JPH0948629A - Optical fiber and its production - Google Patents

Optical fiber and its production

Info

Publication number
JPH0948629A
JPH0948629A JP7196658A JP19665895A JPH0948629A JP H0948629 A JPH0948629 A JP H0948629A JP 7196658 A JP7196658 A JP 7196658A JP 19665895 A JP19665895 A JP 19665895A JP H0948629 A JPH0948629 A JP H0948629A
Authority
JP
Japan
Prior art keywords
core
fluorine
refractive index
optical fiber
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7196658A
Other languages
Japanese (ja)
Inventor
Toshio Danzuka
俊雄 彈塚
Sumio Hoshino
寿美夫 星野
Motonori Nakamura
元宣 中村
Masaharu Ohashi
正治 大橋
Katsusuke Tajima
克介 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7196658A priority Critical patent/JPH0948629A/en
Publication of JPH0948629A publication Critical patent/JPH0948629A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical fiber capable of preventing residual stress in wire drawing and giving a fiber having excellent transmission characteristics. SOLUTION: This optical fiber is composed of a core having high refractive index and a clad existing at an outer periphery of the core and having a refractive index lower than the core. The core has a central region wherein at least an amount of GeO2 dope decreases from central part to an outer periphery and an amount of fluorine dope decreases from the outer periphery to center in an at least a part of the region from the outer periphery to inside of the central region, then glass viscosity in the fiber cross section is almost uniformly adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主として通信用に用
いられる伝送損失が優れた光ファイバ及びその製造方法
に関し、詳しくはファイバ軸に直交した断面内のガラス
粘度が概略均一な光ファイバおよびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber mainly used for communication and having excellent transmission loss, and a method for manufacturing the same, more specifically, an optical fiber having a substantially uniform glass viscosity in a cross section orthogonal to the fiber axis and a method for manufacturing the same. It is about the method.

【0002】[0002]

【従来の技術】従来、通信用の光ファイバは、光の伝送
域であるコアにGeO2 、Al2 3などの屈折率を高
めるドーパントをドープするか、あるいはコアの外周に
位置するクラッドにフッ素、B2 3 等の屈折率を低く
するドーパントをドープすることによりコアの屈折率を
クラツドのそれより相対的に高くなるようにガラスの屈
折率を変え導波構造を形成している。これらのガラス組
成の違いは光ファイバの断面内のガラス粘度を不均一に
するため、光ファイバの伝送損失に影響を与える。すな
わち、ガラス粘度はドーパントの含有量に依存している
ため、例えばコアがGeO2 ドープガラス、クラッドが
純シリカガラスの場合にはコアの粘度がクラッドに比較
して低く軟化点温度が低下する。このため溶融・細径フ
ァイバ化工程において、ファイバ化する際にクラッドの
方が早く固まることになる。一方、コアが純シリカでク
ラッドがフッ素ドープガラスの場合には、クラッドの粘
度がコアに比べて低くなり、線引時にはコアが最初に固
まってくる。このようにガラス粘度が不均一な場合には
ファイバ化時の固化速度が異なり、不均一な層の間には
圧縮あるいは引っ張りの応力が残留することになる。こ
の残留応力が大きくなると、ガラスの屈折率を微妙に変
化させ伝送特性に影響を与えるとともに、ガラス中の欠
陥の生成を促進し、伝送損失の増加を招くことになる。
この問題を解決する方法として、ファイバ中のガラス粘
度を概略均一にした粘度整合ファイバが特開平5−30
1736に提案されている。この該公報には、ガラスの
屈折率を高くするドーパントGeO2 と低くするドーパ
ントフッ素(F)を適当に調整することで、ガラス粘度
を調整するとともに屈折率を合わせる方法が開示されて
いる。
2. Description of the Related Art Conventionally, in an optical fiber for communication, a core which is a light transmission region is doped with a dopant such as GeO 2 , Al 2 O 3 or the like which enhances a refractive index, or a cladding located on the outer periphery of the core. The waveguide structure is formed by changing the refractive index of the glass so that the refractive index of the core becomes relatively higher than that of the cladding by doping a dopant such as fluorine or B 2 O 3 which lowers the refractive index. These differences in glass composition make the glass viscosity in the cross section of the optical fiber non-uniform and thus affect the transmission loss of the optical fiber. That is, since the glass viscosity depends on the content of the dopant, for example, when the core is GeO 2 -doped glass and the clad is pure silica glass, the viscosity of the core is lower than that of the clad and the softening point temperature is lowered. For this reason, in the melting / small-diameter fiber forming process, the clad is solidified earlier when the fiber is formed. On the other hand, when the core is pure silica and the clad is fluorine-doped glass, the viscosity of the clad is lower than that of the core, and the core first solidifies during drawing. As described above, when the glass viscosity is non-uniform, the solidification rate at the time of fiber formation is different, and a compressive or tensile stress remains between the non-uniform layers. When this residual stress becomes large, the refractive index of the glass is subtly changed to affect the transmission characteristics, and the generation of defects in the glass is promoted, leading to an increase in transmission loss.
As a method for solving this problem, a viscosity matching fiber in which the glass viscosity in the fiber is substantially uniform is disclosed in Japanese Patent Laid-Open No. 5-30.
1736. This publication discloses a method of adjusting the glass viscosity and adjusting the refractive index by appropriately adjusting the dopant GeO 2 for increasing the refractive index of the glass and the dopant fluorine (F) for decreasing the refractive index of the glass.

【0003】[0003]

