JPS6033231A - Preparation of spherical porous glass - Google Patents

Preparation of spherical porous glass

Info

Publication number
JPS6033231A
JPS6033231A JP14223183A JP14223183A JPS6033231A JP S6033231 A JPS6033231 A JP S6033231A JP 14223183 A JP14223183 A JP 14223183A JP 14223183 A JP14223183 A JP 14223183A JP S6033231 A JPS6033231 A JP S6033231A
Authority
JP
Japan
Prior art keywords
glass
porous glass
spherical porous
treated
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14223183A
Other languages
Japanese (ja)
Other versions
JPH0261423B2 (en
Inventor
Kazutaka Nobuhara
一敬 信原
Mikio Kato
加藤 幹男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI DEBUISON KAGAKU KK
Fuji-Davison Chemical Ltd
Original Assignee
FUJI DEBUISON KAGAKU KK
Fuji-Davison Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI DEBUISON KAGAKU KK, Fuji-Davison Chemical Ltd filed Critical FUJI DEBUISON KAGAKU KK
Priority to JP14223183A priority Critical patent/JPS6033231A/en
Publication of JPS6033231A publication Critical patent/JPS6033231A/en
Publication of JPH0261423B2 publication Critical patent/JPH0261423B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare fine spherical porous glass by pulverizing glass contg. Na2O and B2O3, classfying the pulverized glass to specified size, heat-treating together with inorg. powder to spheroidize the glass and to separate the phases, and further treating with solution. CONSTITUTION:Na2O-SiO2 glass, Na2O-B2O3-SiO2 glass, or other glass contg. Na2O or B2O3 is prepd. by melting and then solidified by cooling. The pulverized glass after classifying and collecting 20-50mu particle size with a classifier is mixed with inorg. powder such as pulverous silica, carbon black, alumina, TiO2, etc. The mixture is heat-treated at 600-800 deg.C, and welding of semi-molten glass powder is prevented by the presence of said inorg. powder, and the glass powder is spheroidized by its surface tension, and the constitution of the glass is separated to different phases. The product is treated with HF previously to remove the thin SiO2 layer then treated with acidic or alkaline liquid to dissolved and remove the phase rich in Na2O and B2O3. Spherical porous glass is thus prepd.

Description

【発明の詳細な説明】 本発明は球状の多孔性ガラスを製造1°る方法に係わる
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing spherical porous glass.

多孔性ガラスはシャープな細孔径分布を有し、比表面積
の−大きい無機質の機能性多孔質材料として各種吸着材
、触媒担体、固定化酵素用担体、ゲル・パーミェーショ
ンクロマトグラフィー川充填材、C1化学における生成
ガスの分ms用材料など用途分野の極めて広いものであ
る。
Porous glass has a sharp pore size distribution and is used as an inorganic functional porous material with a large specific surface area, such as various adsorbents, catalyst carriers, carriers for immobilized enzymes, and packing materials for gel permeation chromatography. It has an extremely wide range of applications, including materials for minute ms of generated gas in C1 chemistry.

多孔性ガラスの1!造方法は、例えば米国性「1221
.5039、米国特許3843341、特開昭57−1
40334号等に記載されているが、基本的には1.原
料の混合溶融による基礎ガラスの製造、2.ガラス組織
の分相化のための熱処理、3.820a分またはNa2
Oリッチな水可溶性層または酸可溶性層を除去して3i
 02リツチな層を多孔性骨格として残ずための熱水ま
たは酸液またはアルカリ液などによる溶液処理、4.水
洗乾燥処理、の各行程からなっている。上記の方法によ
り得られた多孔性ガラスは一般に形状が破砕型である。
Porous glass 1! The manufacturing method is, for example, American "1221
.. 5039, U.S. Patent No. 3,843,341, JP-A-57-1
Although it is described in No. 40334 etc., basically 1. Production of basic glass by mixing and melting raw materials; 2. Heat treatment for phase separation of glass structure, 3.820a min or Na2
3i by removing O-rich water-soluble layer or acid-soluble layer
02 Solution treatment with hot water, acid solution, alkaline solution, etc. to leave the rich layer as a porous skeleton; 4. The process consists of washing with water and drying. The porous glass obtained by the above method is generally crushed in shape.

破砕型の多孔性ガラスは、例えば吸着カラムなどに充填
して使用した場合、圧損が大きいとか、強度が弱い等の
欠点がある。しかして、このような問題は、破砕型の多
孔性ガラスよりも圧損が少なく、強度も高い球状型の多
孔性ガラスを用いることによるで解消できるものである
。球状型の多孔性ガラスを得るには、例えば、一般の球
状ガラスを製造する方法を適用できる。例えば11II
II1以上のものについては回転炉中に破砕ガラスをコ
ークスとともに投入する方法、111m以下のものにつ
いては、燃焼炎中に破砕ガラスを投入し、燃焼廃ガスと
共に捕集する方法等である。しかし、この球状化は、前
記多孔性ガラスの製造工程のうち、基礎ガラスを熱処理
する前で行なうことが必要でそのための特別の装置も設
置しなければならない。
When crushed porous glass is used, for example, in an adsorption column, it has drawbacks such as large pressure loss and low strength. However, such problems can be solved by using spherical porous glass, which has less pressure loss and higher strength than crushed porous glass. In order to obtain spherical porous glass, for example, a method for manufacturing general spherical glass can be applied. For example, 11II
For furnaces of II1 or higher, there is a method in which crushed glass is thrown into a rotary furnace together with coke, and for furnaces of 111 m or less, there is a method in which crushed glass is thrown into a combustion flame and collected together with combustion waste gas. However, this spheroidization must be carried out before the base glass is heat treated in the porous glass manufacturing process, and special equipment must be installed for this purpose.

