎると、カラム充填剤として使用した場合の充填率が低下する傾向がある。 The average particle diameter (D 50 ) of the porous glass particles is preferably 0.1-100 μm, 0.5-80 μm, particularly preferably 1-50 μm. If the average particle size of the porous glass particles is too small, the specific surface area will be too large, and there is a risk that the particles will dissolve in a liquid such as an alkaline solution, making it difficult to use them as a column packing material. On the other hand, if the average particle size of the porous glass particles is too large, there is a tendency for the packing rate to decrease when used as a column packing material.
 多孔質ガラス粒子の比表面積は10m/g以上、30m/g以上、特に50m/g以上であることが好ましい。多孔質ガラス粒子の比表面積が小さすぎると、物質の分離機能に乏しくなるため、カラム充填剤としての利用が困難となる。多孔質ガラス粒子の比表面積の上限は特に限定されないが、現実的には600m/g以下である。 The specific surface area of the porous glass particles is preferably 10 m 2 /g or more, 30 m 2 /g or more, particularly 50 m 2 /g or more. If the specific surface area of the porous glass particles is too small, it will be difficult to use them as a column packing material because they will be poor in their ability to separate substances. Although the upper limit of the specific surface area of the porous glass particles is not particularly limited, it is practically 600 m 2 /g or less.
 多孔質ガラス粒子の形状は特に限定されないが、略球状であると、カラム充填剤として使用した際の充填率が高くなるため好ましい。 Although the shape of the porous glass particles is not particularly limited, it is preferable that the particles are approximately spherical, since the filling rate when used as a column packing material is high.
 (多孔質ガラス粒子の製造方法)
 本発明の多孔質ガラス粒子の製造方法は、ガラス母材を粉砕することにより前駆体粒子を得る工程、及び、前駆体粒子を熱処理して2相に分相させた後、一方の相を酸で除去する工程、を備えることを特徴とする。
(Method for producing porous glass particles)
The method for producing porous glass particles of the present invention comprises the steps of: pulverizing a glass base material to obtain precursor particles; and removing with.
 ガラス母材としては例えば、モル%で、SiO 40~80%、B 0超~40%、LiO 0~20%、NaO 0~20%、KO 0~20%、P 0~2%、ZrO 0超~20%、Al 0~10%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有するものが挙げられる。このようにガラス組成を限定した理由を以下に説明する。なお、以下のガラス母材の成分含有量に関する説明において、特に断りがない限り「%」は「モル%」を意味する。 Examples of the glass base material include, in mol %, SiO 2 40 to 80%, B 2 O 3 0 to 40%, Li 2 O 0 to 20%, Na 2 O 0 to 20%, K 2 O 0 to 20. %, P 2 O 5 0-2%, ZrO 2 more than 0-20%, Al 2 O 3 0-10%, and RO (R is at least one selected from Mg, Ca, Sr and Ba) 0 and those containing ~20%. The reason why the glass composition is limited in this way will be explained below. In addition, in the following description of the component contents of the glass base material, "%" means "mol %" unless otherwise specified.
 SiOはガラスネットワークを形成する成分である。SiOの含有量は40~80%であり、45~75%、特に47~65%であることが好ましい。SiOの含有量が少なすぎると、多孔質ガラス粒子の耐候性や機械的強度が低下する傾向がある。一方、SiOの含有量が多すぎると、分相しにくくなる。 SiO2 is a component that forms a glass network. The content of SiO 2 is 40-80%, preferably 45-75%, in particular 47-65%. If the content of SiO 2 is too low, the weather resistance and mechanical strength of the porous glass particles tend to deteriorate. On the other hand, if the content of SiO2 is too high, phase separation becomes difficult.
 Bはガラスネットワークを形成し、分相を促進する成分である。Bの含有量は0超~40%であり、10~30%、特に13~25%であることが好ましい。Bの含有量が少なすぎると、上記効果を得にくい。一方、Bの含有量が多すぎると、ガラス母材の耐候性が低下しやすくなる。 B 2 O 3 is a component that forms a glass network and promotes phase separation. The content of B 2 O 3 is more than 0 to 40%, preferably 10 to 30%, especially 13 to 25%. If the content of B 2 O 3 is too small, it is difficult to obtain the above effects. On the other hand, if the content of B 2 O 3 is too large, the weather resistance of the glass base material tends to deteriorate.
 LiOは溶融温度を低下させて溶融性を改善する成分であるとともに、分相を促進させる成分である。LiOの含有量は0~20%であり、0.3~15%、特に0.6~10%であることが好ましい。LiOの含有量が多すぎると、逆に分相しにくくなる。 Li 2 O is a component that lowers the melting temperature to improve the meltability and promotes phase separation. The content of Li 2 O is 0-20%, preferably 0.3-15%, particularly 0.6-10%. When the content of Li 2 O is too high, phase separation becomes difficult.
 NaOは溶融温度を低下させて溶融性を改善する成分であるとともに、分相を促進させる成分である。NaOの含有量は0~20%であり、0超~15%、特に4~10%であることが好ましい。NaOの含有量が少なすぎると、上記効果を得にくい。一方、NaOの含有量が多すぎると、逆に分相しにくくなる。 Na 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation. The content of Na 2 O is 0-20%, preferably greater than 0-15%, especially 4-10%. If the content of Na 2 O is too small, it is difficult to obtain the above effects. On the other hand, when the content of Na 2 O is too high, phase separation becomes difficult.
 KOは溶融温度を低下させて溶融性を改善する成分であるとともに、分相を促進させる成分である。また、シリカリッチ相中のZrO含有量を増加させる成分である。そのため、KOを含有させることにより、得られる多孔質ガラス粒子中のZrO含有量が増加し、耐アルカリ性を向上させることができる。KOの含有量は0超~20%、0.3~5%、特に0.5~3%であることが好ましい。KOの含有量が少なすぎると、上記効果を得にくい。一方、KOの含有量が多すぎると、逆に分相しにくくなる。 K 2 O is a component that lowers the melting temperature to improve meltability and promotes phase separation. It is also a component that increases the ZrO2 content in the silica-rich phase. Therefore, by including K 2 O, the content of ZrO 2 in the obtained porous glass particles is increased, and the alkali resistance can be improved. The content of K 2 O is preferably greater than 0 to 20%, preferably 0.3 to 5%, especially 0.5 to 3%. If the content of K 2 O is too small, it will be difficult to obtain the above effects. On the other hand, when the content of K 2 O is too large, phase separation becomes difficult.