【発明が解決しようとする課題】上記のような粘度整合
ファイバは、GeO2 が半径方向に均一にドープされた
いわゆるステップ型の屈折率分布の場合には良いが、G
eO2 ドープ量が半径方向に分布を持つような場合に
は、完全に粘度を合わせることはできず、平均的な粘度
の整合しかできない問題があった。また、もう一つの問
題点は気相合成法においてはGeO2 の均一ドープがし
ずらいという問題である。通常フッ素は多孔質ガラス母
材に焼結工程でドープされるため比較的均一にドープす
ることが可能であるが、GeO2 は気相合成中にガラス
原料とともに供給されてドープされ、そのドープ量を増
加させると中心部でドープ量が多くなる傾向が強い。こ
れはGeO2 のドープ量が気相合成法での合成温度に依
存しているためであり、合成領域全体の温度を均一に保
つ工夫がされている。しかしながら、GeO2 のドープ
量を増加させていくと、ガラスを合成するバーナ火炎中
の原料流中のGe原料流の濃度が一定にはなりにくく、
均一にドープすることが難しくなる。このような状況で
は、完全にガラス粘度を均一にすることはできず、コア
のGeO2 ドープ量に分布がある場合には、その平均粘
度、あるいは中心部の粘度を外周部と合わせることしか
できなかった。特に粘度の影響が最も大きいと考えられ
る外周部で粘度を合わせることはできなかった。本発明
は、このような問題点を解消し、たとえGeO2 にドー
プ量の分布が存在していたとしても、コア部の粘度をク
ラッド部などの粘度と効果的に整合できる光フアイバ構
造及びその製法を実現することを目的とし、これにより
伝送特性の良好な光フアイバ及びその製造方法を提供し
ようとするものである。
The above-described viscosity matching fiber is good in the case of a so-called step type refractive index profile in which GeO 2 is uniformly doped in the radial direction.
When the eO 2 doping amount has a distribution in the radial direction, the viscosities cannot be perfectly matched, and there is a problem that only the average viscosities can be matched. Another problem is that uniform doping of GeO 2 is difficult in the vapor phase synthesis method. Normally, fluorine is doped into the porous glass base material in the sintering process, so that it is possible to dope relatively uniformly, but GeO 2 is supplied together with the glass raw material during the gas phase synthesis, and the doping amount There is a strong tendency for the amount of doping to increase in the central part as the value increases. This is because the doping amount of GeO 2 depends on the synthesis temperature in the vapor phase synthesis method, and it is devised to keep the temperature of the entire synthesis region uniform. However, as the doping amount of GeO 2 is increased, the concentration of the Ge raw material stream in the raw material stream in the burner flame for synthesizing glass is less likely to be constant,
It becomes difficult to dope uniformly. In such a situation, the glass viscosity cannot be made completely uniform, and when the GeO 2 doping amount of the core has a distribution, the average viscosity or the viscosity of the central portion can be matched with that of the outer peripheral portion. There wasn't. In particular, it was not possible to match the viscosities at the outer peripheral portion where the influence of the viscosity was considered to be the greatest. The present invention solves such a problem, and an optical fiber structure capable of effectively matching the viscosity of the core part with the viscosity of the clad part and the like even if the distribution of the doping amount exists in GeO 2. It is an object of the present invention to provide a manufacturing method, and thereby to provide an optical fiber having a good transmission characteristic and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】上記問題点を解消するた
めの手段として本発明は、屈折率の高いコアと該コアの
外周に位置しコアより屈折率の低いクラッドからなる光
ファイバにおいて、上記コアは少なくともGeO2 ドー
プ量が中心部から外周に向かって減少する中心領域を有
し、該中心領域の外周から内側に向かう少なくとも一部
の領域においてフッ素ドープ量が外周から中心に向かっ
て減少する分布を有することによりファイバ横断面内の
ガラス粘度が略均一に調整されてなることを特徴とする
光ファイバを提供する。また本発明は、屈折率の高いコ
アと該コアの外周に位置しコアより屈折率の低いクラッ
ドからなる光ファイバにおいて、上記コアは少なくとも
GeO2 ドープ量が中心部から外周に向かって減少する
中心領域を有し、該中心領域の外周から内側に向かう少
なくとも一部の領域においてフッ素ドープ量が外周から
中心に向かって減少する分布を有し、かつコアが中心領
域の外周に中心領域の最大屈折率より屈折率の低い外周
領域をもち、該外周領域においてはGeO2 のドープ量
及びフッ素のドープ量がそれぞれ半径方向においてほぼ
均一であることによりファイバ横断面内のガラス粘度が
略均一に調整されてなることを特徴とする光ファイバを
提供する。さらに本発明は、屈折率の高いコアと該コア
の外周に位置しコアより屈折率の低いクラッドからなる
光ファイバにおいて、上記コアは少なくともGeO2
ープ量が中心部から外周に向かって減少する中心領域を
有し、該中心領域の外周から内側に向かう少なくとも一
部の領域においてフッ素ドープ量が外周から中心に向か
って減少する分布を有することによりファイバ横断面内
のガラス粘度が略均一に調整されてなる光ファイバの製
造において、中心領域のコアの合成は、(1)気相合成法
によりGeO2 ドープ量が中心部で高くなるような組成
分布を持つ多孔質ガラス母材を合成する工程、及び(2)
加熱炉内において該多孔質ガラス母材を不活性ガス雰囲
気で加熱して収縮させた後、フッ素原料を含む不活性ガ
ス雰囲気で加熱して透明化する工程、を有することを特
徴とする上記方法を提供する。本発明の方法において
は、炉内雰囲気をフッ素原料を含んだ不活性ガス雰囲気
に変更する温度が1250〜1500℃であることが特
に好ましい実施態様として挙げられる。また本発明の方
法においては、上記加熱炉内において該多孔質ガラス母
材を不活性ガス雰囲気で加熱して収縮させた後、フッ素
原料を含む不活性ガス雰囲気で加熱して透明化する工程
が、多孔質母材の全長を概略均熱に加熱できる均熱炉内
において昇温しつつ該多孔質ガラス母材を透明化し、こ
の際の炉内雰囲気を最初は不活性ガス雰囲気で、昇温の
途中からはフッ素原料を含む不活性ガス雰囲気とする工
程であることを特徴とする上記方法が特に好ましい実施
態様として挙げられる。また本発明の方法においては、
上記加熱炉がゾーン炉であることを特徴とする上記方法
が特に好ましい実施態様として挙げられる。
As a means for solving the above problems, the present invention provides an optical fiber comprising a core having a high refractive index and a clad located on the outer periphery of the core and having a lower refractive index than the core. The core has at least a central region where the GeO 2 doping amount decreases from the central portion toward the outer periphery, and the fluorine doping amount decreases from the outer periphery toward the center in at least a part of the inner region from the outer periphery toward the inner portion. Provided is an optical fiber characterized in that the glass viscosity in the cross section of the fiber is adjusted to be substantially uniform by having a distribution. Further, the present invention provides an optical fiber comprising a core having a high refractive index and a clad located on the outer periphery of the core and having a lower refractive index than the core, wherein the core has at least a GeO 2 doping amount decreasing from the central portion toward the outer periphery. A region having a distribution in which the fluorine doping amount decreases from the outer periphery toward the center in at least a part of the region extending inward from the outer periphery of the central region, and the core has the maximum refractive index of the central region on the outer periphery of the central region. The outer peripheral region has a refractive index lower than the refractive index, and in the outer peripheral region, the doping amounts of GeO 2 and fluorine are substantially uniform in the radial direction, so that the glass viscosity in the fiber cross section is adjusted to be substantially uniform. An optical fiber is provided. Furthermore, the present invention provides an optical fiber comprising a core having a high refractive index and a clad positioned on the outer circumference of the core and having a lower refractive index than the core, wherein the core has a GeO 2 doping amount that decreases at least from the central portion toward the outer circumference. The glass viscosity in the cross section of the fiber is adjusted to be substantially uniform by having a distribution in which the fluorine doping amount decreases from the outer circumference toward the center in at least a part of the area from the outer circumference to the inner side of the central area. In the production of the optical fiber, the core of the central region is synthesized by (1) a step of synthesizing a porous glass preform having a composition distribution such that the GeO 2 doping amount becomes high in the central portion by a vapor phase synthesis method, And (2)
After the porous glass base material is heated and contracted in an heating furnace in an inert gas atmosphere, it is heated in an inert gas atmosphere containing a fluorine raw material to be transparent, and the above method is provided. I will provide a. In the method of the present invention, the temperature at which the furnace atmosphere is changed to an inert gas atmosphere containing a fluorine raw material is 1250 to 1500 ° C. as a particularly preferred embodiment. Further, in the method of the present invention, a step of heating the porous glass base material in an inert gas atmosphere to shrink the porous glass base material in the heating furnace, and then heating the porous glass base material in an inert gas atmosphere containing a fluorine raw material to make it transparent. , The porous glass base material is made transparent while raising the temperature in a soaking furnace that can heat the entire length of the porous base material to a uniform temperature, and the atmosphere in the furnace at this time is initially an inert gas atmosphere and the temperature is raised. A particularly preferable embodiment is the above-mentioned method, which is characterized in that it is a step of forming an inert gas atmosphere containing a fluorine raw material from the middle of the step. In the method of the present invention,
A particularly preferred embodiment is the above method characterized in that the heating furnace is a zone furnace.

【0005】[0005]

【発明の実施の形態】本発明の光フアイバの構造を具体
的実施例をもとに説明する。図1(a)は概略放物型の
GeO2 ドープ分布を持つコア内のガラス粘度を均一に
するための組成の分布を示したものである。中心で高く
なるGeO2 のドープ量(実線で示して有る)に対応し
て、フッ素ドープ量が外周で高く、中心で少なくなるよ
うに調整されている(点線で示す)。このようにGeO
2 とFの組成を半径方向に調整することにより、ガラス
内の粘度を調整することが可能である。このときの屈折
率分布は図1(b)のような分布となる。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the optical fiber of the present invention will be described with reference to specific examples. FIG. 1A shows a composition distribution for making the glass viscosity uniform in the core having a roughly parabolic GeO 2 doping distribution. The fluorine doping amount is adjusted to be high in the outer periphery and low in the center (indicated by the dotted line) in response to the GeO 2 doping amount (indicated by the solid line) that increases in the center. Like this GeO
By adjusting the composition of 2 and F in the radial direction, it is possible to adjust the viscosity in the glass. The refractive index distribution at this time becomes a distribution as shown in FIG.

【0006】通常ガラス粘度低下の影響は添加量(比屈
折率差比)でFがGeO2 の約3倍の効果が有る。例え
ばGeO2 を比屈折率差換算で0.3%添加したものと
Fを比屈折率差換算で0.1%添加したものは同じ粘度
になる。従って、コア中心と外周のガラス粘度を合わせ
るためには、Fは中心のGeO2 の約1/3(比屈折率
差換算で)だけドープすれば良いことになる。このよう
に、コア内の屈折率差が、中心が高く外周で低くなるよ
うな分布を持つ場合にも、ガラス粘度を均一に調整する
ことが可能であり、ファイバ化時の固化速度をファイバ
の軸方向に対し垂直な断面内で均一にすることができて
高品質な光ファイバを得ることができる。なお添加量の
重量比率と比屈折率差の関係はおおよそ下記のようにな
る。 GeO2 :Geの添加量が17重量%のとき、石英(純
SiO2 )に対する比屈折率差は1%。 F:Fの添加量が1重量%のとき、石英に対する比屈折
率差は−0.33%。
Usually, the effect of decreasing the glass viscosity is that F is about three times as effective as GeO 2 in terms of the added amount (specific refractive index difference ratio). For example, the viscosity of GeO 2 added by 0.3% in terms of relative refractive index difference is the same as that of F added by 0.1% in terms of relative refractive index difference. Therefore, in order to match the glass viscosities of the core center and the outer periphery, it is sufficient to dope F with about 1/3 of the GeO 2 at the center (converted to the relative refractive index difference). As described above, even when the refractive index difference in the core has a distribution in which the center is high and the outer circumference is low, it is possible to uniformly adjust the glass viscosity, and the solidification rate during fiberization is It is possible to obtain a high-quality optical fiber because it can be made uniform within a cross section perpendicular to the axial direction. The relationship between the weight ratio of the added amount and the relative refractive index difference is approximately as follows. GeO 2 : When the amount of Ge added is 17% by weight, the relative refractive index difference with respect to quartz (pure SiO 2 ) is 1%. F: When the amount of F added is 1% by weight, the relative refractive index difference with respect to quartz is -0.33%.