本発明は叙上のような事情に鑑み種々検討の結果、達成
されたもので、基礎ガラスの熱処理による分相化工程で
、特殊な添加剤を存在させることによって、熱処理と球
状化とを一挙に行なう効率のよい球状の多孔性ガラスの
製造法を提供するものである。即ち、本発明は、多孔性
ガラス生成原料を混合溶融して得られた基礎ガラスを熱
処理し、組織を分相化したのち、酸液処理、熱水処理、
アルカリ液処理等の溶液処理を施して球状の多孔性ガラ
スを製造するに当り、前記熱処理を無機質粉体の存在下
に行なう球状多孔性ガラスの製造方法を要旨とするもの
である。
The present invention was achieved as a result of various studies in view of the above-mentioned circumstances.The present invention has been achieved as a result of various studies in view of the above-mentioned circumstances.In the phase separation step by heat treatment of the basic glass, by making a special additive exist, heat treatment and spheroidization can be carried out at once. The present invention provides an efficient method for manufacturing spherical porous glass. That is, in the present invention, a basic glass obtained by mixing and melting raw materials for forming porous glass is heat-treated to phase-separate the structure, and then subjected to acid solution treatment, hot water treatment,
The gist of this invention is a method for producing spherical porous glass in which the heat treatment is carried out in the presence of inorganic powder when producing spherical porous glass by solution treatment such as alkaline solution treatment.

以下、本発明を更に詳細に説明すると、本発明方法によ
って得られる球状の多孔性ガラスは原料の基本組成が例
えば、Na2O−8i02系、Na 2O−B2011
−8t 02系、NazO−820a−AizOa−8
i Oz系、Na20−CaO−B20a−A文20B
−8iO2系、Na20−P20x−8i Oz系、N
az−820s−CeO2・3Nbz06等からなるも
のである。
Hereinafter, the present invention will be explained in more detail. The spherical porous glass obtained by the method of the present invention has a basic composition of raw materials such as Na2O-8i02 system, Na2O-B2011
-8t 02 series, NazO-820a-AizOa-8
i Oz system, Na20-CaO-B20a-A sentence 20B
-8iO2 system, Na20-P20x-8i Oz system, N
It is made of az-820s-CeO2.3Nbz06 or the like.

多孔性ガラスは上記のような組成からなる原料を電気、
重油、ガス等を加熱源とする、電気通電加熱か、間接加
熱炉などで加熱して得られた溶融混合物である。基礎ガ
ラスを破砕した粒子状で熱処理条件、例えば650〜7
50℃に12〜24時間保持して処理し、基礎ガラスの
組織を酸液又は熱水に可溶性のNazOまたはB20B
系を主成分とする相とそれ以外の系を主成分とする相と
に分相化させ、酸液又は熱水等を用いて溶液処理し、可
溶成分相を溶出させることによって、ガラス組織内に細
孔を形成させ、多孔性ガラスとするものである。本発明
方法は、゛前記基礎ガラスの熱処理中において、基礎ガ
ラスが半溶融状となり、尚、かつその状−態で細砕粒子
が独立して存在していれば、ガラスの細砕粒子自体の表
面張力により、容易に球状化現象が起こり、生成した球
状粒子同志は無機質粉体が存在しておれば互いに接触し
て溶着を起こすことなくその形態が保持され球状の多孔
性ガラスが得られるとの知見に基づき到達したものであ
る。ここで無機質粉体は基礎ガラスの熱処理温度で・分
解または溶融せず、かつ、ガラスと化学反応、または共
融しないものが好ましい。さらに、熱処理後におけるふ
るい、水簸分級器、風簸分級器等を用いる分離操作で、
ガラスと容易に分別できるようなガラスとは比重、粒度
の異なるものが好適である。このような物性条件を備え
た無機質粉体の代表例としては、微粉末シリカ、カーボ
ンブラック、粉末アルミナ、酸化チタン等を挙げること
ができる。
Porous glass is made by using raw materials with the above composition as electricity.
It is a molten mixture obtained by heating with an electric current or an indirect heating furnace using heavy oil, gas, etc. as a heating source. The base glass is crushed into particles and the heat treatment conditions are e.g. 650-7.
The structure of the base glass is treated by maintaining it at 50°C for 12 to 24 hours, and the structure of the base glass is treated with NazO or B20B, which is soluble in acid solution or hot water.
The glass structure is created by dividing the phase into a phase mainly composed of the system and a phase mainly composed of other systems, and then solution-treated with an acid solution or hot water to elute the soluble component phase. Porous glass is created by forming pores inside the glass. In the method of the present invention, if the base glass becomes semi-molten during the heat treatment of the base glass, and the finely divided particles exist independently in that state, the finely divided glass particles themselves Spheroidization easily occurs due to surface tension, and if inorganic powder is present, the formed spherical particles will come into contact with each other and maintain their shape without causing welding, resulting in a spherical porous glass. This was reached based on the knowledge of Here, the inorganic powder is preferably one that does not decompose or melt at the heat treatment temperature of the base glass, and does not chemically react or eutectic with the glass. Furthermore, separation operations using sieves, elutriation classifiers, elutriation classifiers, etc. after heat treatment,
It is preferable to use a material that has a specific gravity and particle size different from that of glass and can be easily separated from glass. Representative examples of inorganic powders having such physical property conditions include finely powdered silica, carbon black, powdered alumina, and titanium oxide.