 LiO+NaO+KOの含有量は0超~20%、2~15%、4~12%、特に5~10%であることが好ましい。LiO+NaO+KOの含有量が少なすぎると、溶融温度が高くなり、溶融性が低下するおそれがある。また分相しにくくなる。LiO+NaO+KOの含有量が多すぎると、逆に分相しにくくなる。 The content of Li 2 O+Na 2 O+K 2 O is preferably greater than 0 to 20%, 2 to 15%, 4 to 12%, especially 5 to 10%. If the content of Li 2 O+Na 2 O+K 2 O is too small, the melting temperature may increase and the meltability may deteriorate. In addition, phase separation becomes difficult. When the content of Li 2 O+Na 2 O+K 2 O is too large, phase separation becomes difficult.
 KO/(LiO+NaO+KO)は0.1~0.5であり、0.13~0.45、特に0.15~0.4であることが好ましい。KO/(LiO+NaO+KO)が小さすぎると、シリカリッチ相中のZrO含有量を増加させる効果を得にくくなる。一方、KO/(LiO+NaO+KO)が大きすぎると、スピノーダル分相からバイノーダル分相に分相状態が変化したり、分相しなくなる。その結果、所望の連通孔を有する多孔質ガラス粒子を得にくくなる。 K 2 O/(Li 2 O+Na 2 O+K 2 O) is 0.1 to 0.5, preferably 0.13 to 0.45, particularly 0.15 to 0.4. If K 2 O/(Li 2 O+Na 2 O+K 2 O) is too small, it becomes difficult to obtain the effect of increasing the ZrO 2 content in the silica-rich phase. On the other hand, if K 2 O/(Li 2 O+Na 2 O+K 2 O) is too large, the state of phase separation changes from spinodal phase separation to binodal phase separation, or phase separation does not occur. As a result, it becomes difficult to obtain porous glass particles having desired communicating pores.
 NaO/Bは0.1~0.5、0.15~0.45、特に0.2~0.4であることが好ましい。このようにすれば、製造工程において、シリカゲルの水和による膨張量と、シリカリッチ相中からNaOが溶出することによる収縮量のバランスが取れ、多孔質ガラス粒子に割れが発生しにくくなる。 Na 2 O/B 2 O 3 is preferably 0.1-0.5, 0.15-0.45, especially 0.2-0.4. In this way, in the production process, the amount of expansion due to hydration of the silica gel and the amount of shrinkage due to elution of Na 2 O from the silica-rich phase are balanced, and cracks are less likely to occur in the porous glass particles. .
 (LiO+NaO+KO)/Bは0.2~0.5、0.29~0.45、0.31~0.42、特に0.33~0.42であることが好ましい。このようにすれば、製造工程において、シリカゲルの水和による膨張量と、シリカリッチ相中からアルカリ成分が溶出することによる収縮量のバランスが取れ、多孔質ガラス粒子に割れが発生しにくくなる。 (Li 2 O+Na 2 O+K 2 O)/B 2 O 3 should be 0.2-0.5, 0.29-0.45, 0.31-0.42, especially 0.33-0.42 is preferred. In this way, in the manufacturing process, the amount of expansion due to hydration of silica gel and the amount of shrinkage due to elution of alkali components from the silica-rich phase are balanced, and cracks are less likely to occur in the porous glass particles.
 ZrOはガラス母材の耐候性や多孔質ガラス粒子の耐アルカリ性を向上させる成分である。ZrOの含有量は0超~20%であり、2~19%、特に2.5~18%であることが好ましい。ZrOの含有量が少なすぎると、上記効果を得にくい。一方、ZrOの含有量が多すぎると、失透しやすくなるとともに分相しにくくなる。 ZrO 2 is a component that improves the weather resistance of the glass base material and the alkali resistance of the porous glass particles. The content of ZrO 2 is greater than 0-20%, preferably 2-19%, especially 2.5-18%. If the content of ZrO 2 is too small, it is difficult to obtain the above effects. On the other hand, if the content of ZrO 2 is too high, devitrification tends to occur and phase separation becomes difficult.
 Alは多孔質ガラス粒子の耐候性や機械的強度を向上させる成分である。Alの含有量は0~10%であり、0.1~7%、特に1~5%であることが好ましい。Alの含有量が多すぎると、溶融温度が上昇し溶融性が低下しやすくなる。 Al 2 O 3 is a component that improves the weather resistance and mechanical strength of porous glass particles. The content of Al 2 O 3 is 0-10%, preferably 0.1-7%, especially 1-5%. If the content of Al 2 O 3 is too high, the melting temperature tends to rise and the meltability tends to decrease.
 RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種)は、シリカリッチ相中のZrO含有量を増加させる成分である。そのため、ROを含有させることにより、得られる多孔質ガラス粒子中のZrO含有量が増加し、耐アルカリ性を向上させることができる。また、ROは多孔質ガラス粒子の耐候性を向上させる成分である。ROの含有量(MgO、CaO、SrO及びBaOの合量)は0~20%であり、1~17%、3~15%、4~13%、5~12%、特に6.5~12であることが好ましい。ROの含有量が多すぎると、分相しにくくなる。なお、MgO、CaO、SrO及びBaOの含有量は各々0~20%、1~17%、3~15%、4~13%、5~12%、特に6.5~12であることが好ましい。また、MgO、CaO、SrO及びBaOから選択される少なくとも2種の成分を含有させる場合、その合量は0~20%、1~17%、3~15%、4~13%、5~12%、特に6.5~12であることが好ましい。ROのなかで、多孔質ガラス粒子の耐アルカリ性を向上させる効果が特に大きいという点で、CaOを使用することが好ましい。 RO (R is at least one selected from Mg, Ca, Sr and Ba) is a component that increases the ZrO2 content in the silica-rich phase. Therefore, by including RO, the ZrO 2 content in the obtained porous glass particles increases, and the alkali resistance can be improved. Moreover, RO is a component that improves the weather resistance of the porous glass particles. The content of RO (total amount of MgO, CaO, SrO and BaO) is 0-20%, 1-17%, 3-15%, 4-13%, 5-12%, especially 6.5-12 is preferably When the content of RO is too high, phase separation becomes difficult. The contents of MgO, CaO, SrO and BaO are preferably 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13% and 5 to 12%, and particularly preferably 6.5 to 12%. . Further, when containing at least two components selected from MgO, CaO, SrO and BaO, the total amount is 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13%, 5 to 12 %, especially 6.5-12. Among ROs, it is preferable to use CaO because it has a particularly large effect of improving the alkali resistance of the porous glass particles.
 ガラス母材には、上記成分以外にも下記の成分を含有させることができる。 The glass base material can contain the following components in addition to the above components.
 ZnOはシリカリッチ相中のZrO含有量を増加させる成分である。また多孔質ガラス粒子の耐候性を向上させる効果もある。ZnOの含有量は0~20%、0~10%、特に0~3%未満であることが好ましい。ZnOの含有量が多すぎると、分相しにくくなる。 ZnO is a component that increases the ZrO2 content in the silica-rich phase. It also has the effect of improving the weather resistance of the porous glass particles. The content of ZnO is preferably 0-20%, 0-10%, especially 0-3%. If the ZnO content is too high, phase separation will be difficult.
 Pは分相を促進させる成分である。Pの含有量は0~10%、0.01~5%、特に0.05~3%であることが好ましい。Pの含有量が多すぎると、結晶化する恐れがある。 P 2 O 5 is a component that promotes phase separation. The content of P 2 O 5 is preferably 0-10%, 0.01-5%, especially 0.05-3%. If the content of P 2 O 5 is too high, crystallization may occur.
 また、TiO、La、Ta、TeO、Nb、Gd、Y、Eu、Sb、SnO及びBi等を各々15%以下、各々10%以下、特に各々5%以下、合量で30%以下の範囲で含有させてもよい。 Also TiO2 , La2O3 , Ta2O5 , TeO2 , Nb2O5 , Gd2O3 , Y2O3 , Eu2O3 , Sb2O3 , SnO2 and Bi2O3 etc. may be contained in the range of 15% or less each, 10% or less each, particularly 5% or less each, and 30% or less in total.
 上記のガラス組成となるように調合したガラスバッチを、例えば1300~1600℃で2~12時間溶融する。次いで、溶融ガラスをフィルム状等に成形してガラス母材を得た後、当該ガラス母材を粉砕することにより前駆体粒子を得る。なお粉砕後、必要に応じて分級することにより、所望の粒子径を有する前駆体粒子を得ることができる。また、前駆体粒子を火炎研磨することにより球状化してもよい。 A glass batch prepared to have the above glass composition is melted at, for example, 1300 to 1600°C for 2 to 12 hours. Next, after forming the molten glass into a film or the like to obtain a glass base material, the glass base material is pulverized to obtain precursor particles. Precursor particles having a desired particle size can be obtained by classifying the pulverized material as necessary. Alternatively, the precursor particles may be spheroidized by flame polishing.
 次に、得られた前駆体粒子を熱処理し、シリカリッチ相と酸化ホウ素リッチ相の2相に分相(スピノーダル分相)させる。熱処理温度は500~800℃、特に600~780℃であることが好ましい。熱処理温度が高すぎると、前駆体粒子が軟化変形する恐れがある。一方、熱処理温度が低すぎると、前駆体粒子を分相させにくくなる。熱処理時間は1分以上、10分以上、特に30分以上であることが好ましい。熱処理時間が短すぎると、前駆体粒子を分相させにくくなる。熱処理時間の上限は特に限定されないが、長時間熱処理しても分相はある一定以上は進まなくなるため、現実的には180時間以下である。 Next, the obtained precursor particles are heat-treated to cause phase separation (spinodal phase separation) into two phases, a silica-rich phase and a boron oxide-rich phase. The heat treatment temperature is preferably 500 to 800°C, particularly 600 to 780°C. If the heat treatment temperature is too high, the precursor particles may be softened and deformed. On the other hand, if the heat treatment temperature is too low, it becomes difficult to separate the phases of the precursor particles. The heat treatment time is preferably 1 minute or longer, 10 minutes or longer, particularly 30 minutes or longer. If the heat treatment time is too short, it becomes difficult to separate the phases of the precursor particles. Although the upper limit of the heat treatment time is not particularly limited, it is practically 180 hours or less because the phase separation does not progress beyond a certain level even if the heat treatment is performed for a long time.
 なお熱処理を行う際に、前駆体粒子に対し無機ナノ粒子を混合することが好ましい。このようにすれば前駆体粒子同士の融着を抑制することができる。無機ナノ粒子としては、アルミナ微粒子やジルコニア微粒子等が挙げられる。無機ナノ粒子の平均粒子径としては、特に限定されないが、例えば1~100nm、5~50nm、特に10~40nmであるものを使用することが好ましい。無機ナノ粒子の平均粒子径が小さすぎると、凝集しやすくなり、取り扱いが困難になる。一方、無機ナノ粒子の平均粒子径が大きすぎると、前駆体粒子同士の融着を抑制する効果を得にくくなる。 It is preferable to mix inorganic nanoparticles with the precursor particles when performing the heat treatment. By doing so, fusion between the precursor particles can be suppressed. Examples of inorganic nanoparticles include alumina fine particles and zirconia fine particles. Although the average particle size of the inorganic nanoparticles is not particularly limited, it is preferable to use, for example, 1 to 100 nm, 5 to 50 nm, particularly 10 to 40 nm. If the average particle size of the inorganic nanoparticles is too small, they tend to aggregate and become difficult to handle. On the other hand, if the average particle size of the inorganic nanoparticles is too large, it becomes difficult to obtain the effect of suppressing fusion between the precursor particles.