【0007】図2はコア内のガラス粘度が完全には一致
しないまでも、少なくともコア中心と外周でガラス粘度
を合わせたファイバの屈折率分布構成を示すものであ
る。図2のような場合にはコアの中心及び外周が、さら
に外側に形成されるクラッドと粘度を合わせることがで
きるため、ファイバ化時にはコアの外周部特に界面でク
ラッドと固化速度をほぼ同じにすることができ、伝送特
性の劣化要因を小さくする効果が得られる。
FIG. 2 shows the refractive index distribution structure of a fiber in which the glass viscosities are matched at least at the center and the outer circumference of the fiber, even if the glass viscosities in the core do not completely match. In the case of FIG. 2, the center and outer circumference of the core can have the same viscosity as the clad formed outside, so that the solidification rate is almost the same as that of the clad at the outer circumference of the core, especially at the interface during fiberization. Therefore, it is possible to obtain the effect of reducing the factor of deterioration of transmission characteristics.

【0008】図3はコアがGeO2 のドープ量が大きい
中心コアとGeO2 ドープ量の少ない外周コアの2層か
らなる場合の粘度均一化の組成を示したものである。実
線はGeO2 分布、鎖線はフッ素(F)分布を示す。中
心コアにおいて、概略放物型のGeO2 分布に対し、F
濃度は外周で高く中心で低くなるように設定されてい
る。このような組成をとることで、中心コア内のガラス
粘度を均一に調整することが可能となる。
[0008] FIG. 3 is one in which the core showed a composition of viscosity uniform when two layers of less outer peripheral cores central core amount is larger doped with GeO 2 doping amount of GeO 2. The solid line shows the GeO 2 distribution and the chain line shows the fluorine (F) distribution. In the central core, for the roughly parabolic GeO 2 distribution, F
The density is set to be high at the outer circumference and low at the center. With such a composition, the glass viscosity in the central core can be adjusted uniformly.

【0009】次に中心でGeO2 濃度が高く、外周で低
くなるような組成分布を持つ多孔質ガラス母材のガラス
粘度を均一に調整するためのフッ素ドープ法について説
明する。フッ素は一般的に多孔質ガラス母材の加熱・透
明化処理工程においてフッ素(フッ素化合物)含有雰囲
気下で加熱されることによりドープされる。焼結でフッ
素が多孔質ガラス母材にドープされる工程は、多孔質
ガラス母材中への拡散・浸透、ガラスとの反応・固
定、高温での揮散の3つの工程に分けることができ
る。の揮散はガラスと反応しガラス中に取り込まれる
反応の逆反応であり、透明化時の雰囲気ガス中のフッ素
原料濃度を一定にしておけば、反応は平衡に達し、揮散
反応を抑えることができる。一方、ガラス中への拡散
は、多孔質ガラスの嵩密度(粒子の詰まり方を示すパラ
メータ)あるいは空孔率(粒子で囲まれる空孔の割合)
と密接な関係がある。すなわち、雰囲気中に含まれるフ
ッ素原料ガスは、多孔質ガラス母材の粒子の隙間から母
材中に浸透していく。従って空孔率が小さく、隙間がほ
とんどないような母材にはフッ素原料は浸透しにくく、
フッ素をドープすることができない。
Next, a fluorine doping method for uniformly adjusting the glass viscosity of the porous glass base material having a composition distribution in which the GeO 2 concentration is high in the center and low in the outer periphery will be described. Fluorine is generally doped by being heated in a fluorine (fluorine compound) -containing atmosphere in the heating / clearing process of the porous glass base material. The step of doping fluorine into the porous glass base material by sintering can be divided into three steps: diffusion / penetration into the porous glass base material, reaction / fixation with glass, and volatilization at high temperature. Volatilization is a reverse reaction of the reaction of reacting with the glass and being taken into the glass, and if the concentration of the fluorine raw material in the atmosphere gas at the time of transparency is kept constant, the reaction reaches equilibrium and the volatilization reaction can be suppressed. . On the other hand, diffusion into glass is caused by the bulk density of porous glass (a parameter indicating how particles are clogged) or the porosity (the ratio of pores surrounded by particles).
Have a close relationship with. That is, the fluorine source gas contained in the atmosphere permeates into the base material through the gaps between the particles of the porous glass base material. Therefore, it is difficult for the fluorine raw material to penetrate into the base material that has a low porosity and almost no gap,
It cannot be doped with fluorine.

【0010】このことから、多孔質ガラス母材の中心部
の空孔率を小さくし、外周の空孔率が次第に大きくなる
ようにしておけばフッ素の浸透を半径方向に調整するこ
とができ、フッ素分布を付けることができる。このよう
な方法として、例えば特開昭60−161347号公報
にはコア外周部にドーパント濃度あるいは嵩密度の高い
層(空孔率の小さい層)を形成することで、コアへのフ
ッ素の浸透を防ぎ、クラッドにのみフッ素をドープする
方法が提案され、また特開昭62−182129号公報
にはコア中心から外周にかけて嵩密度を次第に小さくす
ることにより、コア中心部から外周に向かって濃度が高
くなるようにフッ素濃度を付ける方法が提案されてい
る。これらの方法は嵩密度によりフッ素の浸透が変わる
ことを利用した方法で、有効な方法ではあるものの、気
相合成時に嵩密度(空孔率)を調整しなければならない
と言う問題がある。GeO2 の濃度分布を調整し、かつ
嵩密度も変えることは非常に難しく、容易ではない。
From this, it is possible to adjust the permeation of fluorine in the radial direction by decreasing the porosity of the central portion of the porous glass base material and gradually increasing the porosity of the outer circumference, Fluorine distribution can be attached. As such a method, for example, in JP-A-60-161347, a layer having a high dopant concentration or a high bulk density (a layer having a low porosity) is formed on the outer peripheral portion of the core so that fluorine can penetrate into the core. A method of preventing this and doping only the clad with fluorine has been proposed. Further, in JP-A-62-182129, the bulk density is gradually reduced from the core center to the outer periphery, so that the concentration increases from the core center to the outer periphery. There has been proposed a method for increasing the fluorine concentration. These methods utilize the fact that the penetration of fluorine changes depending on the bulk density, and although they are effective methods, they have the problem that the bulk density (porosity) must be adjusted during gas phase synthesis. It is very difficult and not easy to adjust the GeO 2 concentration distribution and also change the bulk density.

【0011】そこで、本発明では透明化するための熱処
理によって多孔質ガラス母材が収縮する際の嵩密度の変
化を利用することを考えた。多孔質ガラス母材の収縮は
温度とGeO2 ドープ濃度に依存しており、同一温度に
おいてはGeO2 濃度が大きいほど早く収縮する。した
がって、中心でGeO2 濃度が高い多孔質ガラス母材で
は、中心で収縮が早く起こることになる。本発明におい
ては、透明化熱処理を開始した後、収縮が適度に進行し
GeO2 の分布に対応して嵩密度分布が形成された時点
からフッ素原料の投入を開始するため、この嵩密度分布
に応じたフッ素の浸透を実現できる。なお、以下本発明
におけるこの焼結工程中にフッ素を添加する手段をフッ
素ドープ焼結と称する。該フッ素ドープ焼結によれば、
中心まではフッ素が浸透せず外周部でフッ素濃度が高い
ドーピングを実現できることになる。しかも、収縮がG
eO2 濃度に依存するため、特別な操作無しでGeO2
分布に対応したフッ素ドープを行うことができるメリッ
トがある。
Therefore, in the present invention, it was considered to utilize the change in bulk density when the porous glass base material contracts by the heat treatment for making it transparent. The shrinkage of the porous glass base material depends on the temperature and the GeO 2 doping concentration. At the same temperature, the shrinkage is faster as the GeO 2 concentration is higher. Therefore, in the porous glass base material having a high GeO 2 concentration in the center, contraction occurs early in the center. In the present invention, after starting the heat treatment for clearing, the introduction of the fluorine raw material is started at the time when the shrinkage progresses moderately and the bulk density distribution is formed corresponding to the distribution of GeO 2. It is possible to realize appropriate penetration of fluorine. The means for adding fluorine during this sintering step in the present invention is hereinafter referred to as fluorine-doped sintering. According to the fluorine-doped sintering,
Fluorine does not penetrate to the center, and doping with high fluorine concentration can be realized in the outer peripheral portion. Moreover, the contraction is G
Because it depends on the eO 2 concentration, GeO 2
There is an advantage that fluorine doping can be performed according to the distribution.