熱処理に付される基礎ガラスは通常約1011Il以下
の粗砕粒体であるが、本発明方法により球状の多孔性ガ
ラスを得るには、熱処理前にさらに一定の粒径となるよ
うに細砕し分級しておくことが望ましい。それは、熱処
理前に、基礎カラスの粒径を一定範囲に細砕、および分
級調節をしておくことによって、高収率で、シャープな
粒度分布を有する球状多孔性ガラスを得ることが可能で
あるからである。熱処理前の基礎ガラスの粉砕には、一
般のガラス、セラミック、岩石等の粉砕に用いられる粉
砕機が使用可能であり1.例えば粗砕に当っては、公知
のショークラッシャーミル、ローラーミル等が適用され
、また細砕に当っては、ボールミル、振動ボールミル、
流体エネルギーミル等が適用される。しかして、粉砕粒
径は1mm以下、好ましくは100μ以下とすることが
望ましい。また、本発明方法は静置式により熱処理を行
なうので、1〜5μ程度の微粒子のものについても一般
のガラスの球状化の場合のような捕集ロスがほとんどな
しに熱処理と球状化とを同時に行なうことができる。
The basic glass subjected to heat treatment is usually coarsely crushed particles of about 1011 Il or less, but in order to obtain spherical porous glass by the method of the present invention, it must be further finely crushed and classified to a constant particle size before heat treatment. It is desirable to keep it. It is possible to obtain spherical porous glass with a sharp particle size distribution in high yield by pulverizing the particle size of the basic glass to a certain range and adjusting the classification before heat treatment. It is from. For crushing the basic glass before heat treatment, a crusher used for crushing general glass, ceramics, rocks, etc. can be used.1. For example, for coarse crushing, known show crusher mills, roller mills, etc. are used, and for fine crushing, ball mills, vibrating ball mills,
Fluid energy mill etc. are applied. Therefore, it is desirable that the pulverized particle size be 1 mm or less, preferably 100 μm or less. In addition, since the method of the present invention performs heat treatment by a static method, heat treatment and spheroidization can be performed simultaneously even for particles of about 1 to 5 μm, with almost no collection loss as in the case of spheronization of general glass. be able to.

さらに上記のように粉砕した基礎ガラスを粒径毎に分級
するには、例えば金あみによる篩、重力分級器、遠心分
級器、慣性分級器のような公知のJIIjlii分級器
、仝流分綴器、表面流分級器、クチ11−ド渦分級板器
のような公知の水簸分級器を使用する分a法、その他各
種の篩別装置による分級法等が挙げられる。本発明方法
は、熱処理前に上記のように予め精砕分級された基礎ガ
ラスを熱処理してガラス組織を分相化するに当り、同時
に無機質粉体を存在させることを特徴とするものである
Furthermore, in order to classify the ground base glass according to particle size as described above, a known JII classifier such as a gold wire sieve, a gravity classifier, a centrifugal classifier, an inertial classifier, or a flow classifier can be used. , a surface flow classifier, a classification method using a known elutriation classifier such as a Kuchi 11-de vortex classifier, and a classification method using various other sieving devices. The method of the present invention is characterized in that when the base glass, which has been refined and classified in advance as described above, is heat-treated to phase-separate the glass structure before heat treatment, an inorganic powder is present at the same time.

ここで、無機質粉体としては、基礎ガラスの熱処理条件
下で、分解または溶融せず、かつ、ガラスと化学反応、
または、共融しないものが好ましい。さらに、熱処理後
におけるふるい、水簸分級器、風簸分級器等を用いた分
離操作でガラスと容易に分別できるもので、ガラスとは
比重、粒度の異なるものが好適である。このような物性
条件を備えた無機質粉体の代表例としては、微粉末シリ
カ、カーボンブラック、粉末アルミナ、酸化チタン等が
挙げられる。このなかでも混合物の比重が大きい場合は
、熱処理分相化条件下で重力によってガラスの粒子が偏
平状となるため、嵩比重が大きく、疑球状の粉体が好ま
しい。このことから、無機質粉体の好適例としては、微
粉末シリカ、カーボンブラックであるが、カーボンブラ
ックはガラス表面が黒く着色し、その着色を除くのに再
熱処理を行なわねばならず厄介である。従って、本発明
方法に用いる無機質粉体としては、微粉末シリカが最適
である。しかして、微粉末シリカとしては、アエロジル
のような気相法で製造されるもの、ホワイトカーボンの
ように溶液からの沈降法で製造されるもの、シリカゲル
を細砕して製3!8れるものなどいずれも適用可能であ
る。但し、含水量の大きいものは熱処理中に水分を放出
し、ガラス成分中の硼酸と共滞を生じるので、使用前に
予め熱処理して脱水することが望ましい。またNa1に
等の不純物の多い微粉末けい酸は熱処理中に、ガラス化
するので、予め酸処理して不純物を除くことが望ましい
Here, the inorganic powder is one that does not decompose or melt under the heat treatment conditions of the base glass, and that does not react chemically with the glass.
Alternatively, one that is not eutectic is preferred. Furthermore, it is preferable to use a material that can be easily separated from glass by a separation operation using a sieve, elutriation classifier, elutriation classifier, etc. after heat treatment, and has a different specific gravity and particle size from glass. Representative examples of inorganic powders having such physical properties include finely powdered silica, carbon black, powdered alumina, and titanium oxide. Among these, when the specific gravity of the mixture is high, the glass particles become flat due to gravity under heat treatment phase separation conditions, so a pseudospherical powder with a high bulk specific gravity is preferable. From this, preferred examples of inorganic powders include finely powdered silica and carbon black, but carbon black colors the glass surface black and requires reheating to remove the coloration, which is troublesome. Therefore, fine powder silica is most suitable as the inorganic powder used in the method of the present invention. Therefore, as fine powder silica, there are those manufactured by a gas phase method such as Aerosil, those manufactured by a precipitation method from a solution such as White Carbon, and those manufactured by crushing silica gel. All of these are applicable. However, if the glass has a high water content, it will release water during heat treatment and co-resist with the boric acid in the glass component, so it is desirable to heat-treat and dehydrate it before use. Further, since finely powdered silicic acid containing many impurities such as Na1 is vitrified during heat treatment, it is desirable to perform acid treatment in advance to remove impurities.