 無機ナノ粒子の添加量は、前駆体粒子100質量部に対して、0.5質量部以上、1質量部以上、特に2質量部以上であることが好ましい。無機ナノ粒子の添加量が少なすぎると、前駆体粒子同士の融着を抑制する効果を得にくくなる。なお、前駆体粒子の粒径が小さい場合は、前駆体粒子同士が融着しやすくなるため、無機ナノ粒子の添加量を多くすることが好ましい。具体的には、無機ナノ粒子の添加量を5質量部以上、10質量部以上、20質量部以上、さらには30質量部以上としてもよい。一方、無機ナノ粒子の添加量の上限は特に限定されないが、多すぎてもさらなる効果を得にくいため、100質量部以下、さらには80質量部以下とすることが好ましい。 The amount of the inorganic nanoparticles to be added is preferably 0.5 parts by mass or more, 1 part by mass or more, particularly 2 parts by mass or more with respect to 100 parts by mass of the precursor particles. If the amount of the inorganic nanoparticles added is too small, it becomes difficult to obtain the effect of suppressing fusion between the precursor particles. In addition, when the particle size of the precursor particles is small, the precursor particles are likely to fuse together, so it is preferable to increase the amount of the inorganic nanoparticles added. Specifically, the amount of inorganic nanoparticles to be added may be 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, or even 30 parts by mass or more. On the other hand, the upper limit of the amount of the inorganic nanoparticles to be added is not particularly limited.
 次に、2相に分相させた前駆体粒子を酸に浸漬させ、酸化ホウ素リッチ相を除去し、多孔質ガラス粒子を得る。酸としては、塩酸や硝酸を用いることができる。なお、これらの酸を混合して用いてもよい。酸の濃度は0.1~5規定、特に0.5~3規定であることが好ましい。酸の浸漬時間は0.1時間以上、特に0.2時間以上であることが好ましい。浸漬時間が短すぎると、エッチングが不十分となり、所望の連続孔を有する多孔質ガラス粒子を得にくくなる。一方、浸漬時間が長すぎると、前駆体粒子が酸に溶解する恐れがあるため、20時間以下、特に10時間以下であることが好ましい。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、エッチングが不十分となり、所望の連続孔を有する多孔質ガラス粒子を得にくくなる。浸漬温度の上限は特に限定されないが、現実的には、99℃以下である。 Next, the precursor particles phase-separated into two phases are immersed in acid to remove the boron oxide-rich phase to obtain porous glass particles. Hydrochloric acid or nitric acid can be used as the acid. In addition, you may mix and use these acids. The concentration of the acid is preferably 0.1 to 5N, more preferably 0.5 to 3N. The acid immersion time is preferably 0.1 hour or longer, particularly 0.2 hour or longer. If the immersion time is too short, etching will be insufficient, making it difficult to obtain porous glass particles having desired continuous pores. On the other hand, if the immersion time is too long, the precursor particles may be dissolved in the acid, so the immersion time is preferably 20 hours or less, particularly 10 hours or less. The immersion temperature is preferably 20° C. or higher, 25° C. or higher, particularly 30° C. or higher. If the immersion temperature is too low, etching will be insufficient, making it difficult to obtain porous glass particles having desired continuous pores. Although the upper limit of the immersion temperature is not particularly limited, it is practically 99° C. or less.
 なお、前駆体粒子を分相させる工程において、前駆体粒子の表面にシリカ含有層(シリカを概ね80モル%以上含有する層)が形成される場合がある。シリカ含有層は酸で除去し難いため、分相後の前駆体粒子の表面にシリカ含有層が形成された際は、フッ酸に短時間浸漬させてシリカ含有層を除去することが好ましい。 In addition, in the step of phase-separating the precursor particles, a silica-containing layer (a layer containing approximately 80 mol % or more of silica) may be formed on the surface of the precursor particles. Since the silica-containing layer is difficult to remove with an acid, when the silica-containing layer is formed on the surface of the precursor particles after phase separation, it is preferably immersed in hydrofluoric acid for a short period of time to remove the silica-containing layer.
 さらに、得られた多孔質ガラス粒子の細孔中に残留するZrOコロイドやSiOコロイドを除去することが好ましい。 Furthermore, it is preferable to remove ZrO 2 colloids and SiO 2 colloids remaining in the pores of the obtained porous glass particles.
 ZrOコロイドは、例えば前駆体粒子を硫酸に浸漬させることで除去することができる。硫酸の濃度は0.1~5規定、特に1~5規定であることが好ましい。硫酸への浸漬時間は0.1時間以上、特に0.2時間以上であることが好ましい。浸漬時間が短すぎると、ZrOコロイドを除去しにくくなる。浸漬時間の上限は特に限定されないが、現実的には20時間以下、さらには10時間以下である。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、ZrOコロイドを除去しにくくなる。浸漬温度の上限は特に限定されないが、現実的には99℃以下である。 ZrO2 colloids can be removed, for example, by soaking the precursor particles in sulfuric acid. The concentration of sulfuric acid is preferably 0.1 to 5N, more preferably 1 to 5N. The immersion time in sulfuric acid is preferably 0.1 hour or longer, particularly 0.2 hour or longer. If the immersion time is too short, it will be difficult to remove the ZrO2 colloid. Although the upper limit of the immersion time is not particularly limited, it is practically 20 hours or less, further 10 hours or less. The immersion temperature is preferably 20° C. or higher, 25° C. or higher, particularly 30° C. or higher. If the soaking temperature is too low, it will be difficult to remove the ZrO2 colloid. Although the upper limit of the immersion temperature is not particularly limited, it is practically 99° C. or less.