【0012】本発明によるフッ素ドープは図4に示すよ
うに均熱炉で多孔質ガラス母材を加熱しつつ加熱温度と
雰囲気ガス組成を変化させれば、容易に実施できる。図
4において1は多孔質ガラス母材、2は炉心管、3はヒ
ータ、4はガス導入口、5はガス排気口である。図4の
構成で多孔質母材を図5の温度、雰囲気条件グラフ図に
示すような温度条件で昇温すると、温度に応じ、多孔質
母材は収縮し始める。このときGeO2 分布に応じて内
部の嵩密度分布は中心で高く、外周部で低くなってい
る。この収縮が適当なところまで進行した段階で雰囲気
中にフッ素原料を加えれば、所望のフッ素濃度を実現で
きることになる。フッ素原料を投入する温度が低いと、
中心までフッ素が浸透することになり、温度が高いと外
周部にのみフッ素をドープすることができる。従って温
度が低すぎると分布を付けることはできず、均一な分布
になってしまう。
The fluorine doping according to the present invention can be easily carried out by changing the heating temperature and the composition of the atmospheric gas while heating the porous glass base material in a soaking furnace as shown in FIG. In FIG. 4, 1 is a porous glass base material, 2 is a core tube, 3 is a heater, 4 is a gas inlet, and 5 is a gas outlet. When the temperature of the porous base material in the configuration of FIG. 4 is increased under the temperature conditions shown in the temperature and atmosphere condition graphs of FIG. 5, the porous base material starts to shrink according to the temperature. At this time, the internal bulk density distribution is high at the center and low at the outer peripheral portion according to the GeO 2 distribution. A desired fluorine concentration can be realized by adding a fluorine raw material into the atmosphere when the shrinkage has progressed to an appropriate point. If the temperature to add the fluorine raw material is low,
Fluorine penetrates to the center, and when the temperature is high, only the outer peripheral portion can be doped with fluorine. Therefore, if the temperature is too low, the distribution cannot be provided and the distribution becomes uniform.

【0013】本発明者らが種々実験した結果によれば、
1250℃未満ではフツ素は均一にドープされてしま
い、1300℃未満では、中心部にもフッ素が若干ドー
プされることがわかった。また、1500℃を超えると
外周においてすらフッ素はドープされないことがわかっ
た。粘度整合を有効に行うためには1450℃未満の温
度でフッ素を投入することが好ましい。
According to the results of various experiments conducted by the present inventors,
It was found that when the temperature was lower than 1250 ° C, fluorine was uniformly doped, and when the temperature was lower than 1300 ° C, the central portion was also slightly doped with fluorine. Further, it has been found that even if the temperature exceeds 1500 ° C., fluorine is not doped even in the outer periphery. In order to effectively perform viscosity matching, it is preferable to add fluorine at a temperature lower than 1450 ° C.

【0014】加熱開始時の雰囲気としては、Heガス,
Arガス等の不活性ガス雰囲気が好ましい。また投入す
るフッ素原料ガスとしてはSiF4 ,SF6 ,CF4
が望ましく、フッ素原料ガス濃度は0.01〜100%
(体積比)と広い範囲で適用することができる。
The atmosphere at the start of heating is He gas,
An inert gas atmosphere such as Ar gas is preferable. The fluorine source gas to be charged is preferably SiF 4 , SF 6 , CF 4, etc., and the fluorine source gas concentration is 0.01 to 100%.
(Volume ratio) and can be applied in a wide range.

【0015】また、本発明の多孔質母材の加熱開始時の
かさ密度として好ましい範囲は、0.1〜0.5g/c
c、フッ素添加開始時のかさ密度として好ましい範囲は
0.3〜1.0g/ccである。
Further, the preferable range of the bulk density at the start of heating of the porous base material of the present invention is 0.1 to 0.5 g / c.
c, the preferable range of the bulk density at the start of fluorine addition is 0.3 to 1.0 g / cc.

【0016】均熱炉の場合、もちろん内部の収縮は温度
範囲のみでなく、その昇温速度も影響しており、昇温速
度を調整することによってもフッ素の分布の調整が可能
である。昇温速度が速いと内部の温度が上がりにくくな
るため、収縮を抑える効果があり、遅いと収縮を進行さ
せる効果がある。昇温速度が速すぎると、内部の収縮が
進まずフッ素が中心にまで浸透しやすくなり、好ましく
ない。10℃/分以下が好ましい。また安定した収縮を
得ることを考慮すると8℃/分以下がなお好ましい。生
産性の観点から考えると遅すぎるのも問題があり、2℃
/分以上が好ましい範囲といえる。
In the case of a soaking furnace, of course, the internal contraction affects not only the temperature range but also the temperature rising rate, and the distribution of fluorine can be adjusted by adjusting the temperature rising rate. If the rate of temperature rise is high, the internal temperature is unlikely to rise, so it has the effect of suppressing shrinkage, and if it is slow, it has the effect of promoting shrinkage. If the rate of temperature rise is too fast, internal contraction does not proceed and fluorine easily penetrates to the center, which is not preferable. It is preferably 10 ° C./minute or less. In consideration of obtaining stable shrinkage, 8 ° C./min or less is more preferable. There is a problem that it is too late from the viewpoint of productivity
It can be said that the range of / minute or more is preferable.

【0017】また、ヒータの短いゾーン炉でも本発明を
実施することは可能である。この場合にはまず、125
0℃から1500℃の適当な温度で一旦収縮を進行さ
せ、ついでフッ素を多孔質ガラス母材に浸透させた後、
高温で透明化を行う方法である。この場合、フッ素の濃
度分布の形状は多孔質ガラス母材の収縮度すなわち収縮
温度で調整することができる。
The present invention can also be implemented in a zone furnace having a short heater. In this case, first, 125
After allowing the shrinkage to proceed once at an appropriate temperature of 0 ° C to 1500 ° C, and then allowing fluorine to penetrate into the porous glass base material,
This is a method of making transparent at high temperature. In this case, the shape of the fluorine concentration distribution can be adjusted by the degree of shrinkage of the porous glass base material, that is, the shrinking temperature.

【0018】図3に示すような、屈折率の高い中心コア
部ととその外周にあり中心コアより屈折率の低い外周コ
ア部及び外周コアの外側のクラツド層からなる組成分布
を形成する方法としては、まず中心コア部を上記した本
発明の方法で製造し、この焼結ガラスを一旦延伸した後
この外側に更に気相合成法(たとえばVAD法,OVD
法)でGeO2 を含む外周コア部の多孔質層を形成し、
フッ素ドープ焼結を行い、ついでクラッド部を気相合成
法で形成し、さらにフッ素ドープ焼結を行うという多段
階の工程により製造することが可能である。このように
複雑な屈折率分布構造のものも、本発明の方法を繰り返
すことにより製造できる。なお、ガラス焼結体を延伸し
てからその外周に多孔質ガラス層を形成する方法を例示
したが、延伸せずにその外側に多孔質ガラス層を合成し
て同様な加工をする方法も当然可能である。
As a method for forming a composition distribution, as shown in FIG. 3, a central core portion having a high refractive index, an outer peripheral core portion on the outer periphery of the central core portion having a lower refractive index and a cladding layer outside the outer peripheral core portion is formed. First, the central core portion is manufactured by the above-described method of the present invention, the sintered glass is once stretched, and then the outside is further subjected to a vapor phase synthesis method (for example, VAD method, OVD method).
Method) to form a porous layer of the outer peripheral core portion containing GeO 2 ,
It is possible to manufacture by a multi-step process in which fluorine-doped sintering is performed, then the cladding is formed by a vapor phase synthesis method, and further fluorine-doped sintering is performed. Such a complex refractive index distribution structure can also be manufactured by repeating the method of the present invention. Although the method of forming the porous glass layer on the outer periphery of the glass sintered body after stretching is illustrated, a method of synthesizing the porous glass layer on the outer side of the glass sintered body without stretching and performing similar processing is naturally also possible. It is possible.

【0019】さらに、中心コア,外周コア及びクラッド
をそれぞれ別々に製造しておき、外周コア、クラッドに
ついては、パイプ状に穴開け等の加工をした後、これを
ロッドインコラップすることにより組み立てていく手法
も可能である。さらにまた、パイプに加工するのでな
く、初めからパイプ状の母材を作成することも可能であ
る。
Further, the central core, the outer peripheral core and the clad are manufactured separately, and the outer peripheral core and the clad are processed by forming holes such as pipes, and then assembled by rod incolap. A method of going is also possible. Furthermore, instead of processing into a pipe, it is possible to create a pipe-shaped base material from the beginning.