基礎ガラスを熱処理するに当り、細砕された基礎ガラス
と上記の無機質粉体とは、公知の混合器、例えば■型混
合器により混合される。基礎ガラスと無機質粉体との混
合割合は、細砕された基礎ガラスの粒度、無機質粉体の
粒度、嵩比重等の物性によって異なる。基礎ガラスの混
合割合が多いと、形成された球状のガラス粒子同志が接
触して、連結した形の球状ガラスとなり好ましくなく、
反対に無機質粉体の混合割合が多いと、球状ガラスの生
成率が低下してこれ又好ましくない。従って、予め小規
模試論によって最適混合割合を決定する必要がある;ま
た細砕された基礎ガラスは熱処理により、球状化して粒
径が変わるので、目的とする粒径の多孔性ガラスを得る
ためには予め熱処理後におけるガラスの粒径と熱処理前
における細砕された基礎ガラスの粒径との関係を予め調
査しておき、この結果に基づいて、細砕された基礎ガラ
スの粒径を選定することが必要である。無機質粉体の存
在下における基礎ガラスの熱処理寸なわら、ガラス組織
の分相化とこれと同時進行する球状化は、細砕した基礎
ガラスと*It機質粉質粉体混合物を炉に入れ、例えば
600〜800℃の温度を2〜48時間保持することよ
って完了する。しかして、先に述べたように、細砕分級
された基礎ガラスの熱処理中において、基礎ガラスが半
分溶融状となり、尚、かつ、その状態で、細砕粒子が独
立して存在していれば、その細砕粒子自体の表面張力に
より、容易に球状化現象が起こり、生成した球状粒子同
志は無機質粉体の存在により、互いに接触して融着を起
こすことなく、その形態が個々に保持され、組織が分相
化された球状のガラスが得られるのである。
When heat-treating the base glass, the pulverized base glass and the above-mentioned inorganic powder are mixed using a known mixer, for example, a type 2 mixer. The mixing ratio of the basic glass and the inorganic powder varies depending on the particle size of the finely ground basic glass, the particle size of the inorganic powder, and physical properties such as bulk specific gravity. If the mixing ratio of the base glass is too high, the formed spherical glass particles will come into contact with each other, forming a connected spherical glass, which is undesirable.
On the other hand, if the mixing ratio of the inorganic powder is large, the production rate of spherical glass will decrease, which is also undesirable. Therefore, it is necessary to determine the optimal mixing ratio in advance through small-scale experiments; in addition, since the finely ground basic glass becomes spherical and changes in particle size through heat treatment, in order to obtain porous glass with the desired particle size, In this method, the relationship between the particle size of the glass after heat treatment and the particle size of the pulverized base glass before heat treatment is investigated in advance, and the particle size of the pulverized base glass is selected based on this result. It is necessary. During the heat treatment of the base glass in the presence of inorganic powder, phase separation of the glass structure and simultaneous spheroidization occur when a mixture of the pulverized base glass and *It organic powder is placed in a furnace. , for example, by maintaining a temperature of 600 to 800° C. for 2 to 48 hours. Therefore, as mentioned above, during the heat treatment of the finely classified basic glass, if the basic glass becomes half molten, and in that state, the finely divided particles exist independently. Due to the surface tension of the pulverized particles themselves, spheroidization easily occurs, and due to the presence of the inorganic powder, the formed spherical particles maintain their individual shapes without coming into contact with each other and causing fusion. , a spherical glass with a phase-separated structure can be obtained.

上記のような熱処理により、生成した組織の分相化され
IC球状ガラスは、熱処理の際、同時に存在させた無機
質粉体を分離する必要がある。その分離装置としては、
先に述べた金あみ篩、風簸分級器、水簸分級器等が用い
られる。
In the IC spherical glass whose structure is phase-separated by the heat treatment as described above, it is necessary to separate the inorganic powder present at the same time during the heat treatment. The separation device is
The metal sieve, air elutriation classifier, water elutriation classifier, etc. mentioned above are used.

無機質粉体の分離され、分相化された球状のガラスは、
次に組織中の酸液、−熱水等に可溶なNa2Oや820
i成分を主体とする相を酸液、熱水等による溶液に溶出
させて組織中に細孔を形成させ、また、酸液処理により
副生じ、−皿形成された細孔を閉塞するコロイド状シリ
カを除去するためにアルカリ液による溶液処理をして、
球状の多孔性ガラスとされる。以上の溶液処理を行なう
に当っては、熱処理を施して組織の分相化された球状の
ガラスを予め、弗化水素酸で表面処理するのが好ましい
。その理由は、該球状のガラスが熱処理中、空気と触れ
て、表面の硼酸の一部が蒸発し、表面に珪酸質の多い層
が形成されて、溶液処理が円滑に行われないので、その
珪酸質を溶解させる必要があるためである。溶液処理に
用いられる酸類としては80文、HN O8、+12 
S Oaのような無側り酢酸、劃り蓚酸のような有機酸
が挙げられる。酸液、アルカリ液による溶液処理は、例
えば50℃以上の加温下に行なうのがよい。また、酸液
処理は数回のバッチ処理で酸液を何回かに分けて入れ替
えるようにした方が、コロイド状シリカの副生が少なく
、処理効率がよい。アルカリ液による処理も同様で、こ
れらの具体的な操作法については、後記の実施例で説明
される。用いられるアルカリの例としては、Na OH
,KOH1水酸化リチウム等が挙げられる。
Spherical glass made of inorganic powder separated and phase separated,
Next, the acid solution in the tissue - Na2O and 820 soluble in hot water, etc.
A phase mainly composed of component i is eluted into a solution of acid solution, hot water, etc. to form pores in the tissue, and colloid-like substances that are produced by acid solution treatment and block the pores formed in the dish. Solution treatment with alkaline solution is performed to remove silica.
It is considered to be a spherical porous glass. When carrying out the above solution treatment, it is preferable that the spherical glass whose structure has been phase-separated by heat treatment is previously surface-treated with hydrofluoric acid. The reason for this is that when the spherical glass comes into contact with air during heat treatment, some of the boric acid on the surface evaporates, forming a layer with a high silicic acid content on the surface, which prevents the solution treatment from proceeding smoothly. This is because it is necessary to dissolve silicic acid. Acids used in solution processing include 80 sentences, HN O8, +12
Examples include organic acids such as free acetic acid such as S Oa and oxalic acid. Solution treatment with an acid solution or an alkaline solution is preferably carried out at a temperature of 50° C. or higher, for example. In addition, when the acid solution treatment is performed in several batches and the acid solution is replaced several times, the by-product of colloidal silica is reduced and the treatment efficiency is better. The same applies to the treatment with an alkaline solution, and specific operating methods thereof will be explained in Examples below. Examples of alkalis used include NaOH
, KOH1 lithium hydroxide, and the like.