 SiOコロイドは、例えば前駆体粒子をアルカリ水溶液に浸漬させることで除去することができる。アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液等を用いることができる。なお、これらのアルカリ水溶液を混合して用いてもよい。アルカリ水溶液への浸漬時間は0.1時間以上、特に0.2時間以上であることが好ましい。浸漬時間が短すぎると、SiOコロイドを除去しにくくなる。浸漬時間の上限は特に限定されないが、現実的には20時間以下、さらには10時間以下である。浸漬温度は15℃以上、特に20℃以上であることが好ましい。浸漬温度が低すぎると、SiOコロイドを除去しにくくなる。浸漬温度の上限は特に限定されないが、現実的には99℃以下である。 SiO2 colloids can be removed, for example, by immersing the precursor particles in an alkaline aqueous solution. As the alkaline aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or the like can be used. In addition, you may mix and use these alkaline aqueous solutions. The immersion time in the alkaline aqueous solution is preferably 0.1 hours or more, particularly 0.2 hours or more. If the immersion time is too short, it will be difficult to remove the SiO2 colloid. Although the upper limit of the immersion time is not particularly limited, it is practically 20 hours or less, further 10 hours or less. The immersion temperature is preferably 15° C. or higher, particularly 20° C. or higher. If the immersion temperature is too low, it will be difficult to remove the SiO2 colloid. Although the upper limit of the immersion temperature is not particularly limited, it is practically 99° C. or less.
 以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described below based on examples, but the present invention is not limited to these examples.
 表1は実施例1~5及び比較例を示す。 Table 1 shows Examples 1 to 5 and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 モル%で、SiO 57.65%、Al 1.7%、B 17%、NaO 6%、KO 0.8%、CaO 9%、ZrO 6%、P 0.15%、TiO 1.7%の組成となるように調合した原料を白金坩堝に入れた後、1500℃で3時間溶融した。原料の溶融に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスを一対の冷却ローラー間に流し出すことによりフィルム状に成形した。得られたフィルム状ガラスをボールミル粉砕した後、空気分級機で分級することにより平均粒子径が30μmのガラス粒子を得た。
(Example 1)
In mol %, SiO2 57.65%, Al2O3 1.7 %, B2O3 17 %, Na2O 6%, K2O 0.8%, CaO 9%, ZrO2 6 %, A raw material prepared to have a composition of 0.15% P 2 O 5 and 1.7% TiO 2 was placed in a platinum crucible and then melted at 1500° C. for 3 hours. When the raw material was melted, it was homogenized by stirring using a platinum stirrer. Then, the molten glass was formed into a film by flowing it between a pair of cooling rollers. The obtained film-like glass was pulverized by a ball mill and then classified by an air classifier to obtain glass particles having an average particle size of 30 μm.
 得られたガラス粒子をテーブルフィーダーで炉内へ供給し、空気バーナーで約1000~3000℃で加熱して軟化流動させることにより球状化した。球状化したガラス粒子100重量部に対し、平均粒子径数十nmのアルミナ微粒子(アエロジル社製)を4重量部添加、混合した後、電気炉にて695℃で12時間熱処理を行うことにより分相させた。次に、分相後のガラス粒子を10質量%のフッ酸に数秒~300秒浸漬した。これにより、分相工程でガラス粒子表面に形成された異質層(シリカリッチ相)を除去した。 The obtained glass particles were fed into the furnace with a table feeder and heated at about 1000 to 3000°C with an air burner to be softened and flowed to be spherical. To 100 parts by weight of spherical glass particles, 4 parts by weight of alumina fine particles (manufactured by Aerosil Co., Ltd.) having an average particle size of several tens of nanometers are added and mixed. made it face Next, the glass particles after phase separation were immersed in 10 mass % hydrofluoric acid for several seconds to 300 seconds. This removed the heterogeneous layer (silica-rich phase) formed on the surface of the glass particles in the phase separation step.
 得られたガラス粒子に対して、以下のようにしてエッチング処理を施した。ガラス粒子を1規定の硝酸(96℃)中に0.5~5時間浸漬した後、イオン交換水で洗浄し、続いて3規定の硫酸(96℃)中に0.5~5時間浸漬した後、イオン交換水で洗浄し、さらに0.5規定の水酸化ナトリウム水溶液(室温)中に0.5~5時間浸漬した後、イオン交換水で洗浄した。このようにして、平均粒子径が30μmの多孔質ガラス粒子を得た。 The resulting glass particles were etched as follows. The glass particles were immersed in 1N nitric acid (96°C) for 0.5 to 5 hours, washed with deionized water, and then immersed in 3N sulfuric acid (96°C) for 0.5 to 5 hours. After that, it was washed with ion-exchanged water, further immersed in a 0.5N sodium hydroxide aqueous solution (room temperature) for 0.5 to 5 hours, and then washed with ion-exchanged water. Thus, porous glass particles having an average particle size of 30 μm were obtained.
 得られた多孔質ガラス粒子をFE-SEM(電界放出形走査電子顕微鏡、日立製作所製SU-8220)で観察したところ、スピノーダル分相に基づいたスケルトン構造を有していた。多孔質ガラス粒子の細孔径は20nm、比表面積は100m/g以上であった。なお、細孔径及び比表面積は以下のようにして測定した。 When the resulting porous glass particles were observed with an FE-SEM (Field Emission Scanning Electron Microscope, SU-8220 manufactured by Hitachi, Ltd.), they had a skeleton structure based on spinodal phase separation. The porous glass particles had a pore diameter of 20 nm and a specific surface area of 100 m 2 /g or more. The pore diameter and specific surface area were measured as follows.
 細孔径は、細孔分布測定装置(アントンパール社製QUADRASORB SI)により測定した。なお、得られた細孔分布の中央値を細孔径とした。 The pore size was measured with a pore distribution measuring device (QUADRASORB SI manufactured by Anton Paar). The median value of the obtained pore size distribution was taken as the pore diameter.
 比表面積は、アントンパール社製QUADRASORB SIを用いて測定した。 The specific surface area was measured using QUADRASORB SI manufactured by Anton Paar.