【0020】一般に、VAD法に用いられる原料はガラ
ス原料としてSiCl4 、ドーパント原料としてGeC
4 が用いられるが、これらの原料の種類で本発明の効
果が変わることはない。従って例えばAl2 3 ,B2
3 等をドープした母材についても本発明の適用が可能
である。また、フッ素原料としてはSiF4 、SF6
CF4 等が用いられる。フッ素原料についてもVAD法
の原料と同様である。GeO2 の添加量範囲としては、
純シリカ(SiO2 )との比屈折率差換算で0〜1.5
%程度、フッ素の添加量範囲は同様に純シリカとの比屈
折率差換算で0〜−0.8%程度が本発明における望ま
しい範囲として挙げられる。
Generally, the raw material used in the VAD method is SiCl 4 as a glass raw material and GeC as a dopant raw material.
l 4 is used, but not the effect of the present invention varies with the type of these materials. Therefore, for example, Al 2 O 3 , B 2
The present invention can be applied to a base material doped with O 3 or the like. Further, as the fluorine raw material, SiF 4 , SF 6 ,
CF 4 or the like is used. The fluorine raw material is the same as the raw material of the VAD method. The GeO 2 addition amount range is as follows.
0 to 1.5 in terms of relative refractive index difference with pure silica (SiO 2 ).
%, And the addition amount range of fluorine is similarly about 0 to -0.8% in terms of the relative refractive index difference from pure silica as a desirable range in the present invention.

【0021】また、本発明はフッ素ドープ焼結に先立
ち、脱水処理を行うこともできる。本発明での脱水処理
はこの種の技術分野における公知技術に従い一般的な方
法でよく、具体的には均熱炉であればHe等の不活性ガ
ス雰囲気にCl2 ,SiCl4,CCl4 ,SOCl2
などの脱水ガスを含む雰囲気で1000℃〜1200℃
程度で0.5〜2時間程度加熱する。ゾーン炉の場合
は、同様の雰囲気中、1000℃〜1200℃程度に加
熱されたヒートゾーンに2〜20mm/分程度の送り速
度で多孔質ガラス母材を送り込むことで行う。
Further, in the present invention, dehydration treatment can be performed prior to the fluorine-doped sintering. The dehydration treatment in the present invention may be a general method according to a known technique in this kind of technical field. Specifically, in the case of a soaking furnace, Cl 2 , SiCl 4 , CCl 4 , in an inert gas atmosphere such as He, SOCl 2
1000 ℃ ~ 1200 ℃ in an atmosphere containing dehydrating gas such as
It is heated for about 0.5 to 2 hours. In the case of a zone furnace, the porous glass base material is fed into a heat zone heated to about 1000 ° C to 1200 ° C at a feeding rate of about 2 to 20 mm / min in the same atmosphere.

【0022】[0022]

【実施例】【Example】

〔例1〕SiO2 を主成分とし、中心でGeO2 濃度が
高く、外周でGeO2 濃度が低くなるようなGeO2
度が概略2乗分布をした外径90mm、かさ密度0.2
0g/ccの多孔質ガラス母材をVAD法により作成し
た。このとき、GeO2の最大値が比屈折率差で0.6
%となるように原料濃度を調整した。該多孔質ガラス母
材を図3に示すような均熱炉内に配置し、Cl2 を含む
He雰囲気(Cl 2 :He=1:50)で500℃から
1100℃まで、8℃/分の速度で昇温しつつ加熱し脱
水した後、5℃/分で昇温しつつ収縮を進めた。135
0℃になったところでフッ素原料としてSiF4 を投入
した。SiF4 濃度はフッ素(F)が外周部で比屈折率
差で0.2%入るように調整した(SiF4 濃度として
は3%)。そのまま1550℃まで昇温し、20分間保
持した後、降温した。この結果、良好な透明焼結体(ガ
ラス母材)が得られた。該ガラス母材の元素分析を行っ
たところ、GeO2 は中心で0.6%となる2乗分布型
にドープされており、Fは図2に示すような分布とな
り、最外周で−0.2%の比屈折率差となり、中心に向
かって徐々に減少していることがわかった。またフッ素
(F)の浸透している範囲は外径比r/Rで中心から
0.2のところまでドープされていることが確認され
た。
 [Example 1] SiO2As the main component, and GeO at the center2Concentration
High and GeO on the periphery2GeO with low concentration2Dark
90 mm outer diameter with a squared distribution of degrees and a bulk density of 0.2
A 0 g / cc porous glass base material was prepared by the VAD method.
Was. At this time, GeO2The maximum value of the relative refractive index difference is 0.6
The raw material concentration was adjusted to be%. The porous glass mother
The material is placed in a soaking furnace as shown in FIG.2including
He atmosphere (Cl 2: He = 1: 50) from 500 ° C
Heating up at a rate of 8 ° C / min up to 1100 ° C
After watering, the shrinkage proceeded while raising the temperature at 5 ° C./min. 135
When it reaches 0 ° C, SiF is used as a fluorine raw material.FourThrow in
did. SiFFourRegarding the concentration, fluorine (F) has a relative refractive index in the outer peripheral portion.
The difference was adjusted to be 0.2% (SiFFourAs concentration
Is 3%). As it is, raise the temperature to 1550 ° C and hold for 20 minutes.
After holding it, the temperature was lowered. As a result, a good transparent sintered body (gas
A lath base material) was obtained. Perform elemental analysis of the glass base material
Where is GeO2Is a square distribution type with 0.6% at the center
And F has a distribution as shown in FIG.
The relative refractive index difference is -0.2% at the outermost circumference,
It turned out that it was gradually decreasing. Also fluorine
The permeation range of (F) is from the center with the outer diameter ratio r / R.
Confirmed to be doped up to 0.2
Was.

【0023】〔例2〕例1と同じ多孔質母材を用い、フ
ッ素原料の投入温度を1300℃と変化させた以外は例
1と同条件でガラス母材を作成した。この結果、良好な
透明焼結体が得られた。このガラス母材の元素分析を行
ったところ、GeO2 は中心で0.6%となる2乗分布
状で例1と同様な分布が得られた。フッ素のドープされ
た範囲は外径比r/Rで中心から0.1のところまでで
あることが確認された。
Example 2 A glass preform was prepared under the same conditions as in Example 1 except that the same porous preform as in Example 1 was used and the temperature of introducing the fluorine raw material was changed to 1300 ° C. As a result, a good transparent sintered body was obtained. When the elemental analysis of this glass base material was performed, GeO 2 showed a distribution similar to that of Example 1 in a square distribution with 0.6% at the center. It was confirmed that the fluorine-doped range was from the center to 0.1 at the outer diameter ratio r / R.

【0024】〔例3〕例1と同じ多孔質母材を用い、フ
ッ素原料の投入温度を1400℃と変化させた以外は例
1と同条件でガラス母材を作成した結果、良好な透明焼
結体が得られた。このガラス母材の元素分析を行ったと
ころ、GeO2 は中心で0.6%となる2乗分布状で例
1と同様な分布が得られたが、フッ素のドープされた範
囲は外径比r/Rで中心から0.6のところまでドープ
されていることが確認された。
Example 3 A glass base material was prepared under the same conditions as in Example 1 except that the same porous base material as in Example 1 was used and the temperature of the fluorine raw material was changed to 1400 ° C. A unity was obtained. Elemental analysis of this glass base material showed that GeO 2 had a square distribution of 0.6% at the center and a distribution similar to that of Example 1, but the range doped with fluorine had an outside diameter ratio of It was confirmed that r / R was doped up to 0.6 from the center.

【0025】以上の例1ないし例3の結果から、本発明
の方法によりフッ素の浸透程度を制御できることが認め
られた。
From the results of Examples 1 to 3 above, it was confirmed that the permeation degree of fluorine can be controlled by the method of the present invention.

【0026】〔例4及び例5〕例1と同じ構成でフッ素
原料の投入温度を1240℃、1520℃の2水準でガ
ラス母材の作成を行った。この結果、良好な透明焼結体
が得られ、このガラス母材の元素分析を行ったところ、
GeO2 の分布は変わらないものの、1240℃ではフ
ッ素が母材全体に均一にドープされており(例4)、1
520℃では全くフッ素がドープされていない(例5)
ことがわかった。
[Examples 4 and 5] With the same constitution as in Example 1, the glass base material was prepared at two input temperatures of 1240 ° C and 1520 ° C for the fluorine raw material. As a result, a good transparent sintered body was obtained, and elemental analysis of this glass base material was performed.
Although the distribution of GeO 2 does not change, fluorine is uniformly doped in the entire base material at 1240 ° C. (Example 4), 1
No fluorine doping at 520 ° C (Example 5)
I understand.

【0027】〔実施例1〕例1で作成した焼結体をコア
母材として用い、以下のようにして粘度を整合させた光
ファイバを作成した。なお、粘度については後記するよ
うに残留応力を測定することにより確認した。まず、該
焼結体を15mmに延伸した後、VAD法でこの延伸体
の外周にSiO2 からなるクラッド用多孔質ガラス母材
を合成し、ついでこの母材を均熱炉に挿入し、例1と同
様の条件で脱水した後、1200℃に昇温し、炉内をS
iF4 を含むHeガス雰囲気(SiF4 濃度3%)とし
た後、5℃/分の昇温速度で1550℃まで昇温し、透
明ガラス化した。このようにフッ素ドープ焼結すること
により、Fを比屈折率差で−0.2%ドープしたクラッ
ドを有する光ファイバ用プリフォームを作成した。これ
を外径125μmのファイバに線引しその特性を評価し
たところ、波長1.55μmでの損失が0.198dB
/kmと優れた特性のファイバが得られた。
[Example 1] Using the sintered body prepared in Example 1 as a core preform, an optical fiber whose viscosity was matched was prepared as follows. The viscosity was confirmed by measuring the residual stress as described later. First, after stretching the sintered body to 15 mm, a porous glass preform for clad made of SiO 2 was synthesized on the outer periphery of the stretched body by the VAD method, and then this preform was inserted into a soaking furnace. After dehydration under the same conditions as in No. 1, the temperature was raised to 1200 ° C.
After a He gas atmosphere (SiF 4 concentration 3%) containing iF 4, the temperature was raised up to 1550 ° C. at a heating rate of 5 ° C. / min and vitrified. By performing the fluorine-doped sintering in this way, an optical fiber preform having a clad doped with F by -0.2% with a relative refractive index difference was prepared. When this was drawn into a fiber with an outer diameter of 125 μm and its characteristics were evaluated, the loss at a wavelength of 1.55 μm was 0.198 dB.
A fiber having excellent characteristics of / km was obtained.

【0028】〔実施例2〕また、例2により得られた焼
結体をコア母材として、実施例1と同様の同様の方法で
ファイバ化し損失を評価したところ、波長1.55μm
で0.199dB/kmと実施例1のファイバとほとん
ど同等の良好な損失値を得ることができた。
[Example 2] Further, when the sintered body obtained in Example 2 was used as a core base material and a fiber was formed in the same manner as in Example 1 to evaluate the loss, a wavelength of 1.55 µm was obtained.
It was possible to obtain a good loss value of 0.199 dB / km, which was almost the same as that of the fiber of Example 1.

【0029】〔実施例3〕例1と同様の方法を用い、G
eO2 の最大値が比屈折率差で0.83%で2乗分布の
GeO2 分布を作成し、Fを外周部に比屈折率差で−
0.27%入るように調整しフッ素ドープ焼結を行い焼
結体を得た。フッ素ドープ法は例1と同様の方法でSi
4 の濃度のみ3.5%とした。この焼結体を中心コア
母材として下記の工程により、図3に示すタイプの粘度
を整合させた光ファイバを作成した。該中心コア母材と
は別にVAD法でGeO2 が比屈折率差で0.18%均
一にドープされた多孔質ガラス母材を合成し、1100
℃でCl2 を含むHe雰囲気で脱水処理した後、SiF
4 を含むHe雰囲気(SiF4 濃度3.5%)でFが均
一に−0.23%ドープされるように1250℃で加熱
処理した後、1550℃で透明ガラス化した。この焼結
体を穴開け加工によりパイプ状に加工した後、上記中心
コア母材を延伸し、ロッドインコラップスして、中心コ
アと外周コアを持つ中間母材を作成した。該中間母材を
15mmに延伸した後、この外周にVAD法で純シリカ
の多孔質ガラス層を合成し、これをSiF4 を含むHe
雰囲気((SiF4 濃度3.5%)でフッ素ドープ焼結
することにより、Fが−0.27%ドープされたクラッ
ドを形成して光ファイバ用プリフォームとした。該プリ
フオームを線引きし、得られた光ファイバの伝送特性を
評価したところ、波長1.55μmでの損失が0.19
8dB/kmと優れた特性であった。
Example 3 Using the same method as in Example 1, G
The maximum value of eO 2 is 0.83% in relative refractive index difference, and a GeO 2 distribution having a square distribution is created.
The content was adjusted to 0.27% and fluorine-doped sintering was performed to obtain a sintered body. The fluorine doping method is the same method as in Example 1
Only the F 4 concentration was set to 3.5%. An optical fiber of the type shown in FIG. 3 in which the viscosities were matched was prepared by the following steps using this sintered body as the central core preform. Separately from the central core base material, a porous glass base material in which GeO 2 was uniformly doped by 0.18% with a relative refractive index difference was synthesized by the VAD method.
After dehydration in He atmosphere containing Cl 2 at ℃, SiF
In a He atmosphere containing 4 (SiF 4 concentration 3.5%), heat treatment was performed at 1250 ° C. so that F was uniformly doped with −0.23%, and then transparent vitrification was performed at 1550 ° C. This sintered body was processed into a pipe shape by punching, and then the central core preform was drawn and rod-in collapsed to prepare an intermediate preform having a central core and an outer peripheral core. After stretching the intermediate preform to 15 mm, to synthesize a porous glass layer of pure silica by the VAD method in this periphery, including the SiF 4 which He
Fluorine-doped sintering was performed in an atmosphere ((SiF 4 concentration 3.5%) to form a clad doped with F of −0.27% to obtain a preform for an optical fiber. The preform was drawn and obtained. When the transmission characteristics of the obtained optical fiber were evaluated, the loss at the wavelength of 1.55 μm was 0.19.
It had excellent characteristics of 8 dB / km.

【0030】なお、本発明のファイバの断面における粘
度はファイバの断面の残留応力を測定することにより、
ほぼ整合していることを確認した。この残留応力の測定
は光弾性CT法により行った。従来法によるファイバの
場合200MPa程度の変動があるが、本発明によるフ
ァイバは20MPa程度の変動であり、ほぼ粘度が整合
しているものと考えられる。
The viscosity in the cross section of the fiber of the present invention is determined by measuring the residual stress in the cross section of the fiber.
I confirmed that they are almost consistent. This residual stress was measured by the photoelastic CT method. The fiber according to the conventional method has a fluctuation of about 200 MPa, but the fiber according to the present invention has a fluctuation of about 20 MPa, and it is considered that the viscosities are substantially matched.

【0031】〔実施例4〕例1と同様にGeO2 の最大
値が比屈折率差で0.6%となるようにして作成した多
孔質ガラス母材をゾーン炉に挿入し、炉内をCl2 を含
む雰囲気(Cl2:He=1:50)で満たしつつ、1
100℃に保持されたヒートゾーンに15mm/分の速
度で母材を送り込み脱水した。次いで炉内の雰囲気をH
e雰囲気としてヒートゾーンを1300℃に昇温し、1
0mm/分の速度で母材を送り込むことにより収縮させ
た後、炉内雰囲気をSiF4 を含むHe雰囲気(SiF
4 濃度3%)としてヒートゾーンを1500℃に昇温
し、8mm/分の速度で母材を送り込み透明ガラス化し
た。その結果、Fは最外周で−0.2%の比屈折率差と
なり、フッ素の浸透している範囲は外径比r/Rで中心
から0.3のところまでドープされていることが確認さ
れた。この焼結体をコアとし、実施例1と同様の方法で
ファイバ化したところ、伝送特性は波長1.55μmで
0.198dB/kmと良好であった。
Example 4 As in Example 1, a porous glass base material prepared so that the maximum value of GeO 2 was 0.6% in relative refractive index difference was inserted into a zone furnace and the inside of the furnace was changed. atmosphere containing Cl 2 while satisfying with (Cl 2:: He = 1 50), 1
The base material was sent to the heat zone kept at 100 ° C. at a speed of 15 mm / min for dehydration. Next, change the atmosphere in the furnace to H
e The temperature of the heat zone was raised to 1300 ° C. as an atmosphere, and 1
After shrinking by feeding the base material at a speed of 0 mm / min, the furnace atmosphere is a He atmosphere containing SiF 4 (SiF 4
(4 concentration 3%), the heat zone was heated to 1500 ° C., and the base material was fed at a speed of 8 mm / min to form a transparent glass. As a result, F has a relative refractive index difference of −0.2% at the outermost circumference, and it is confirmed that the range in which fluorine penetrates is doped from the center to 0.3 at the outer diameter ratio r / R. Was done. When this sintered body was used as a core and made into a fiber by the same method as in Example 1, the transmission characteristics were good at 0.198 dB / km at a wavelength of 1.55 μm.

【0032】〔比較例〕GeO2 の最大値が比屈折率差
で0.83%で2乗分布のGeO2 分布を持つ多孔質母
材を準備し、これをフッ素原料を添加しないこと以外は
例1と同じ方法で脱水、透明ガラス化した。その結果、
フッ素が添加されていないGeO2 分布が2乗分布の焼
結体を得た。この焼結体を中心コアとして実施例3と同
様な方法により光ファイバを得た。その結果、得られた
光ファイバの伝送特性は、波長1.55μmでの損失が
0.220dB/kmと大きいものであった。
[Comparative Example] A porous base material having a GeO 2 distribution in which the maximum value of GeO 2 is 0.83% in terms of relative refractive index difference and a square distribution of GeO 2 is prepared, and no fluorine raw material is added thereto Dehydration and transparent vitrification were carried out in the same manner as in Example 1. as a result,
A sintered body having a GeO 2 distribution with a squared distribution, to which fluorine was not added, was obtained. An optical fiber was obtained by the same method as in Example 3 using this sintered body as the central core. As a result, the transmission characteristics of the obtained optical fiber were large at a loss of 0.220 dB / km at a wavelength of 1.55 μm.

【0033】[0033]

【発明の効果】このように、本発明によれば2乗分布型
のGeO2 濃度分布を持つコア母材にガラス粘度が概略
一定になるように外周部でフッ素濃度が高く中心部でフ
ッ素濃度が低くなるようにフッ素をドープすることがで
き、中心部で屈折率が高いような分布を持つ光ファイバ
でもガラス粘度を均一化することができ、低損失な特性
の優れた光ファイバを実現できる。
As described above, according to the present invention, the fluorine concentration is high in the outer peripheral portion and the fluorine concentration in the central portion so that the glass viscosity is substantially constant in the core base material having the GeO 2 concentration distribution of the square distribution type. Can be doped with fluorine so that the glass fiber has a low refractive index, and even if the optical fiber has a distribution with a high refractive index at the center, the glass viscosity can be made uniform, and an optical fiber with excellent low loss characteristics can be realized. .

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明光ファイバの一具体例におけるコア部
の半径方向におけるドーパント量分布構成(a)と屈折
率分布(b)の関係を示した模式図である。
FIG. 1 is a schematic diagram showing a relationship between a dopant amount distribution configuration (a) and a refractive index distribution (b) in a radial direction of a core portion in one specific example of the optical fiber of the present invention.

【図2】は本発明光ファイバの他の具体例におけるコア
部の半径方向におけるドーパント量分布構成(a)と屈
折率分布(b)の関係を示した模式図である。
FIG. 2 is a schematic diagram showing a relationship between a dopant amount distribution configuration (a) and a refractive index distribution (b) in a radial direction of a core portion in another specific example of the optical fiber of the present invention.

【図3】は本発明光ファイバのさらに他の具体例におけ
る中心コア部、外周コア部及びクラツド部における
FIG. 3 shows a central core portion, an outer peripheral core portion and a cladding portion in still another embodiment of the optical fiber of the present invention.

【図4】は本発明方法の一実施態様の概略説明図であ
る。
FIG. 4 is a schematic explanatory view of one embodiment of the method of the present invention.

【図5】は本発明の一具体例において多孔質ガラス母材
を均熱処理した昇温及び雰囲気条件を示すグラフ図であ
る。
FIG. 5 is a graph showing temperature rise and atmospheric conditions after soaking the porous glass base material in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 多孔質ガラス母材、 2 炉心管、 3 ヒータ、
4 ガス導入口、5 ガス排気口。
1 porous glass base material, 2 core tube, 3 heater,
4 gas inlets, 5 gas outlets.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 元宣 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 大橋 正治 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 田嶋 克介 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Motonobu Nakamura 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor, Shoji Ohashi 1-6, Uchisaiwai-cho, Chiyoda-ku, Tokyo No. Japan Nippon Telegraph and Telephone Corporation (72) Inventor Katsusuke Tajima 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Japan Nippon Telegraph and Telephone Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 屈折率の高いコアと該コアの外周に位置
しコアより屈折率の低いクラッドからなる光ファイバに
おいて、上記コアは少なくともGeO2 ドープ量が中心
部から外周に向かって減少する中心領域を有し、該中心
領域の外周から内側に向かう少なくとも一部の領域にお
いてフッ素ドープ量が外周から中心に向かって減少する
分布を有することによりファイバ横断面内のガラス粘度
が略均一に調整されてなることを特徴とする光ファイ
バ。
1. An optical fiber comprising a core having a high refractive index and a clad located on the outer periphery of the core and having a lower refractive index than the core, wherein the core has at least a GeO 2 doping amount decreasing from the central portion toward the outer periphery. The glass viscosity in the cross section of the fiber is adjusted to be substantially uniform by having a distribution in which the fluorine doping amount decreases from the outer circumference toward the center in at least a part of the area from the outer circumference to the inner side of the central area. An optical fiber characterized by
【請求項2】 屈折率の高いコアと該コアの外周に位置
しコアより屈折率の低いクラッドからなる光ファイバに
おいて、上記コアは少なくともGeO2 ドープ量が中心
部から外周に向かって減少する中心領域を有し、該中心
領域の外周から内側に向かう少なくとも一部の領域にお
いてフッ素ドープ量が外周から中心に向かって減少する
分布を有し、かつコアが中心領域の外周に中心領域の最
大屈折率より屈折率の低い外周領域をもち、該外周領域
においてはGeO2 のドープ量及びフッ素のドープ量が
それぞれ半径方向においてほぼ均一であることによりフ
ァイバ横断面内のガラス粘度が略均一に調整されてなる
ことを特徴とする光ファイバ。
2. An optical fiber comprising a core having a high refractive index and a clad located on the outer periphery of the core and having a lower refractive index than the core, wherein the core has at least a GeO 2 doping amount decreasing from the central portion toward the outer periphery. A region having a distribution in which the fluorine doping amount decreases from the outer periphery toward the center in at least a part of the region extending inward from the outer periphery of the central region, and the core has the maximum refractive index of the central region on the outer periphery of the central region. The outer peripheral region has a refractive index lower than the refractive index, and in the outer peripheral region, the doping amounts of GeO 2 and fluorine are substantially uniform in the radial direction, so that the glass viscosity in the fiber cross section is adjusted to be substantially uniform. An optical fiber characterized by
【請求項3】 屈折率の高いコアと該コアの外周に位置
しコアより屈折率の低いクラッドからなる光ファイバに
おいて、上記コアは少なくともGeO2 ドープ量が中心
部から外周に向かって減少する中心領域を有し、該中心
領域の外周から内側に向かう少なくとも一部の領域にお
いてフッ素ドープ量が外周から中心に向かって減少する
分布を有することによりファイバ横断面内のガラス粘度
が略均一に調整されてなる光ファイバの製造において、
中心領域のコアの合成は、(1)気相合成法によりGeO
2 ドープ量が中心部で高くなるような組成分布を持つ多
孔質ガラス母材を合成する工程、及び(2) 加熱炉内にお
いて該多孔質ガラス母材を不活性ガス雰囲気で加熱して
収縮させた後、フッ素原料を含む不活性ガス雰囲気で加
熱して透明化する工程、を有することを特徴とする光フ
ァイバの製造方法。
3. An optical fiber comprising a core having a high refractive index and a clad located on the outer periphery of the core and having a lower refractive index than the core, wherein the core has at least a GeO 2 doping amount decreasing from the central portion toward the outer periphery. The glass viscosity in the cross section of the fiber is adjusted to be substantially uniform by having a distribution in which the fluorine doping amount decreases from the outer circumference toward the center in at least a part of the area from the outer circumference to the inner side of the central area. In the manufacture of optical fiber
The core of the central region is synthesized by (1) the vapor phase synthesis method of GeO
Step 2 doping amount to synthesize a porous glass base material having a high the compositional distribution center, and (2) the porous glass preform is heated in an inert gas atmosphere is contracted in a heating furnace And then heating in an inert gas atmosphere containing a fluorine raw material to make it transparent, and a method for producing an optical fiber.
【請求項4】 上記加熱炉内雰囲気をフッ素原料を含む
不活性ガス雰囲気に変更する温度が1250〜1500
℃であることを特徴とする請求項3に記載の光ファイバ
の製造方法。
4. The temperature at which the atmosphere in the heating furnace is changed to an inert gas atmosphere containing a fluorine raw material is 1250 to 1500.
4. The method for manufacturing an optical fiber according to claim 3, wherein the temperature is in degrees Celsius.
【請求項5】 上記加熱炉内において該多孔質ガラス母
材を不活性ガス雰囲気で加熱して収縮させた後、フッ素
原料を含む不活性ガス雰囲気で加熱して透明化する工程
が、多孔質母材の全長を概略均熱に加熱できる均熱炉内
において昇温しつつ該多孔質ガラス母材を透明化し、こ
の際の炉内雰囲気を最初は不活性ガス雰囲気で、昇温の
途中からはフッ素原料を含む不活性ガス雰囲気とする工
程であることを特徴とする請求項3または請求項4記載
の光ファイバの製造方法。
5. The step of heating the porous glass base material in the heating furnace in an inert gas atmosphere to shrink the porous glass base material and then heating the porous glass base material in an inert gas atmosphere containing a fluorine raw material to make it transparent is porous. The porous glass base material is made transparent while the temperature is raised in a soaking furnace that can heat the entire length of the base material substantially uniformly, and the atmosphere in the furnace at this time is initially an inert gas atmosphere, The method of manufacturing an optical fiber according to claim 3 or 4, wherein is a step of setting an atmosphere of an inert gas containing a fluorine raw material.
【請求項6】 上記加熱炉がゾーン炉であることを特徴
とする請求項3または請求項4記載の光ファイバの製造
方法。
6. The method for producing an optical fiber according to claim 3, wherein the heating furnace is a zone furnace.
JP7196658A 1995-08-01 1995-08-01 Optical fiber and its production Pending JPH0948629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7196658A JPH0948629A (en) 1995-08-01 1995-08-01 Optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7196658A JPH0948629A (en) 1995-08-01 1995-08-01 Optical fiber and its production

Publications (1)

Publication Number Publication Date
JPH0948629A true JPH0948629A (en) 1997-02-18

Family

ID=16361448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7196658A Pending JPH0948629A (en) 1995-08-01 1995-08-01 Optical fiber and its production

Country Status (1)

Country Link
JP (1) JPH0948629A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762867A1 (en) * 2005-09-09 2007-03-14 Draka Comteq B.V. Optical fiber with reduced stimulated brillouin scattering
EP1806599A1 (en) * 2004-10-22 2007-07-11 Fujikura Ltd. Optical fiber, transmission system and multiple wavelength transmission system
JP2008139887A (en) * 2006-12-04 2008-06-19 Draka Comteq Bv Optical fiber
WO2011110617A1 (en) * 2010-03-10 2011-09-15 Heraeus Quarzglas Gmbh & Co. Kg Method and tubular semi-finished product for producing an optical fiber
EP1503230B1 (en) * 2003-07-28 2012-10-17 Draka Fibre Technology B.V. Multimode optical fibre, optical communication system using same and method for manufacturing such a fibre
US8837889B2 (en) 2005-11-10 2014-09-16 Draka Comteq, B.V. Single mode optical fiber
US8867880B2 (en) 2009-06-05 2014-10-21 Draka Comteq, B.V. Large bandwidth multimode optical fiber having a reduced cladding effect
US8879878B2 (en) 2011-07-01 2014-11-04 Draka Comteq, B.V. Multimode optical fiber
US8879920B2 (en) 2008-06-23 2014-11-04 Draka Comteq, B.V. Wavelength multiplexed optical system with multimode optical fibers
US8891074B2 (en) 2010-10-18 2014-11-18 Draka Comteq, B.V. Multimode optical fiber insensitive to bending losses
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
US9341771B2 (en) 2011-03-24 2016-05-17 Draka Comteq, B.V. Bend-resistant multimode optical fiber
US9405062B2 (en) 2011-04-27 2016-08-02 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
JP2016145981A (en) * 2015-01-30 2016-08-12 住友電気工業株式会社 Multimode optical fiber
CN106371167A (en) * 2016-11-26 2017-02-01 长飞光纤光缆股份有限公司 High-bandwidth multi-mode fiber
US20170031089A1 (en) * 2013-12-20 2017-02-02 Draka Comteq B.V. Single Mode Fibre with a Trapezoid Core, Showing Reduced Losses
US10962708B2 (en) 2017-12-21 2021-03-30 Draka Comteq France Bending-loss insensitive single mode fibre, with a shallow trench, and corresponding optical system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459400B2 (en) 2003-07-28 2016-10-04 Draka Comteq, B.V. Multimode optical fibre
US8794038B2 (en) 2003-07-28 2014-08-05 Draka Comteq, B.V. Method for manufacturing a multimode optical fibre
EP1503230B1 (en) * 2003-07-28 2012-10-17 Draka Fibre Technology B.V. Multimode optical fibre, optical communication system using same and method for manufacturing such a fibre
EP1806599A4 (en) * 2004-10-22 2010-09-22 Fujikura Ltd Optical fiber, transmission system and multiple wavelength transmission system
EP1806599A1 (en) * 2004-10-22 2007-07-11 Fujikura Ltd. Optical fiber, transmission system and multiple wavelength transmission system
US7437040B2 (en) 2005-09-09 2008-10-14 Draka Comteq B.V. Optical fiber with reduced stimulation Brillouin scattering
JP2007079563A (en) * 2005-09-09 2007-03-29 Draka Comteq Bv Optical fiber reduced in stimulated brillouin scattering
EP1764633A1 (en) * 2005-09-09 2007-03-21 Draka Comteq B.V. Optical fiber with reduced stimulated brillouin scattering
EP1762867A1 (en) * 2005-09-09 2007-03-14 Draka Comteq B.V. Optical fiber with reduced stimulated brillouin scattering
US8837889B2 (en) 2005-11-10 2014-09-16 Draka Comteq, B.V. Single mode optical fiber
JP2008139887A (en) * 2006-12-04 2008-06-19 Draka Comteq Bv Optical fiber
US7555186B2 (en) 2006-12-04 2009-06-30 Draka Comteq B.V. Optical fiber
US7894698B2 (en) 2006-12-04 2011-02-22 Draka Comteq B.V. Optical fiber
US8879920B2 (en) 2008-06-23 2014-11-04 Draka Comteq, B.V. Wavelength multiplexed optical system with multimode optical fibers
US8867880B2 (en) 2009-06-05 2014-10-21 Draka Comteq, B.V. Large bandwidth multimode optical fiber having a reduced cladding effect
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
WO2011110617A1 (en) * 2010-03-10 2011-09-15 Heraeus Quarzglas Gmbh & Co. Kg Method and tubular semi-finished product for producing an optical fiber
US9085481B2 (en) 2010-03-10 2015-07-21 Heraeus Quarzglas Gmbh & Co. Kg Method and tubular semifinished product for producing an optical fiber
US10118854B2 (en) 2010-03-10 2018-11-06 Heraeus Quarzglas Gmbh & Co. Kg Tubular semifinished product for producing an optical fiber
US8891074B2 (en) 2010-10-18 2014-11-18 Draka Comteq, B.V. Multimode optical fiber insensitive to bending losses
US9341771B2 (en) 2011-03-24 2016-05-17 Draka Comteq, B.V. Bend-resistant multimode optical fiber
US9671553B2 (en) 2011-03-24 2017-06-06 Draka Comteq, B.V. Bend-resistant multimode optical fiber
US9405062B2 (en) 2011-04-27 2016-08-02 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
US8879878B2 (en) 2011-07-01 2014-11-04 Draka Comteq, B.V. Multimode optical fiber
US20170031089A1 (en) * 2013-12-20 2017-02-02 Draka Comteq B.V. Single Mode Fibre with a Trapezoid Core, Showing Reduced Losses
US10295733B2 (en) * 2013-12-20 2019-05-21 Draka Comteq B.V. Single mode fibre with a trapezoid core, showing reduced losses
JP2016145981A (en) * 2015-01-30 2016-08-12 住友電気工業株式会社 Multimode optical fiber
CN106371167A (en) * 2016-11-26 2017-02-01 长飞光纤光缆股份有限公司 High-bandwidth multi-mode fiber
US10962708B2 (en) 2017-12-21 2021-03-30 Draka Comteq France Bending-loss insensitive single mode fibre, with a shallow trench, and corresponding optical system

Similar Documents

Publication Publication Date Title
JPH0948629A (en) Optical fiber and its production
JP4385681B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
JP2959877B2 (en) Optical fiber manufacturing method
JP4229442B2 (en) Method for producing a tube made of quartz glass, tubular intermediate product made of porous quartz glass, and use thereof
JPH044986B2 (en)
KR100426385B1 (en) Optical fiber and how to make it
US11577984B2 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
US7021083B2 (en) Manufacture of high purity glass tubes
EP1270522B1 (en) Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration
JPH10206669A (en) Optical fiber and its manufacture
WO2008003613A1 (en) Method for producing a tubular semifinished product from fluorine-doped quartz glass
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH0426523A (en) Production of optical fiber
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
US20220081345A1 (en) Manufacturing method of glass base material for optical fiber
KR100964548B1 (en) Method for manufacturing the preform of optical fiber
JP3439258B2 (en) Method for producing glass preform for optical fiber
JP2645717B2 (en) Manufacturing method of base material for optical fiber
JP3825204B2 (en) GI type optical fiber preform manufacturing method and GI type optical fiber preform manufactured by this method
JPH0948630A (en) Production of preform for optical fiber
JP2645710B2 (en) Preform for optical fiber and method of manufacturing the same