容液処理を終えた球状の多孔性ガラスは充盆水洗し乾燥
される。乾燥は伝熱法、熱風乾燥、マイクロウェーブ法
等が適用され、乾燥温度としては、得られた球状多孔性
ガラスの熱変性が少なく、かつ、表面水酸基数の変化の
ない500℃以下、好ましくは100〜200℃が望ま
しい。
After the liquid treatment, the spherical porous glass is washed in a basin and dried. For drying, heat transfer method, hot air drying, microwave method, etc. are applied, and the drying temperature is preferably 500°C or less, which causes little thermal denaturation of the obtained spherical porous glass and does not change the number of surface hydroxyl groups. A temperature of 100 to 200°C is desirable.

本発明は以上述べたように、球状の多孔性ガラスを製造
するに当って、ガラス原料の溶Ia間合物よりなる基礎
ガラスを熱処理して分相化する工程で、無機質粉体を存
在させることにより、球状の多孔性ガラスを得るもので
球状化のための特別の装置、操作を省略できるからカラ
ム充填材として有用な球状の多孔性ガラスの量産を可能
とするものであり、その工業的利用価値は大である。
As described above, in the production of spherical porous glass, the present invention includes the presence of inorganic powder in the step of heat-treating and phase-separating the basic glass made of a molten Ia mixture of glass raw materials. By doing so, it is possible to obtain spherical porous glass, and the special equipment and operations for spheroidization can be omitted, making it possible to mass produce spherical porous glass useful as a column packing material, and its industrial use. It has great utility value.