 多孔質ガラス粒子について、EDX(エネルギー分散型X線分析装置、堀場製作所製EX-370X-Max150)により分析することにより多孔質ガラス粒子の組成を測定した。その結果、多孔質ガラス粒子は、質量%で、SiO 85.1%、Al 2.8%、ZrO 8.8%、P 0.8%、TiO 1.1、NaO 0.4%、KO 0.1%、CaO 0.9%を含有していた。 The porous glass particles were analyzed by EDX (energy dispersive X-ray spectrometer, EX-370X-Max N 150 manufactured by Horiba, Ltd.) to measure the composition of the porous glass particles. As a result, the porous glass particles were, in weight percent, SiO2 85.1%, Al2O3 2.8 %, ZrO2 8.8%, P2O5 0.8 %, TiO2 1.1%. , Na 2 O 0.4%, K 2 O 0.1%, CaO 0.9%.
 得られた多孔質ガラス粒子について、以下のようにして耐アルカリ性を評価した。多孔質ガラス粒子を80℃に保持した0.5規定の水酸化ナトリウム水溶液中に10分間浸漬した。浸漬前後での比表面積当たりの重量減少量は6mg/m未満であり、耐アルカリ性に優れていた(表中には耐アルカリ性の評価として「○」と記載)。 The obtained porous glass particles were evaluated for alkali resistance as follows. The porous glass particles were immersed for 10 minutes in a 0.5N sodium hydroxide aqueous solution maintained at 80°C. The amount of weight loss per specific surface area before and after immersion was less than 6 mg/m 2 , indicating excellent alkali resistance (the evaluation of alkali resistance is indicated by “◯” in the table).
 (実施例2)
 ボールミル粉砕及び空気分級の条件を変更したこと以外、実施例1と同様の方法によりガラス粒子を作製した。これにより、平均粒子径2μmのガラス粒子を得た。その後、実施例1と同様の方法に従い、ガラス粒子の球状化、分相、フッ酸への浸漬、エッチング処理を行うことにより、平均粒子径2μmの多孔質ガラス粒子を得た。ただし、分相工程における熱処理条件は680℃で6時間とし、アルミナ微粒子の添加量は、ガラス粒子100重量部に対して50重量部とした。
(Example 2)
Glass particles were produced in the same manner as in Example 1, except that the conditions for ball milling and air classification were changed. Thereby, glass particles having an average particle size of 2 μm were obtained. After that, according to the same method as in Example 1, the glass particles were sphericalized, phase separated, immersed in hydrofluoric acid, and etched to obtain porous glass particles having an average particle size of 2 μm. However, the heat treatment conditions in the phase separation step were set to 680° C. for 6 hours, and the amount of the alumina fine particles added was set to 50 parts by weight with respect to 100 parts by weight of the glass particles.
 得られた多孔質ガラス粒子をFE-SEMで観察したところ、スピノーダル分相に基づいたスケルトン構造を有していた。多孔質ガラス粒子の細孔径は17nm、比表面積は75m/gであった。多孔質ガラス粒子の組成は表1に示す通りであった。 When the obtained porous glass particles were observed by FE-SEM, they had a skeleton structure based on spinodal phase separation. The porous glass particles had a pore size of 17 nm and a specific surface area of 75 m 2 /g. The composition of the porous glass particles was as shown in Table 1.
 得られた多孔質ガラス粒子について、実施例1と同様にしてアルカリ性を評価したところ、比表面積当たりの重量減少量は6mg/m未満であり、耐アルカリ性に優れていた。 Alkalinity of the resulting porous glass particles was evaluated in the same manner as in Example 1. The amount of weight loss per specific surface area was less than 6 mg/m 2 , indicating excellent alkali resistance.
 (実施例3)
 表1に示す多孔質ガラス母材の組成となるように調合した原料を用いたことと、空気分級の条件を変更したこと以外、実施例1と同様の方法によりガラス粒子を作製した。これにより、平均粒子径15μmのガラス粒子を得た。その後、実施例1と同様の方法に従い、ガラス粒子の球状化、分相、フッ酸への浸漬、エッチング処理を行うことにより、平均粒子径15μmの多孔質ガラス粒子を得た。ただし、アルミナ微粒子の添加量は、ガラス粒子100重量部に対して15重量部とした。
(Example 3)
Glass particles were produced in the same manner as in Example 1, except that raw materials prepared so as to have the composition of the porous glass base material shown in Table 1 were used and the air classification conditions were changed. As a result, glass particles having an average particle size of 15 μm were obtained. After that, according to the same method as in Example 1, the glass particles were sphericalized, phase separated, immersed in hydrofluoric acid, and etched to obtain porous glass particles having an average particle size of 15 μm. However, the amount of the fine alumina particles added was 15 parts by weight with respect to 100 parts by weight of the glass particles.
 得られた多孔質ガラス粒子をFE-SEMで観察したところ、スピノーダル分相に基づいたスケルトン構造を有していた。多孔質ガラス粒子の細孔径は19nm、比表面積は100m/g以上であった。多孔質ガラス粒子の組成は表1に示す通りであった。 When the obtained porous glass particles were observed by FE-SEM, they had a skeleton structure based on spinodal phase separation. The porous glass particles had a pore diameter of 19 nm and a specific surface area of 100 m 2 /g or more. The composition of the porous glass particles was as shown in Table 1.
 得られた多孔質ガラス粒子について、実施例1と同様にしてアルカリ性を評価したところ、比表面積当たりの重量減少量は6mg/m未満であり、耐アルカリ性に優れていた。 Alkalinity of the resulting porous glass particles was evaluated in the same manner as in Example 1. The amount of weight loss per specific surface area was less than 6 mg/m 2 , indicating excellent alkali resistance.
 (実施例4)
 表1に示す多孔質ガラス母材の組成となるように調合した原料を用いたことと、空気分級の条件を変更したこと以外、実施例1と同様の方法によりガラス粒子を作製した。これにより、平均粒子径5μmのガラス粒子を得た。その後、実施例1と同様の方法に従い、ガラス粒子の球状化、分相、フッ酸への浸漬、エッチング処理を行うことにより、平均粒子径5μmの多孔質ガラス粒子を得た。ただし、アルミナ微粒子の添加量は、ガラス粒子100重量部に対して25重量部とした。
(Example 4)
Glass particles were produced in the same manner as in Example 1, except that raw materials prepared so as to have the composition of the porous glass base material shown in Table 1 were used and the air classification conditions were changed. Thereby, glass particles having an average particle size of 5 μm were obtained. After that, according to the same method as in Example 1, the glass particles were sphericalized, phase separated, immersed in hydrofluoric acid, and etched to obtain porous glass particles having an average particle size of 5 μm. However, the amount of the fine alumina particles added was 25 parts by weight with respect to 100 parts by weight of the glass particles.
 得られた多孔質ガラス粒子をFE-SEMで観察したところ、スピノーダル分相に基づいたスケルトン構造を有していた。多孔質ガラス粒子の細孔径は21nm、比表面積は100m/g以上であった。多孔質ガラス粒子の組成は表1に示す通りであった。 When the obtained porous glass particles were observed by FE-SEM, they had a skeleton structure based on spinodal phase separation. The porous glass particles had a pore diameter of 21 nm and a specific surface area of 100 m 2 /g or more. The composition of the porous glass particles was as shown in Table 1.
 得られた多孔質ガラス粒子について、実施例1と同様にしてアルカリ性を評価したところ、比表面積当たりの重量減少量は6mg/m未満であり、耐アルカリ性に優れていた。 Alkalinity of the resulting porous glass particles was evaluated in the same manner as in Example 1. The amount of weight loss per specific surface area was less than 6 mg/m 2 , indicating excellent alkali resistance.
 (実施例5)
 表1に示す多孔質ガラス母材の組成となるように調合した原料を用いたことと、空気分級の条件を変更したこと以外、実施例1と同様の方法によりガラス粒子を作製した。これにより、平均粒子径5μmのガラス粒子を得た。その後、実施例1と同様の方法に従い、ガラス粒子の球状化、分相、フッ酸への浸漬、エッチング処理を行うことにより、平均粒子径5μmの多孔質ガラス粒子を得た。アルミナ微粒子の添加量は、ガラス粒子100重量部に対して25重量部とした。
(Example 5)
Glass particles were produced in the same manner as in Example 1, except that raw materials prepared so as to have the composition of the porous glass base material shown in Table 1 were used and the air classification conditions were changed. Thereby, glass particles having an average particle diameter of 5 μm were obtained. After that, according to the same method as in Example 1, the glass particles were sphericalized, phase separated, immersed in hydrofluoric acid, and etched to obtain porous glass particles having an average particle size of 5 μm. The amount of the fine alumina particles added was 25 parts by weight with respect to 100 parts by weight of the glass particles.
 得られた多孔質ガラス粒子をFE-SEMで観察したところ、スピノーダル分相に基づいたスケルトン構造を有していた。多孔質ガラス粒子の細孔径は18nm、比表面積は100m/g以上であった。多孔質ガラス粒子の組成は表1に示す通りであった。 When the obtained porous glass particles were observed by FE-SEM, they had a skeleton structure based on spinodal phase separation. The porous glass particles had a pore diameter of 18 nm and a specific surface area of 100 m 2 /g or more. The composition of the porous glass particles was as shown in Table 1.
 得られた多孔質ガラス粒子について、実施例1と同様にしてアルカリ性を評価したところ、比表面積当たりの重量減少量は6mg/m未満であり、耐アルカリ性に優れていた。 Alkalinity of the resulting porous glass particles was evaluated in the same manner as in Example 1. The amount of weight loss per specific surface area was less than 6 mg/m 2 , indicating excellent alkali resistance.
 (比較例)
 比較例として市販の多孔質シリカビーズを準備した。当該多孔質シリカビーズの平均粒子径は50μm、細孔径は5.6nm、比表面積は670m/gであり、組成は、質量%で、SiO 98.9%、Al 1.1%であった。また、FE-SEMで観察したところ、スピノーダル分相に基づいたスケルトン構造を有していた。
(Comparative example)
As a comparative example, commercially available porous silica beads were prepared. The porous silica beads have an average particle diameter of 50 μm, a pore diameter of 5.6 nm, a specific surface area of 670 m 2 /g, and a composition, in mass %, of SiO 2 98.9% and Al 2 O 3 1.1. %Met. Further, when observed by FE-SEM, it had a skeleton structure based on spinodal phase separation.
 上記多孔質シリカビーズについて、実施例1と同様にしてアルカリ性を評価したところ、水酸化ナトリウム水溶液に全溶解し、耐アルカリ性が非常に劣っていた(表中には耐アルカリ性の評価として「×」と記載)。 When the alkalinity of the porous silica beads was evaluated in the same manner as in Example 1, they were completely dissolved in an aqueous sodium hydroxide solution, and the alkali resistance was very poor. described).
 本発明の多孔質ガラス粒子は、カラム充填剤以外にも、抗菌剤や抗ウイルス剤の担体材料として利用することができる。 The porous glass particles of the present invention can be used as carrier materials for antibacterial agents and antiviral agents in addition to column packing.

Claims (12)

  1.  ガラス組成としてZrOを含有することを特徴とする多孔質ガラス粒子。 Porous glass particles, characterized in that they contain ZrO2 as the glass composition.
  2.  質量%で、ZrOを1%以上含有することを特徴とする請求項1に記載の多孔質ガラス粒子。 2. Porous glass particles according to claim 1, characterized in that they contain 1% or more of ZrO2 in mass %.
  3.  さらに質量%で、SiO 50~99%、NaO 0~15%、KO 0~10%、P 0~10%、Al 0超~20%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有することを特徴とする請求項2に記載の多孔質ガラス粒子。 Further, in mass %, SiO 2 50-99%, Na 2 O 0-15%, K 2 O 0-10%, P 2 O 5 0-10%, Al 2 O 3 0-20%, and RO (R is at least one selected from Mg, Ca, Sr and Ba).
  4.  細孔径が10~50nmであることを特徴とする請求項1~3のいずれか一項に記載の多孔質ガラス粒子。 The porous glass particles according to any one of claims 1 to 3, characterized by having a pore diameter of 10 to 50 nm.