次に、本発明を実施例を挙げて説明するが、本発明はそ
の要旨を越えない限り、以下の実施例に限定されない。
Next, the present invention will be described with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 Qa 0−8209−8i 02−AizOs系ガラス
で組成割合がCa018%、82011 17%、5t
Oz 50%、Na 20 5.59%、A120a 
9.41%になるように原料の石灰、硼酸、けい砂、お
よびアルミナをよく混合しガラス溶解用るつぼにいれ、
1100℃で仮焼して溶融させ、温度を1350℃〜1
500℃に上げ、4時間保持して溶融を完結させた。こ
れを氷水中に投下急冷するか、また型に鋳込んで急冷し
、基礎ガラスを得た。これをショークラッシャーミル、
続いてロールクラッシャーミルで粗砕した後、流動層式
カウンタージェットミル(アルピネ社型)にかけ、平均
粒径37μに微粉砕した。微粉砕した基礎ガラスを例え
ば重力分級器、遠心分級器、あるいは慣性分級器のよう
な公知の風簸分級器により分級を行ない、留分粒径が1
0μ(フラクションエ)、10〜20μ(フラクション
■)、20〜50μ(フラクションI[[)、50a以
上(フラクションIV )に分別した。次に、上記のう
ち、フラクションm 1 koに無機質粉体としてサイ
ロイドグレード244(富士デヴイソン社商品名:微粉
末シリカ、以下、微粉末シリカという)800grを加
え、■型混合機で均一に混合したのち、分相用容器(2
50Φ、1200iua1Sus310製)に入れ、均
熱電気炉内で700℃、16時間保持して熱処理し、ガ
ラス組織の分相化と球状化とを併せて行なった。球状化
した熱tB理ガラスを前記と同様の風簸分級器により微
粉末シリカと分別し、ついで、例えば全流分綴器、表面
流分級器、あるいはリチャード渦動分°級器のような公
知の水簸分級器により分級し、粒径が20〜40μの球
状基礎ガラスを850orを得た。次にテフロン製恒温
撹拌容器にlN−80文8.5立を入れ、温度を50℃
に調整しな後、撹拌しながら前記球状基礎ガラスを加え
て2時間撹拌後静置し、傾斜法によって、1N−HC!
J、を排除した。再び1N−HO2,5′ Jiff、を同容器に入れ、8時間撹拌して1N・トI
C1を排出して、再びIN−H(,18,51を同容器
に入れ、14時間撹拌して1 H−HClを排出してそ
のあと傾斜法により数回水洗した。今度ハ前記恒m撹拌
容器に:0.5N−Na 0H6fLを入れ、温度を5
0℃に調整した後撹拌しながら酸液処理、水洗した前記
球状基礎ガラスを加え2時間撹拌を行ない、静置して、
傾斜法によって0゜5N−NaOHを排除し、再び0.
5N−NaOHG磨を同容器に入れ108ejmFit
拝して0.5N・Na OHを排出してそのあと、傾斜
法により水洗を繰り返して、洗液が中性(p)(7)と
なるまで洗浄した。そして再びIN−HCj15Aを同
容器に入れ、温度50℃に調整した後、アルカリ液処理
水洗した前記球状基礎ガラスを加え3時間撹拌を行ない
、そのあと傾斜法により水洗を繰り返して洗液が中性に
なるまで洗浄し−た8次に洗液を分離した後、180℃
で2時間乾燥することにより球状の多孔性ガラス4.3
0grを得た。また、テフロン製のffi温撹温容拌容
器%弗化水素酸1文を入れ温度を20℃に調整し、これ
に別に用意したlN−HClおよび0.5N−Na O
)Iによる溶液処理を施す前の球状基礎ガラス850g
rを加えて6時間撹拌を行なった後静置し、傾斜法によ
って、5%弗化水素酸を排除し、そのあと数回水洗して
得られた弗化水素酸処理の球状基礎ガラスを、前記操作
例と同様にしてIN−HC!Lおよび0゜5N−NaO
Hによる溶液処理を施して水洗乾燥することにより、弗
化水素酸で表面処理した球状の多孔性ガラス430or
を得た。これらの球状多孔性ガラスについて、窒素吸着
法による表面積の測定、カル口・エルバ社製の水銀圧入
式ポロシメーターによる細孔容積と平均細孔径の測定、
コールタ−カウンター法に”より平均粒子径の測定、お
よび電子顕微鏡による形状を観察した。その結果を第1
表に示す。なお第1〜4図における電子顕微鏡写真にお
いて、第1図では写真上2.28c+aが100μに相
当し、第2図では写真上1.514cmが1μに相当し
、第3図では写真上2.26011が100μに相当し
、第4図では写真上1.0CIlが1μに相当する。
Example 1 Qa 0-8209-8i 02-AizOs glass with a composition ratio of Ca018%, 82011 17%, 5t
Oz 50%, Na20 5.59%, A120a
The raw materials lime, boric acid, silica sand, and alumina were mixed well to a concentration of 9.41% and placed in a glass melting crucible.
Calcinate and melt at 1100℃, then increase the temperature to 1350℃~1
The temperature was raised to 500°C and maintained for 4 hours to complete melting. This was either dropped into ice water and quenched, or cast into a mold and quenched to obtain a basic glass. This is a show crusher mill.
Subsequently, the mixture was coarsely crushed using a roll crusher mill, and then finely crushed using a fluidized bed counter jet mill (Alpine model) to an average particle size of 37 μm. The finely ground basic glass is classified using a known elutriation classifier such as a gravity classifier, centrifugal classifier, or inertial classifier, and the fraction particle size is 1.
It was fractionated into 0μ (fraction E), 10-20μ (fraction ■), 20-50μ (fraction I[[), and 50a or more (fraction IV). Next, 800 gr of Thyroid Grade 244 (product name of Fuji Davison Co., Ltd.: fine powder silica, hereinafter referred to as fine powder silica) as an inorganic powder was added to the fraction m 1 ko of the above, and mixed uniformly with a ■ type mixer. After that, remove the phase separation container (2
50Φ, made of 1200 iua 1 Sus310), and was heat-treated at 700° C. for 16 hours in a soaking electric furnace to phase-separate the glass structure and make it spheroidal. The spheroidized thermally heated glass is separated from finely powdered silica using an elutriation classifier similar to that described above, and is then subjected to a known elutriation classifier such as a full flow classifier, a surface flow classifier, or a Richard vortex classifier. The glass was classified using an elutriation classifier to obtain 850 or of spherical basic glass having a particle size of 20 to 40 μm. Next, put 8.5 liters of lN-80 into a Teflon thermostatic stirring container and adjust the temperature to 50°C.
After adjusting to 1N-HC!, the spherical base glass was added while stirring, and after stirring for 2 hours, it was left to stand, and by the gradient method, 1N-HC!
J. was eliminated. Put 1N-HO2, 5' Jiff, into the same container again, stir for 8 hours, and then add 1N-HO2, 5' Jiff.
After discharging C1, IN-H (,18,51) was put into the same container again, stirred for 14 hours, 1 H-HCl was discharged, and then washed with water several times by decanting method. Put 6fL of 0.5N-Na 0H into a container and set the temperature to 5.
After adjusting the temperature to 0°C, the spherical base glass treated with acid solution and washed with water was added while stirring, stirred for 2 hours, and allowed to stand still.
The 0°5N-NaOH was removed by the gradient method and the 0°5N-NaOH was removed again.
Put 5N-NaOHG polish in the same container and 108ejmFit
After washing, 0.5N Na OH was discharged, and then water washing was repeated by the decanting method until the washing liquid became neutral (p) (7). Then, IN-HCj15A was placed in the same container again and the temperature was adjusted to 50°C, then the spherical base glass treated with alkaline solution and washed with water was added and stirred for 3 hours. After that, water washing was repeated by the decanting method until the washing liquid was neutral. After washing until 180℃, the washing liquid was separated and heated to 180℃
4.3 Spherical porous glass by drying for 2 hours at
I got 0gr. In addition, 1% hydrofluoric acid was added in a Teflon-made ffi warm stirring vessel, and the temperature was adjusted to 20°C, and separately prepared lN-HCl and 0.5N-NaO were added.
) 850 g of spherical base glass before solution treatment with I
After adding R and stirring for 6 hours, leave to stand, remove 5% hydrofluoric acid by decanting method, and then wash with water several times to obtain a spherical base glass treated with hydrofluoric acid. IN-HC! in the same manner as the above operation example! L and 0°5N-NaO
Spherical porous glass 430 or
I got it. For these spherical porous glasses, the surface area was measured using a nitrogen adsorption method, the pore volume and average pore diameter were measured using a mercury intrusion porosimeter manufactured by Kalkuchi-Elva, and
The average particle diameter was measured using the Coulter counter method, and the shape was observed using an electron microscope.
Shown in the table. In addition, in the electron micrographs in FIGS. 1 to 4, in FIG. 1, 2.28c+a on the photo corresponds to 100μ, in FIG. 2, 1.514cm on the photo corresponds to 1μ, and in FIG. 3, 2.28c+a on the photo corresponds to 1μ. 26011 corresponds to 100μ, and in the photograph in FIG. 4, 1.0CI1 corresponds to 1μ.

第1表 実施例2 実施例1で得られた基礎ガラスのうち、風簸分級により
分別したフラクションエ(留分粒径が10μ以下>1k
oに無機質粉体として微粉末シリカ700orを加え、
■型混合機で均一に混合したのち、分相用容器(180
Φ、1200m11Sus310製)に入れ、均熱電気
炉内で720℃24時間保持して熱処理し、ガラス組織
の分相化と球状化とを併せて行なった。球状化した熱処
理ガラスを実施例と同様の風簸分級および水路分級にが
けて、微粉末シリカと分別し、更に、水路分級により粒
径が3〜10μの球状基礎ガラス920orを得た。次
にテフロン製の恒温撹拌容器にIN−HCCO22&を
入れ温度を50’Cに調整した後、撹拌しながら前記球
状基礎ガラスを加えて2時間撹拌後、静置し傾斜法によ
ってIN−HCjlを排除した。再び1N−1−1c1
9.21を同容器に入れ、8時間撹拌してIN−HCA
を排出して、再びlN−HCl9.2文を入れ14一時
間撹拌し、そのあと傾斜法により数回水洗した。今度は
前記恒温撹拌容器に0.5N−NaOH9,2jLを入
れ50℃に温度調整した後撹′拌しながら前記酸液処理
水洗した前記球状基礎ガラスを加え、2時間撹拌を行な
い、静置して、傾斜法によって0.5N−NaOHを排
除し、再び0.5N−NaO89,2Aを入れ10時間
撹拌し、そのあと傾斜法により水洗を繰り返しで、洗液
が中性(DH’7)となるまで洗浄した。次に、洗液を
分離した後、180℃で2時間乾燥して、球状の多孔性
ガラス5209rを得た。また、テフロン製の恒温撹拌
容器に5%弗化水素酸1立を入れ温麿を20℃に調整し
、これに別に用意したlN−HClおよび0゜5N−N
a OHによる溶液処理を施す前の球状基礎ガラス92
0arを加えて6時間撹拌を行なったあと、ヌツチェに
てNO5G濾紙で濾過し、そのあと数回水洗して得られ
た弗化水素酸処理の球状基礎ガラスを、前記操作例と同
様にして1N−HC文および0.5N−NaOf−lに
よる溶液処理を施して水洗乾燥することにより弗゛化水
素酸で表面処理した球状の多孔性ガラス520grを得
た。これらの球状多孔性ガラスについて実施例1の場合
と同様の方法により物性試験を行なった。その結果を第
2表に示す。
Table 1 Example 2 Among the basic glasses obtained in Example 1, fractions separated by elutriation (fraction particle size of 10 μ or less > 1k
Add 700 or of finely powdered silica as an inorganic powder to
■After uniformly mixing with a type mixer, use a phase separation container (180
Φ, 1200 m11 (made of Sus310), and was heat-treated at 720° C. for 24 hours in a soaking electric furnace to effect both phase separation and spheroidization of the glass structure. The spheroidized heat-treated glass was subjected to elutriation classification and waterway classification similar to those in Examples to separate it from fine powder silica, and further waterway classification to obtain 920 or of spherical base glass having a particle size of 3 to 10 μm. Next, put IN-HCCO22& in a Teflon thermostatic stirring container and adjust the temperature to 50'C, then add the spherical base glass while stirring and after stirring for 2 hours, let it stand and remove IN-HCjl by the declination method. did. 1N-1-1c1 again
9.Pour 21 into the same container, stir for 8 hours, and add IN-HCA.
was discharged, 9.2 m of 1N-HCl was added again, and the mixture was stirred for 14 hours, and then washed with water several times by the decanting method. Next, 9.2jL of 0.5N-NaOH was put into the thermostatic stirring container, the temperature was adjusted to 50°C, and the spherical base glass treated with the acid solution and washed with water was added with stirring, stirred for 2 hours, and left to stand still. Then, 0.5N-NaOH was removed by the decanting method, 0.5N-NaO89,2A was added again, and the mixture was stirred for 10 hours. After that, washing with water was repeated by the decanting method until the washing liquid was neutral (DH'7). I washed it until clean. Next, after separating the washing liquid, it was dried at 180° C. for 2 hours to obtain spherical porous glass 5209r. In addition, 1 stand of 5% hydrofluoric acid was placed in a Teflon constant-temperature stirring container and the temperature was adjusted to 20°C, and separately prepared 1N-HCl and 0°5N-N
a Spherical base glass 92 before solution treatment with OH
After adding 0ar and stirring for 6 hours, the spherical base glass treated with hydrofluoric acid obtained by filtering with NO5G filter paper in Nutsche and washing with water several times was treated with 1N in the same manner as in the above operation example. -HC solution and 0.5N-NaOf-1 solution treatment, washing with water and drying to obtain 520 gr of spherical porous glass surface-treated with hydrofluoric acid. Physical property tests were conducted on these spherical porous glasses in the same manner as in Example 1. The results are shown in Table 2.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図は実施例1により得ら
れた球状の多孔性ガラスの電子順微鏡写真を示す。 代理人 弁理士 定立 勉 ほか1名 ・tl劇 葛2困 溝3B $49
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 show electron micrographs of the spherical porous glass obtained in Example 1. Agent: Patent attorney Tsutomu Sadatsu and 1 other person, TL Gekikuzu 2 Bokugo 3B $49

Claims (1)

【特許請求の範囲】 1 多孔性ガラス生成原料を混合溶融して得られた基礎
ガラスを熱処理し組織を分相化したのち、酸液処理、熱
水処理、アルカリ液処理等の溶液処理を施して球状の多
孔性ガラスを製造するに当り、前記熱処理を無機質粉体
の存在下に行なうことを特徴とする球状多孔性ガラスの
!il造方法。 2 熱処理を行なう前に予め基礎ガラスを一定の粒径範
囲毎に分級する特許請求の範囲第1項記載の球状の多孔
性ガラスを製造する方法。 3 無機質粉体が、微粉末シリカ、カーボンブラック、
0末アルミナ、および酸化チタンのいずれか1種または
2種以上である特許請求の範囲第1項又は第2項記載の
球状の多孔性ガラスを!j造する方法。 4 熱処理し組織を分相化した基礎ガラスを溶液処理を
行なう前に予め弗化水素酸で処理する特許請求の範囲第
1項乃至第3項のいずれかに記載の球状の多孔性ガラス
を製造する方法。
[Scope of Claims] 1. A basic glass obtained by mixing and melting raw materials for forming porous glass is heat-treated to phase-separate the structure, and then subjected to solution treatment such as acid solution treatment, hot water treatment, alkaline solution treatment, etc. In producing the spherical porous glass, the heat treatment is carried out in the presence of an inorganic powder! IL construction method. 2. A method for producing spherical porous glass according to claim 1, wherein the base glass is classified into predetermined particle size ranges before heat treatment. 3 The inorganic powder is finely powdered silica, carbon black,
The spherical porous glass according to claim 1 or 2, which is made of one or more of zero-terminal alumina and titanium oxide! How to build. 4. Producing a spherical porous glass according to any one of claims 1 to 3, in which a base glass whose structure has been phase-separated by heat treatment is previously treated with hydrofluoric acid before solution treatment. how to.
JP14223183A 1983-08-03 1983-08-03 Preparation of spherical porous glass Granted JPS6033231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14223183A JPS6033231A (en) 1983-08-03 1983-08-03 Preparation of spherical porous glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14223183A JPS6033231A (en) 1983-08-03 1983-08-03 Preparation of spherical porous glass

Publications (2)

Publication Number Publication Date
JPS6033231A true JPS6033231A (en) 1985-02-20
JPH0261423B2 JPH0261423B2 (en) 1990-12-20

Family

ID=15310469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14223183A Granted JPS6033231A (en) 1983-08-03 1983-08-03 Preparation of spherical porous glass

Country Status (1)

Country Link
JP (1) JPS6033231A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176337A (en) * 1987-01-14 1988-07-20 Kirin Brewery Co Ltd Liquid-impregnated granular foam glass
JPH0196043A (en) * 1987-10-06 1989-04-14 Kirin Brewery Co Ltd Method for controlling physical property of granular foam glass and granular foam glass manufactured by this method
CN112028496A (en) * 2020-08-14 2020-12-04 河北迪纳兴科生物科技有限公司 Production method of nano-porous glass for oligonucleotide synthesis
WO2023017772A1 (en) * 2021-08-12 2023-02-16 日本電気硝子株式会社 Porous glass particles and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176337A (en) * 1987-01-14 1988-07-20 Kirin Brewery Co Ltd Liquid-impregnated granular foam glass
JPH0196043A (en) * 1987-10-06 1989-04-14 Kirin Brewery Co Ltd Method for controlling physical property of granular foam glass and granular foam glass manufactured by this method
CN112028496A (en) * 2020-08-14 2020-12-04 河北迪纳兴科生物科技有限公司 Production method of nano-porous glass for oligonucleotide synthesis
WO2023017772A1 (en) * 2021-08-12 2023-02-16 日本電気硝子株式会社 Porous glass particles and method for manufacturing same

Also Published As

Publication number Publication date
JPH0261423B2 (en) 1990-12-20

Similar Documents

Publication Publication Date Title
JP3241752B2 (en) Method for producing calcined diatomaceous earth filter agent which does not contain cristobalite and has excellent water permeability, and filter agent obtained by this method
CN102295285B (en) A kind of recovery method of silicon chip dicing waste mortar
US20100139320A1 (en) Hollow porous-wall glass microspheres and composition and process for controlling pore size and pore volume
US5017523A (en) Method for the preparation of ultra-fine hollow glass spheres
JPH04219310A (en) Production of non-sintered cristobalite particle
JPS6033231A (en) Preparation of spherical porous glass
US4064071A (en) Process for agglomerating expanded perlite fines
JPH06277423A (en) Method for producing filter material for high temperature application and for use thereof
CN110386608B (en) Preparation method of light spherical silicon dioxide
US3233740A (en) High flow rate perlite filter aids
US3235635A (en) Method of preparing perlite products
RU2690830C1 (en) Method of producing ultrafine silicon dioxide powder
JP3115162B2 (en) Method for producing quartz glass powder
JPH0316925A (en) Preparation of high purity molten quartz
JP2670628B2 (en) Method for producing fine fused spherical silica
JPH07315869A (en) Production of hollow glass microsphere
JP2004237288A (en) Artificial sintered sand and its producing method
JP2857365B2 (en) Method for producing fine hollow glass sphere
JP2733860B2 (en) Manufacturing method of wear-resistant silica media
JP4822550B2 (en) Spherical multi-component glass particles
JP3805815B2 (en) Method for producing calcium hydroxide dry powder
WO1999001521A1 (en) GRINDING MEDIA CONSISTING ESSENTIALLY OF SINTERED TiO2 PARTICLES
JPH11302011A (en) Amorphous nonporous silica fine particle and composition with metal oxide
JP2820865B2 (en) Method for producing quartz glass foam
JP3071363B2 (en) Manufacturing method of synthetic quartz glass