  5.  平均粒子径が0.1~100μmであることを特徴とする請求項1~4のいずれか一項に記載の多孔質ガラス粒子。 The porous glass particles according to any one of claims 1 to 4, characterized by having an average particle size of 0.1 to 100 µm.
  6.  比表面積が10m/g以上であることを特徴とする請求項1~5のいずれか一項に記載の多孔質ガラス粒子。 The porous glass particles according to any one of claims 1 to 5, which have a specific surface area of 10 m 2 /g or more.
  7.  略球状であることを特徴とする請求項1~6のいずれか一項に記載の多孔質ガラス粒子。 The porous glass particles according to any one of claims 1 to 6, which are substantially spherical.
  8.  カラム充填材または多孔質担体材料として使用されることを特徴とする請求項1~7のいずれか一項に記載の多孔質ガラス粒子。 The porous glass particles according to any one of claims 1 to 7, which are used as a column packing material or a porous carrier material.
  9.  請求項1~8のいずれか一項に記載の多孔質ガラス粒子を製造するための方法であって、
     ガラス母材を粉砕することにより前駆体粒子を得る工程、及び、
     前記前駆体粒子を熱処理して2相に分相させた後、一方の相を酸で除去する工程、
    を備えることを特徴とする多孔質ガラス粒子の製造方法。
    A method for producing porous glass particles according to any one of claims 1 to 8,
    obtaining precursor particles by pulverizing a glass base material; and
    a step of heat-treating the precursor particles to separate them into two phases, and then removing one of the phases with an acid;
    A method for producing porous glass particles, comprising:
  10.  さらに、前記前駆体粒子を火炎研磨することにより球状化する工程を含むことを特徴とする請求項9に記載の多孔質ガラス粒子の製造方法。 The method for producing porous glass particles according to claim 9, further comprising a step of spheroidizing the precursor particles by flame polishing.
  11.  前記熱処理を行う際に、前記前駆体粒子に対し無機ナノ粒子を混合することを特徴とする請求項9または10に記載の多孔質ガラス粒子の製造方法。 The method for producing porous glass particles according to claim 9 or 10, characterized in that inorganic nanoparticles are mixed with the precursor particles when performing the heat treatment.
  12.  前記ガラス母材が、モル%で、SiO 40~80%、B 0超~40%、LiO 0~20%、NaO 0~20%、KO 0~20%、P 0~2%、ZrO 0超~20%、Al 0~10%、及び、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有することを特徴とする請求項9~11のいずれか一項に記載の多孔質ガラス粒子の製造方法。 The glass base material contains, in mol %, SiO 2 40-80%, B 2 O 3 0-40%, Li 2 O 0-20%, Na 2 O 0-20%, K 2 O 0-20% , P 2 O 5 0 to 2%, ZrO 2 more than 0 to 20%, Al 2 O 3 0 to 10%, and RO (R is at least one selected from Mg, Ca, Sr and Ba) 0 to 12. The method for producing porous glass particles according to any one of claims 9 to 11, wherein the content is 20%.
PCT/JP2022/029934 2021-08-12 2022-08-04 Porous glass particles and method for manufacturing same WO2023017772A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021131570 2021-08-12
JP2021-131570 2021-08-12
JP2022102356A JP2023026324A (en) 2021-08-12 2022-06-27 Porous glass particle and method for producing the same
JP2022-102356 2022-06-27

Publications (1)

Publication Number Publication Date
WO2023017772A1 true WO2023017772A1 (en) 2023-02-16

Family

ID=85200506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029934 WO2023017772A1 (en) 2021-08-12 2022-08-04 Porous glass particles and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2023017772A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033231A (en) * 1983-08-03 1985-02-20 Fuji Debuison Kagaku Kk Preparation of spherical porous glass
JP2019000764A (en) * 2017-06-12 2019-01-10 株式会社環境レジリエンス Cesium strontium adsorbent, manufacturing method therefor, and adsorption removal system using the same
WO2021095544A1 (en) * 2019-11-11 2021-05-20 日本電気硝子株式会社 Porous glass member production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033231A (en) * 1983-08-03 1985-02-20 Fuji Debuison Kagaku Kk Preparation of spherical porous glass
JP2019000764A (en) * 2017-06-12 2019-01-10 株式会社環境レジリエンス Cesium strontium adsorbent, manufacturing method therefor, and adsorption removal system using the same
WO2021095544A1 (en) * 2019-11-11 2021-05-20 日本電気硝子株式会社 Porous glass member production method

Similar Documents

Publication Publication Date Title
KR101266223B1 (en) Glass composition and process for producing glass composition
JP5318748B2 (en) Anodic bonding glass
JP5444846B2 (en) Glass plate for display device
JP5413562B2 (en) Sealing material
JP5267464B2 (en) Method for producing alkali-free glass
CA2216116C (en) Acid-resistant glass
JPS641415B2 (en)
JPH1059741A (en) Non-alkali glass and its production
JP3861271B2 (en) Alkali-free glass and method for producing the same
JP2007332018A (en) Bismuth-based sealing material and bismuth-based paste material
JPH1129344A (en) Ultrafine glass fiber
WO2021095544A1 (en) Porous glass member production method
JP3861272B2 (en) Alkali-free glass and method for producing the same
JP7280547B2 (en) Method for manufacturing porous glass member
JPH07257937A (en) Glass composition
WO2023017772A1 (en) Porous glass particles and method for manufacturing same
JP2023026324A (en) Porous glass particle and method for producing the same
JP5545589B2 (en) Manufacturing method of sealing material
JP2002187735A (en) Optical glass for mold press forming
JPS6270245A (en) Optical fiber having environmental resistance
JP7168901B2 (en) Method for manufacturing porous glass member
JP7425400B2 (en) Method for manufacturing porous glass member
JP7303480B2 (en) porous glass member
JP5026121B2 (en) Antimony phosphate glass composition
WO2021095545A1 (en) Method for producing porous glass member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE