JPH06227827A - Transparent silica glass and its production - Google Patents

Transparent silica glass and its production

Info

Publication number
JPH06227827A
JPH06227827A JP4225293A JP4225293A JPH06227827A JP H06227827 A JPH06227827 A JP H06227827A JP 4225293 A JP4225293 A JP 4225293A JP 4225293 A JP4225293 A JP 4225293A JP H06227827 A JPH06227827 A JP H06227827A
Authority
JP
Japan
Prior art keywords
quartz glass
transparent
temperature
atmosphere
transparent quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4225293A
Other languages
Japanese (ja)
Other versions
JP3368932B2 (en
Inventor
Susumu Hachiuma
進 八馬
Shinya Kikukawa
信也 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27291136&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06227827(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP04225293A priority Critical patent/JP3368932B2/en
Publication of JPH06227827A publication Critical patent/JPH06227827A/en
Application granted granted Critical
Publication of JP3368932B2 publication Critical patent/JP3368932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen

Abstract

PURPOSE:To provide a transparent silica glass capable of being applied to a photomasking substrate useful for an excimer laser photolithography process of a super LSI production method and the production method of the transparent silica glass. CONSTITUTION:The objective silica glass contains OH group of <=10ppm, halogen of >=400ppm and hydrogen molecule and having excimer laser resistance. A porous silica glass substrate is subjected to a dehydrating treatment in a halogen atmosphere and to a vitrifying process to lead to a transparent silica glass. The objective transparent silica glass is obtained by incorporating the obtained transparent silica glass with hydrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明石英ガラス、特に
エキシマレーザー耐性を有する透明石英ガラスとその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent quartz glass, particularly a transparent quartz glass having excimer laser resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】石英ガラスは、近赤外から真空紫外域に
わたる広範囲の波長域にわたって透明な材料であるこ
と、並びに熱膨張係数が極めて小さく寸法安定性に優れ
ていること、更に化学的耐久性に優れていることのため
に、LSI製造の際のリソグラフィー工程のフォトマス
ク用基板材料として広く用いられている。
2. Description of the Related Art Quartz glass is a transparent material over a wide range of wavelengths from the near infrared to the vacuum ultraviolet region, has a very small coefficient of thermal expansion and is excellent in dimensional stability, and further has chemical durability. It is widely used as a substrate material for a photomask in a lithography process at the time of manufacturing an LSI because it is excellent.

【0003】しかしながら、従来石英ガラスは、フォト
マスク製造工程中のプラズマエッチングやエキシマレー
ザー等の高エネルギーの紫外線にさらされると構造欠陥
が誘起され、紫外域の透過率低下や蛍光発光中心を生成
する等の問題を有し、特にArFエキシマレーザーやK
rFエキシマレーザーを露光光源とした超LSIのリソ
グラフィーに用いられるフォトマスク用基板、更には前
記エキシマレーザーを光源とした光学系を構築する際の
光学部材としては問題があった。
However, when conventional quartz glass is exposed to high-energy ultraviolet rays such as plasma etching and excimer laser during the photomask manufacturing process, structural defects are induced and the transmittance of ultraviolet rays decreases and fluorescent emission centers are generated. There are problems such as ArF excimer laser and K
There has been a problem as a substrate for a photomask used in the lithography of VLSI using an rF excimer laser as an exposure light source, and as an optical member when constructing an optical system using the excimer laser as a light source.

【0004】これらの問題を解決するための方法とし
て、種々の検討がなされており、石英ガラス中に水素分
子を何らかの形で含有させればよいことが知られてい
る。しかしながら、水素を含有させてやるべき石英ガラ
スを特定しなければ、必ずしも完全な効果は期待できな
い。例えば、特開平1−201664号では、石英ガラ
スを水素を含有する雰囲気で熱処理する方法が開示され
ている。しかしながら、同号に開示されている方法で
は、ガラス形成原料を火炎加水分解して得られる多孔質
石英ガラス体を透明ガラス化した石英ガラスにKrFレ
ーザーを照射した際に形成される260nm近傍の吸収
帯と650nm近傍の蛍光発光を完全に抑止することは
不可能である。
Various investigations have been made as methods for solving these problems, and it is known that hydrogen molecules may be contained in quartz glass in some form. However, the complete effect cannot always be expected unless the quartz glass to be made to contain hydrogen is specified. For example, JP-A-1-201664 discloses a method of heat-treating quartz glass in an atmosphere containing hydrogen. However, according to the method disclosed in the same publication, the absorption around 260 nm formed when the KrF laser is irradiated to the quartz glass obtained by transparently vitrifying the porous quartz glass body obtained by subjecting the glass forming raw material to flame hydrolysis. It is not possible to completely suppress the fluorescence emission in the band and around 650 nm.

【0005】一方、石英ガラス体にエキシマレーザー耐
性を付与するために、石英ガラス中に水素分子を溶解さ
せる方法が、特開平3−88742号に開示されてい
る。しかしながら同号に開示されている石英ガラスで
は、多量の水素分子を溶解させる必要があり、そのため
に石英ガラスを爆発の危険性を有する水素雰囲気下でし
かも加圧下で熱処理する必要があるため、設備が大がか
りにならざるを得ないという問題点がある。
On the other hand, JP-A-3-88742 discloses a method of dissolving hydrogen molecules in quartz glass in order to impart excimer laser resistance to the quartz glass body. However, in the quartz glass disclosed in the same issue, it is necessary to dissolve a large amount of hydrogen molecules, and therefore it is necessary to heat-treat the quartz glass in a hydrogen atmosphere that has a risk of explosion and under pressure, so However, there is a problem that it has to be a big one.

【0006】また、ガラス形成原料を火炎加水分解して
得られる多孔質石英ガラス体をハロゲン雰囲気で熱処理
してOHを全く含有しない石英ガラスを製造する方法
は、例えば、低損失な石英ガラスファイバーの製造法で
あるVAD法多孔質石英ガラスの透明ガラス化法として
公知である。しかしながら、かかる方法で透明ガラス化
された石英ガラスは、250nm近傍に強大な吸収帯を
有しており、KrFエキシマレーザーを用いたエキシマ
レーザーリソグラフィー用のフォトマスク用基板として
は使用できない。さらにKrFエキシマレーザーを照射
すると、285nm、390nm、460nm近傍に強
い蛍光発光が認められ、目視で青色に見える。特に28
5nmに蛍光発光を有すると、KrFエキシマレーザー
を露光光源としたリソグラフィーにおいては、レジスト
の感光特性に一致するためにフォトマスク用基板として
は使用できない。
Further, a method for producing a quartz glass containing no OH by heat-treating a porous quartz glass body obtained by flame hydrolysis of a glass forming raw material in a halogen atmosphere is, for example, a method of producing a low loss quartz glass fiber. It is known as a transparent vitrification method of VAD method porous quartz glass which is a manufacturing method. However, the quartz glass transparentized by such a method has a strong absorption band near 250 nm, and cannot be used as a photomask substrate for excimer laser lithography using a KrF excimer laser. When further irradiated with a KrF excimer laser, strong fluorescence emission is observed in the vicinity of 285 nm, 390 nm, and 460 nm, and it looks blue in the visual sense. Especially 28
When it has fluorescence emission at 5 nm, it cannot be used as a substrate for a photomask in lithography using a KrF excimer laser as an exposure light source because it matches the photosensitive characteristics of a resist.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、前述
の問題を解決するためになされたものであり、エキシマ
レーザーの照射に対しても構造欠陥による吸収帯あるい
は蛍光発光のない、エキシマレーザー耐性を有する石英
ガラスとその製造方法を提供するものである。
DISCLOSURE OF THE INVENTION The object of the present invention is to solve the above-mentioned problems, and an excimer laser having no absorption band or fluorescence emission due to a structural defect even when irradiated by an excimer laser. A quartz glass having resistance and a method for producing the same are provided.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の課題を
解決すべくなされたものであり、ガラス形成原料を火炎
加水分解させて得られる石英ガラス微粒子を基材に堆積
・成長させて形成された多孔質石英ガラス体を加熱して
得られる透明石英ガラスにおいて、該透明石英ガラス中
のOH含有量が10ppm以下であって、ハロゲンを4
00ppm以上含有し、かつ水素を含有することを特徴
とする透明石英ガラスを提供する。
The present invention has been made to solve the above-mentioned problems, and is formed by depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material on a substrate. In the transparent quartz glass obtained by heating the porous quartz glass body thus prepared, the OH content in the transparent quartz glass is 10 ppm or less, and halogen is 4
Provided is a transparent quartz glass containing at least 00 ppm and containing hydrogen.

【0009】また本発明者は、上述の従来の問題点に鑑
み、ガラス形成原料を火炎加水分解して得られる多孔質
石英ガラス体を透明ガラス化して得られる透明石英ガラ
スにエキシマレーザー耐性を付与するために、多孔質石
英ガラス体が透明ガラス化する温度よりも低い温度域に
おいて後述する脱水処理を行ったのち、透明ガラス化を
行い、さらに所望の形状に成形した後、水素雰囲気で処
理することによって、容易にエキシマレーザー耐性を有
する透明石英ガラスが製造可能であることを見いだし
た。
Further, in view of the above-mentioned conventional problems, the present inventor imparts excimer laser resistance to a transparent quartz glass obtained by converting a porous quartz glass body obtained by flame hydrolysis of a glass forming raw material into transparent vitreous. In order to do so, after performing the dehydration treatment described below in a temperature range lower than the temperature at which the porous quartz glass body becomes transparent vitrified, it is transparent vitrified, further molded into a desired shape, and then treated in a hydrogen atmosphere. Therefore, it was found that a transparent quartz glass having excimer laser resistance can be easily manufactured.

【0010】本発明におけるOH含有量は、石英ガラス
の赤外分光スペクトルにおいて、2.7μm付近に認め
られる石英ガラス中のSi−OHの伸縮振動に基づく吸
収から求めたものである(J.P.Williams
他:J.Am.Ceram.Soc.,vol.55,
524〜527頁)。
The OH content in the present invention is obtained from the absorption based on the stretching vibration of Si--OH in the silica glass found in the vicinity of 2.7 μm in the infrared spectroscopy spectrum of the silica glass (JP .Williams
Others: J. Am. Ceram. Soc. , Vol. 55,
Pp. 524-527).

【0011】以下、本発明の内容を順を追って説明す
る。まず、ガラス形成原料を火炎加水分解して得られる
石英ガラス微粒子を基材に堆積・成長させて形成された
多孔質石英ガラス体を脱水処理した後、透明ガラス化し
て透明石英ガラス体とする製造方法で、OH濃度の異な
る透明石英ガラス体を製造した。
The contents of the present invention will be described below step by step. First, a porous quartz glass body formed by depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material on a substrate is dehydrated, and then transparentized into a transparent quartz glass body. By the method, transparent quartz glass bodies having different OH concentrations were manufactured.

【0012】さらに、該石英ガラス中に水素分子を含有
させた後、石英ガラス中のOH濃度とエキシマレーザー
照射によって誘起される構造欠陥に基づく650nm蛍
光発光強度の関係を検討した結果、本発明者らは、図1
に示すように、650nm蛍光強度(大塚電子株式会社
製MPCD−1000により測定)が石英ガラス中のO
H含有量に強く依存することを初めて見いだした。すな
わち、650nm蛍光強度は石英ガラス中のOH含有量
に比例し、OH含有量を40ppm程度まで減少させれ
ば650nm蛍光発光強度は、ごく微弱となりフォトマ
スク等の光学部材として実質的に問題がないレベルとな
り、更にOH含有量が10ppm以下であれば、650
nm蛍光発光を完全に抑制することが可能で、より好ま
しいことを見いだしたのである。
Further, after the hydrogen molecules were contained in the quartz glass, the relationship between the OH concentration in the quartz glass and the 650 nm fluorescence emission intensity based on the structural defect induced by the excimer laser irradiation was examined. Fig. 1
As shown in, the 650 nm fluorescence intensity (measured by MPCD-1000 manufactured by Otsuka Electronics Co., Ltd.) was O
For the first time, we have found a strong dependence on the H content. That is, the 650 nm fluorescence intensity is proportional to the OH content in the quartz glass, and if the OH content is reduced to about 40 ppm, the 650 nm fluorescence emission intensity becomes extremely weak and there is substantially no problem as an optical member such as a photomask. Level, and if the OH content is 10 ppm or less, 650
It was found that it is possible to completely suppress the nm fluorescence emission, which is more preferable.

【0013】そこで石英ガラス中のOH含有量を更に低
減するために、透明ガラス化温度以下の温度でハロゲン
ガスにより脱水処理した石英ガラスにKrFエキシマレ
ーザーを照射したところ、285nm、390nm、4
60nmに強い蛍光発光を有していることが判明した。
本発明者らは、ハロゲンガスにより脱水した石英ガラス
をさらに水素雰囲気下で熱処理を施し水素を含有させる
処理を行った後、エキシマレーザー耐性を評価した。こ
の結果、該石英ガラス中に含有されるハロゲンの濃度に
依存して各蛍光発光の抑止の割合が異なることを見いだ
した。すなわち該石英ガラス中のハロゲン濃度が400
ppm以上では285nm、390nm、460nmの
蛍光発光が水素分子を含有させることによってほぼ抑止
され、さらに好ましくはハロゲン濃度が500ppm以
上であれば各蛍光発光は完全に抑止されることを見いだ
したのである。またハロゲン濃度が400ppmより少
ないと390nm蛍光発光の抑止が不完全となり好まし
くない。
Therefore, in order to further reduce the OH content in the quartz glass, the quartz glass dehydrated by the halogen gas at a temperature below the transparent vitrification temperature was irradiated with a KrF excimer laser, and 285 nm, 390 nm, 4
It was found to have a strong fluorescence emission at 60 nm.
The present inventors evaluated excimer laser resistance after subjecting quartz glass dehydrated with a halogen gas to a heat treatment in a hydrogen atmosphere to add hydrogen. As a result, it was found that the inhibition ratio of each fluorescence emission differs depending on the concentration of halogen contained in the quartz glass. That is, the halogen concentration in the quartz glass is 400
It has been found that the fluorescence emission of 285 nm, 390 nm and 460 nm is substantially suppressed by containing hydrogen molecules at ppm or more, and more preferably each fluorescence emission is completely suppressed when the halogen concentration is 500 ppm or more. Further, when the halogen concentration is less than 400 ppm, the suppression of 390 nm fluorescence emission is incomplete, which is not preferable.

【0014】これらの石英ガラス中に含まれるハロゲン
の存在状態は明らかではないが、400ppm以上のハ
ロゲンが石英ガラス中に存在することによって、OH含
有量の低減をもたらし、かつ水素を含有する場合には、
KrFエキシマレーザーの照射に対して650nm蛍光
発光、並びに285nm、390nm、460nmの各
蛍光発光もを実質的に問題とならない程度に抑止される
ことを見いだし、本発明に至ったのである。
The existence state of the halogen contained in these quartz glasses is not clear, but the presence of 400 ppm or more of halogen in the quartz glass leads to a reduction in the OH content, and when hydrogen is contained, Is
The inventors have found that the fluorescence emission of 650 nm and the fluorescence emission of 285 nm, 390 nm, and 460 nm can be suppressed to the extent that there is no substantial problem with the irradiation of the KrF excimer laser, and the present invention has been completed.

【0015】また、石英ガラス中の水素分子の影響を検
討するために、水素含有量の異なる石英ガラスを作成
し、ラマン分光法(日本分光工業株式会社製R−800
による)で測定した溶存水素量と、KrFエキシマレー
ザーを照射した際の蛍光発光の関係を検討した。OH含
有量が10ppmで溶存水素量が4.4×1017分子/
cm3 の石英ガラスでは、KrFエキシマレーザー照射
時に390nmの蛍光発光が認められた。一方、ラマン
散乱ピークが認められず溶存水素量がラマン法の検出限
界以下である1×1017分子/cm3 以下で、かつOH
含有量が10ppm以下の石英ガラスは390nmの蛍
光発光を生じず、しかも650nm蛍光発光も実質的に
抑制されていることを見いだした。
Further, in order to study the influence of hydrogen molecules in the quartz glass, quartz glasses having different hydrogen contents were prepared and subjected to Raman spectroscopy (R-800 manufactured by JASCO Corporation).
The relationship between the amount of dissolved hydrogen measured in (1) and the fluorescence emission upon irradiation with a KrF excimer laser was examined. OH content is 10ppm and dissolved hydrogen amount is 4.4 × 10 17 molecule /
With quartz glass of cm 3 , fluorescence emission of 390 nm was observed upon irradiation with KrF excimer laser. On the other hand, no Raman scattering peak was observed, the amount of dissolved hydrogen was 1 × 10 17 molecules / cm 3 or less, which is less than the detection limit of the Raman method, and OH.
It has been found that quartz glass having a content of 10 ppm or less does not generate fluorescence emission at 390 nm, and fluorescence emission at 650 nm is substantially suppressed.

【0016】そこで、石英ガラスを真空中1000℃で
加熱したときに放出される水素量を評価したところ、前
記エキシマレーザー耐性を有する石英ガラスの表面積あ
たりの水素放出量は、0.9×1020分子/m2 であっ
た。また水素放出量が、1.5×1020分子/m2 の石
英ガラスでは390nm蛍光発光の抑止が不充分であっ
た。一方、水素放出量が5×1017分子/m2 程度の水
素分子含有量の少ない石英ガラスでは285mm、46
0nmの蛍光発光が認められ、さらにエキシマレーザー
照射に従って650nm蛍光強度の増大が認められた。
Then, when the amount of hydrogen released when the quartz glass was heated at 1000 ° C. in vacuum was evaluated, the amount of hydrogen released per surface area of the excimer laser resistant quartz glass was 0.9 × 10 20. The molecule / m 2 . Further, in the case of quartz glass having a hydrogen release amount of 1.5 × 10 20 molecules / m 2 , suppression of fluorescence emission at 390 nm was insufficient. On the other hand, quartz glass with a small hydrogen molecule content of about 5 × 10 17 molecules / m 2 of hydrogen release amount has a diameter of 285 mm, 46 mm.
Fluorescence emission of 0 nm was observed, and further an increase of 650 nm fluorescence intensity was observed with the excimer laser irradiation.

【0017】本発明において、好ましい実施態様の一つ
としては、予めガラス形成原料を酸水素炎中で火炎加水
分解して得られる石英ガラス微粉末を基材に堆積・成長
させた多孔質石英ガラス体を透明ガラス化する温度以下
の温度域で、ハロゲン雰囲気で脱水処理を行う。前記脱
水処理を行った後、引き続き透明ガラス化温度まで昇温
加熱して透明石英ガラス体とする。さらに軟化点以上の
温度に加熱して所望の形状に成形した後、水素雰囲気で
熱処理して、エキシマレーザー耐性に優れる透明石英ガ
ラスを得る。上記基材として石英ガラス製の種棒(例え
ば特公昭63−24973号)を用いることができる。
また石英ガラス製に限らず板状の基材を用いてもよい。
In a preferred embodiment of the present invention, a porous quartz glass is prepared by depositing and growing fine quartz glass powder obtained by flame hydrolysis of a glass forming raw material in an oxyhydrogen flame on a substrate in advance. Dehydration is performed in a halogen atmosphere in a temperature range below the temperature at which the body becomes transparent. After the dehydration treatment, the transparent quartz glass body is heated by raising the temperature to the transparent vitrification temperature. Further, after being heated to a temperature equal to or higher than the softening point to be formed into a desired shape, it is heat-treated in a hydrogen atmosphere to obtain a transparent quartz glass having excellent excimer laser resistance. A seed rod made of quartz glass (for example, JP-B-63-24973) can be used as the base material.
Further, not only quartz glass but also a plate-shaped substrate may be used.

【0018】用いられるガラス形成原料としては、ガス
化可能な原料であれば特に制限されるものではないが、
SiCl4 、SiHCl3 、SiH2 Cl2 、SiCH
3 Cl3 等の塩化物、SiF4 、SiHF3 、SiH2
2 等のフッ化物、SiBr4 ,SiHBr3 等の臭化
物、SiI4 等の沃化物等のハロゲン化珪素化合物が作
業性やコストの面から好ましい。多孔質石英ガラス体
は、これらガラス形成原料を通常の酸水素火炎中で加水
分解し、基材上に堆積させて形成される。
The glass forming raw material used is not particularly limited as long as it is a gasifiable raw material.
SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiCH
Chlorides such as 3 Cl 3 , SiF 4 , SiHF 3 , SiH 2
Fluoride such as F 2 ; bromide such as SiBr 4 and SiHBr 3 ; silicon halide compound such as iodide such as SiI 4 are preferable from the viewpoint of workability and cost. The porous quartz glass body is formed by hydrolyzing these glass forming raw materials in an ordinary oxyhydrogen flame and depositing them on a substrate.

【0019】このようにして得られた多孔質石英ガラス
体は、ついでハロゲン雰囲気内で一定時間加熱保持され
た後、透明ガラス化まで昇温されて透明ガラス化して石
英ガラス体となる。すなわち、例えば、多孔質石英ガラ
ス体は雰囲気制御可能な電気炉内に予め装着された後、
一定の昇温速度で加熱される。ついで所定の温度に到達
の後、ハロゲンガスを容積で0.01〜5%含有するガ
スを導入し、ハロゲン含有雰囲気とする。
The thus obtained porous quartz glass body is then heated and held in a halogen atmosphere for a certain period of time and then heated to a transparent vitrification state to become a transparent vitrification into a quartz glass body. That is, for example, after the porous quartz glass body is pre-installed in an electric furnace whose atmosphere can be controlled,
It is heated at a constant heating rate. Then, after reaching a predetermined temperature, a gas containing 0.01 to 5% by volume of halogen gas is introduced to form a halogen-containing atmosphere.

【0020】ハロゲンの種類としては、沃素、臭素、塩
素、フッ素のうちから適宜選択することができるが、取
扱い性の面から、塩素もしくはフッ素が好ましい。特に
炉材等の耐食性の点から、塩素が好ましい。またハロゲ
ンの供給源として、塩素ガス、フッ素ガスの一部または
全部を、塩素の場合には、CCl4 、CHCl3 、Si
Cl4 等に代えて使用しても差し支えなく、フッ素の場
合には、SF6 、CHF3 、SiF4 等のハロゲン化物
に代えて使用しても差し支えない。
The type of halogen can be appropriately selected from iodine, bromine, chlorine and fluorine, but chlorine or fluorine is preferable from the viewpoint of handleability. Particularly, chlorine is preferable from the viewpoint of corrosion resistance of furnace materials and the like. As a source of halogen, chlorine gas or fluorine gas may be partially or wholly used, and in the case of chlorine, CCl 4 , CHCl 3 , or Si.
It may be used in place of Cl 4 or the like, and in the case of fluorine, it may be used in place of halides such as SF 6 , CHF 3 and SiF 4 .

【0021】またハロゲン雰囲気処理する際のハロゲン
濃度としては、容積で0.01〜5%の範囲であること
が好ましい。ハロゲン濃度が5%を超えると、引き続き
透明ガラス化するために昇温した際に、多孔質石英ガラ
ス中に含有されたハロゲンが遊離し透明ガラス化しない
ため好ましくなく、また濃度が0.01%未満の場合に
は、ハロゲン処理の効果が認められないため好ましくな
い。
The halogen concentration during the halogen atmosphere treatment is preferably in the range of 0.01 to 5% by volume. If the halogen concentration exceeds 5%, it is not preferable because the halogen contained in the porous quartz glass is liberated and does not become transparent when the temperature is raised for the subsequent transparent vitrification, and the concentration is 0.01%. If it is less than the above range, the effect of the halogen treatment is not recognized, which is not preferable.

【0022】次に、脱水処理する際の温度域としては、
800〜1250℃の範囲であることが好ましく、これ
より低い温度では乾燥ガス、もしくはハロゲンによる脱
水効果が認められず、これより高い温度では多孔質石英
ガラス体の表面で透明ガラス化が進行してしまい、多孔
質石英ガラス体の脱水が効率よく行われないために好ま
しくない。
Next, as the temperature range for the dehydration treatment,
The temperature is preferably in the range of 800 to 1250 ° C., the dehydration effect by the dry gas or halogen is not recognized at a temperature lower than this, and the transparent vitrification proceeds on the surface of the porous quartz glass body at a temperature higher than this. It is not preferable because the porous quartz glass body is not efficiently dehydrated.

【0023】さらにこの温度域で保持する時間として
は、処理する温度、ハロゲンガス濃度、多孔質石英ガラ
ス体の体積等に依存するため一概に規定することは困難
であるが、1〜30時間の範囲であることが好ましい。
石英ガラス中のOH含有量は、FTIR分光法によりS
i−OHによる3680cm-1の吸収で定量することが
できるが、ハロゲンガスで脱水された石英ガラス中のO
H含有量は10ppm以下となる。
Further, the holding time in this temperature range depends on the temperature to be treated, the halogen gas concentration, the volume of the porous quartz glass body, etc., so that it is difficult to unconditionally specify, but it is 1 to 30 hours. It is preferably in the range.
The OH content in quartz glass is determined by FTIR spectroscopy as S
It can be quantified by absorption at 3680 cm −1 by i-OH, but O in quartz glass dehydrated with halogen gas
The H content is 10 ppm or less.

【0024】このようにしてハロゲンガスにより脱水さ
れた多孔質石英ガラス体は、引き続き透明ガラス化温度
まで昇温・加熱されて透明ガラス化される。透明ガラス
化温度は、1350〜1500℃の範囲であれば特に限
定されない。透明ガラス化された透明石英ガラス体は、
通常、基材から取り除かれ、次工程へ移される。
The porous quartz glass body dehydrated by the halogen gas in this manner is subsequently heated to a transparent vitrification temperature and heated to be vitrified. The transparent vitrification temperature is not particularly limited as long as it is in the range of 1350 to 1500 ° C. The transparent vitrified transparent quartz glass body,
Usually, it is removed from the substrate and transferred to the next step.

【0025】こうして得られた透明石英ガラスを所望の
形状に成形するには、透明石英ガラス体を軟化点以上の
温度域に加熱することによってなされる。このときの温
度域としては、1600〜1800℃の範囲であること
が好ましい。1600℃より低い温度では、透明石英ガ
ラスの粘度が高いため成形が事実上困難であると共に、
結晶化による失透が生じるため好ましくなく、1800
℃より高い温度では、透明石英ガラスの昇華が生じるた
め好ましくない。
The transparent quartz glass thus obtained is molded into a desired shape by heating the transparent quartz glass body to a temperature range above the softening point. The temperature range at this time is preferably in the range of 1600 to 1800 ° C. At a temperature lower than 1600 ° C., it is practically difficult to mold because the viscosity of the transparent quartz glass is high, and
Devitrification occurs due to crystallization, which is not preferable.
A temperature higher than ℃ is not preferable because sublimation of the transparent quartz glass occurs.

【0026】所望の形状に成形された透明石英ガラス
は、引き続き水素分子を含有させるために、雰囲気制御
可能な電気炉内に装着され、処理温度まで昇温される。
処理温度に到達した後、水素を含有する雰囲気ガスを導
入し炉内雰囲気を水素雰囲気とする。水素濃度として
は、30%以上であることが好ましい。これより低い濃
度では、必要な水素量の導入が不可能であるため好まし
くない。更に好ましくは90%以上の水素濃度であれば
よい。
The transparent quartz glass molded into a desired shape is placed in an electric furnace whose atmosphere can be controlled so as to subsequently contain hydrogen molecules, and heated to the processing temperature.
After reaching the processing temperature, an atmosphere gas containing hydrogen is introduced to make the atmosphere in the furnace a hydrogen atmosphere. The hydrogen concentration is preferably 30% or more. If the concentration is lower than this, it is not preferable because the required amount of hydrogen cannot be introduced. More preferably, the hydrogen concentration is 90% or more.

【0027】また処理温度は、500〜1100℃の範
囲であることが好ましく、これより低い温度では、水素
分子の拡散係数が小さいため必要な水素量を含有させる
ために必要な時間がきわめて長時間となるため好ましく
ない、また1100℃を超えると水素分子との反応によ
り390nm蛍光発光中心が形成されるため好ましくな
い。透明石英ガラス中に溶解する水素量は、温度の上昇
にしたがって減少するため、更に好ましくは800〜1
000℃の範囲が適切である。
Further, the treatment temperature is preferably in the range of 500 to 1100 ° C. At a temperature lower than this, the time required for containing the required amount of hydrogen is extremely long because the diffusion coefficient of hydrogen molecules is small. Is not preferable, and when the temperature exceeds 1100 ° C., the reaction with hydrogen molecules forms a 390 nm fluorescent emission center, which is not preferable. Since the amount of hydrogen dissolved in the transparent quartz glass decreases as the temperature rises, it is more preferably 800 to 1
A range of 000 ° C is suitable.

【0028】以上のような工程を経て製造される透明石
英ガラスはOH含有量が10ppm以下でかつハロゲン
含有量が400ppm以上となる。
The transparent quartz glass manufactured through the above steps has an OH content of 10 ppm or less and a halogen content of 400 ppm or more.

【0029】さらに該透明石英ガラスは、水素分子含有
量がラマン法による検出限界以下となり、表面積あたり
の水素分子放出量が1×1020分子/m2 以下であっ
て、KrFエキシマレーザーの照射に対して、吸収帯の
生成や蛍光発光中心のないエキシマレーザー耐性を有す
る石英ガラスである。また、本発明により製造される透
明石英ガラスは、ガラス形成原料として高純度な合成原
料が使用可能なこと、溶融工程を経ないためにルツボ等
からの不純物の混入がないこと等から、鉄、ニッケル等
の重金属元素やナトリウム、カリウム等のアルカリ金属
元素の不純物総量が1ppm以下と極めて高純度であ
る。
Further, the transparent quartz glass has a hydrogen molecule content below the detection limit by the Raman method and a hydrogen molecule emission amount per surface area of 1 × 10 20 molecules / m 2 or less, and is suitable for irradiation with a KrF excimer laser. On the other hand, it is a quartz glass that has excimer laser resistance without the generation of absorption bands and fluorescence emission centers. Further, the transparent quartz glass produced by the present invention, since a high-purity synthetic raw material can be used as a glass forming raw material, since there is no mixing of impurities from the crucible and the like because it does not go through the melting step, iron, The total amount of impurities of heavy metal elements such as nickel and alkali metal elements such as sodium and potassium is 1 ppm or less, which is extremely high purity.

【0030】[0030]

【作用】透明石英ガラスにエキシマレーザーのような高
エネルギーの紫外線を照射した際に、650nm蛍光発
光中心が生成し、赤色を呈する機構は必ずしも明確では
ないが、透明石英ガラス中の非架橋酸素ラジカルが原因
であるといわれている。そして、非架橋酸素ラジカル
は、石英ガラス中に含有される溶存酸素分子、酸素過剰
型欠陥(Si−O−O−Si)等にエキシマレーザーを
照射することによって形成されることが知られている。
本発明者は、OH基がエキシマレーザー照射時に、非架
橋酸素ラジカルになることを初めて見いだした。したが
って、非架橋酸素ラジカルの前駆体となりうる溶存酸素
分子、酸素過剰型欠陥、OH含有量を減少させることが
エキシマレーザー耐性の上で重要な因子となる。
When the transparent quartz glass is irradiated with high-energy ultraviolet rays such as an excimer laser, a 650 nm fluorescence emission center is generated and the mechanism of exhibiting a red color is not always clear, but the non-crosslinked oxygen radicals in the transparent quartz glass are not clear. Is said to be the cause. It is known that non-crosslinked oxygen radicals are formed by irradiating a dissolved oxygen molecule, oxygen excess type defects (Si-O-O-Si), etc. contained in quartz glass with an excimer laser. .
The present inventor found for the first time that an OH group becomes a non-crosslinked oxygen radical upon irradiation with an excimer laser. Therefore, reducing dissolved oxygen molecules, oxygen-excessive defects, and OH content that can be precursors of non-crosslinked oxygen radicals are important factors for excimer laser resistance.

【0031】本発明において、OH含有量を10ppm
以下に限定することは、非架橋酸素ラジカルの前駆体の
一つであるOH含有量を低減させることによってエキシ
マレーザー照射時に650nm蛍光発光とその励起波長
である260nm近傍の吸収帯を低減させる作用を有す
る。また水素を含有させることは、酸素過剰型欠陥並び
に溶存酸素分子を除去することになり、エキシマレーザ
ー照射に対して耐性を改善する作用を有する。
In the present invention, the OH content is 10 ppm.
Limiting to the following is the action of reducing the OH content, which is one of the precursors of non-crosslinked oxygen radicals, to reduce the 650 nm fluorescence emission at the time of excimer laser irradiation and the absorption band near its excitation wavelength of 260 nm. Have. Further, the inclusion of hydrogen has the effect of removing oxygen excess defects and dissolved oxygen molecules, and has the effect of improving the resistance to excimer laser irradiation.

【0032】さらにハロゲンによる脱水操作によりOH
基を完全に除去した透明石英ガラスに適当量の水素を含
有させることは、ハロゲン脱水操作によっても除去でき
なかった酸素過剰型欠陥並びに溶存酸素を除去し、さら
にハロゲン脱水操作によって新たに生成する285n
m、390nm、460nm蛍光発光中心を除去し、エ
キシマ耐性を完全なものとする作用を有する。
Further, by dehydration operation with halogen, OH
The inclusion of an appropriate amount of hydrogen in the transparent quartz glass from which the groups have been completely removed removes oxygen-excessive defects and dissolved oxygen that could not be removed even by the halogen dehydration operation, and further produces 285n
m, 390 nm, 460 nm to remove fluorescence emission centers and complete excimer resistance.

【0033】以下、本発明の詳細についてさらに実施例
により説明するが、本発明の内容は当然のことながらこ
れら実施例により限定されるものではない。
Hereinafter, the details of the present invention will be described with reference to Examples, but the content of the present invention is not limited to these Examples.

【0034】[0034]

【実施例】【Example】

[実施例1]公知の方法により、SiCl4 を酸水素火
炎中で加水分解させて形成させた微粒子を種棒に堆積さ
せて形成させた直径9cm、長さ10cmの多孔質石英
ガラス体を常圧かつ室温で黒鉛製発熱体を有する雰囲気
制御可能な電気炉内に設置した。ついで500℃/hr
の昇温速度で1200℃まで昇温した後、2%の塩素ガ
スを含有させた窒素ガスを導入し、炉内雰囲気を塩素を
含有する雰囲気としたのち、1250℃に4時間保持し
た。塩素雰囲気内での脱水処理を行った後、He100
%のガスを導入して、雰囲気をHe雰囲気とした後、多
孔質石英ガラス体を500℃/hrの昇温速度で150
0℃まで昇温し、1500℃で3時間保持して透明ガラ
ス化を行った。
[Example 1] A porous quartz glass body having a diameter of 9 cm and a length of 10 cm formed by depositing fine particles formed by hydrolyzing SiCl 4 in an oxyhydrogen flame on a seed rod by a known method is usually used. It was installed in an electric furnace having a heating element made of graphite under pressure and at room temperature and capable of controlling the atmosphere. Then 500 ° C / hr
After the temperature was raised to 1200 ° C. at a heating rate of 1, the nitrogen gas containing 2% of chlorine gas was introduced, and the atmosphere in the furnace was changed to an atmosphere containing chlorine, and then maintained at 1250 ° C. for 4 hours. After dehydration treatment in chlorine atmosphere, He100
% Gas was introduced to make the atmosphere He atmosphere, and then the porous quartz glass body was heated to 150 ° C. at a temperature rising rate of 500 ° C./hr.
The temperature was raised to 0 ° C., and the temperature was kept at 1500 ° C. for 3 hours to carry out transparent vitrification.

【0035】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、3×3×4cmのブ
ロック形状に成形した。引き続き、電気炉内に成形ブロ
ックを設置したまま電気炉の温度を1200℃まで降温
させ、以後30℃/hrの冷却速度で徐冷を行い、炉内
温度が1000℃になったところで給電を停止し炉内放
冷した。
The transparent quartz glass thus obtained was placed in an electric furnace having a carbon heating element to obtain a softening point of 175 or higher.
It was heated to 0 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0036】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で100%水素ガスを導入し炉内雰
囲気を水素雰囲気とし、その温度で7時間保持して透明
石英ガラス中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours so that hydrogen molecules were contained in the transparent quartz glass.

【0037】得られた透明石英ガラス中のOH含有量は
1ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は、1000ppmであった。また真空中で
1000℃に昇温した際の水素分子放出量は0.9×1
20分子/m2 であった。この石英ガラスにKrFエキ
シマレーザーを200mJ/cm2 ・pulse、20
0Hzの条件で照射しながら、蛍光発光強度を測定し
た。図1に示すように、この透明石英ガラスは、KrF
エキシマレーザーを照射するにしたがって、650nm
蛍光発光を全く生じず、したがって260nm近傍の吸
収帯も生じないことが明らかとなった。それゆえ、Kr
Fエキシマレーザーを光源とするフォトマスク用基板も
しくは光学部材に最も適切な石英ガラスであった。
The OH content in the obtained transparent quartz glass was 1 ppm. On the other hand, the chlorine concentration contained in the transparent quartz glass was 1000 ppm. The amount of released hydrogen molecules when heated to 1000 ° C in vacuum is 0.9 x 1
It was 0 20 molecule / m 2 . KrF excimer laser is applied to this quartz glass at 200 mJ / cm 2 · pulse, 20
The fluorescence emission intensity was measured while irradiating under the condition of 0 Hz. As shown in FIG. 1, this transparent quartz glass is made of KrF.
650nm as irradiated by excimer laser
It became clear that no fluorescence was emitted, and therefore no absorption band near 260 nm was produced. Therefore, Kr
Quartz glass was most suitable for a photomask substrate or an optical member using an F excimer laser as a light source.

【0038】[比較例1]実施例1と同様の方法で形成
させた直径35cm、長さ100cmの多孔質石英ガラ
ス体を常圧かつ室温で雰囲気制御可能な電気炉内に設置
した。ついで水蒸気分圧が0.002mmHgの窒素ガ
スで電気炉内雰囲気を置換した後、水蒸気分圧が0.0
02mmHgの窒素ガスを流しながら500℃/hrの
昇温速度で1000℃まで昇温した。引き続き昇温速度
を50℃/hrとし1250℃まで昇温して、その温度
で5hr保持して脱水処理を行った。
Comparative Example 1 A porous quartz glass body having a diameter of 35 cm and a length of 100 cm formed by the same method as in Example 1 was placed in an electric furnace capable of controlling the atmosphere at normal pressure and room temperature. Then, after replacing the atmosphere in the electric furnace with nitrogen gas having a steam partial pressure of 0.002 mmHg, the steam partial pressure is 0.0
The temperature was raised to 1000 ° C. at a temperature rising rate of 500 ° C./hr while flowing a nitrogen gas of 02 mmHg. Subsequently, the temperature rising rate was set to 50 ° C./hr, the temperature was raised to 1250 ° C., and the temperature was maintained for 5 hours for dehydration treatment.

【0039】こうして得られた熱処理済みの多孔質石英
ガラス体を透明ガラス化のための炉内最高温度が145
0℃に制御された電気炉内上部に設置し、炉内を水蒸気
分圧が0.002mmHgのヘリウムガスで置換した
後、80mm/hrの速度で下降させながら最高温度域
を通過させて透明ガラス化を行った。
The heat-treated porous quartz glass body thus obtained has a maximum temperature of 145 in the furnace for transparent vitrification.
It is installed in the upper part of the electric furnace controlled at 0 ° C, the inside of the furnace is replaced with helium gas with a steam partial pressure of 0.002 mmHg, and then it is passed through the maximum temperature range while descending at a speed of 80 mm / hr to clear glass Was made.

【0040】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、16×16×30c
mのブロック形状に成形した。引き続き、電気炉内に成
形ブロックを設置したまま電気炉の温度を1200℃ま
で降温させ、以後30℃/hrの冷却速度で徐冷を行
い、炉内温度が1000℃になったところで給電を停止
し炉内放冷した。
The transparent quartz glass thus obtained was heated in an electric furnace having a heating element made of carbon to 175 above the softening point.
Heat to 0 ° C to cause self-weight deformation, 16 × 16 × 30c
It was molded into a block shape of m. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0041】こうして得られた透明石英ガラスブロック
から16×16×2cmの透明石英ガラス体を切り出し
た後、雰囲気制御可能な電気炉内に挿入し、1000℃
まで300℃/hrの昇温速度で昇温した。1000℃
に到達した後、大気圧下で100%水素ガスを導入し炉
内雰囲気を水素雰囲気とし、その温度で15時間保持し
て透明石英ガラス中に水素を含有させた。
A transparent quartz glass block of 16 × 16 × 2 cm was cut out from the transparent quartz glass block thus obtained, and then the transparent quartz glass block was inserted into an electric furnace capable of controlling the atmosphere to 1000 ° C.
Up to 300 ° C./hr. 1000 ° C
After reaching 1, the hydrogen atmosphere was introduced into the transparent quartz glass by introducing 100% hydrogen gas under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere and maintaining the temperature for 15 hours.

【0042】得られた透明石英ガラス中のOH含有量は
40ppmであった。また、ラマン分光法から求められ
る溶存水素量は、1×1017分子/cm3 以下であっ
た。さらに、真空中での1000℃における水素分子放
出量は0.3×1020分子/m2 であった。この透明石
英ガラスにKrFエキシマレーザーを200mJ/cm
2 ・pulse、200Hzの条件で照射しながら、蛍
光発光強度を測定した。図1に示すように、この透明石
英ガラスは、KrFエキシマレーザーの照射に対して、
フォトマスク等の光学部材としては実質的には問題を生
じない程度ではあるが、ごく微弱な650nm蛍光発光
が認められた。
The OH content in the obtained transparent quartz glass was 40 ppm. The amount of dissolved hydrogen determined by Raman spectroscopy was 1 × 10 17 molecule / cm 3 or less. Further, the amount of released hydrogen molecules at 1000 ° C. in vacuum was 0.3 × 10 20 molecule / m 2 . A KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm.
The fluorescence emission intensity was measured while irradiating under the conditions of 2 pulse and 200 Hz. As shown in FIG. 1, this transparent quartz glass was irradiated with a KrF excimer laser.
Although it is not a problem as an optical member such as a photomask, a very weak fluorescence emission of 650 nm was observed.

【0043】[比較例2]実施例1と同様の方法で形成
させた直径35cm、長さ100cmの多孔質石英ガラ
ス体を常圧かつ室温で雰囲気制御可能な電気炉内に設置
した。ここで脱水処理を行わないで、多孔質石英ガラス
体を透明ガラス化のための炉内最高温度が1450℃に
制御された電気炉内上部に設置し、炉内を水蒸気分圧が
0.002mmHgのヘリウムガスで置換した後、80
mm/hrの速度で下降させながら最高温度域を通過さ
せて透明ガラス化を行った。
[Comparative Example 2] A porous quartz glass body having a diameter of 35 cm and a length of 100 cm formed by the same method as in Example 1 was placed in an electric furnace capable of controlling the atmosphere at normal pressure and room temperature. Here, without dehydration treatment, the porous quartz glass body was installed in the upper part of the electric furnace where the maximum temperature in the furnace for transparent vitrification was controlled to 1450 ° C, and the steam partial pressure in the furnace was 0.002 mmHg. After replacing with helium gas of
While descending at a speed of mm / hr, it passed through the maximum temperature range to be transparent vitrified.

【0044】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、18×18×24c
mのブロック形状に成形した。引き続き、電気炉内に成
形ブロックを設置したまま電気炉の温度を1200℃ま
で降温させ、以後30℃/hrの冷却速度で徐冷を行
い、炉内温度が1000℃になったところで給電を停止
し炉内放冷した。
The transparent quartz glass thus obtained was placed in an electric furnace having a heating element made of carbon and the temperature of the softening point was 175 or higher.
18 × 18 × 24c
It was molded into a block shape of m. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0045】こうして得られた透明石英ガラスブロック
から18×18×1cmの透明石英ガラス体を切り出し
た後、雰囲気制御可能な電気炉内に挿入し、1000℃
まで300℃/hrの昇温速度で昇温した。1000℃
に到達した後、大気圧下で100%水素ガスを導入し炉
内雰囲気を水素雰囲気とし、その温度で7時間保持して
透明石英ガラス中に水素分子を含有させた。
After cutting out a transparent quartz glass body of 18 × 18 × 1 cm from the transparent quartz glass block thus obtained, it was inserted into an electric furnace capable of controlling the atmosphere and 1000 ° C.
Up to 300 ° C./hr. 1000 ° C
After reaching 1, the hydrogen atmosphere was introduced into the furnace by introducing 100% hydrogen gas under atmospheric pressure, and the temperature was maintained for 7 hours so that hydrogen molecules were contained in the transparent quartz glass.

【0046】得られた透明石英ガラス中のOH含有量は
200ppmであった。また、ラマン分光法から求めら
れる溶存水素分子量は、1×1017分子/cm3 以下で
あった。さらに、真空中での1000℃における水素分
子放出量は0.5×1020分子/m2 であった。この透
明石英ガラスにKrFエキシマレーザーを200mJ/
cm2 ・pulse、200Hzの条件で照射しなが
ら、蛍光発光強度を測定した。図1に示すように、この
透明石英ガラスは、KrFエキシマレーザーを照射する
にしたがって、650nm蛍光発光が生じ、したがって
260nm近傍の吸収帯も生じることが明らかとなっ
た。それゆえ、KrFエキシマレーザーを光源とするフ
ォトマスク用基板もしくは光学部材に適切ではなかっ
た。
The OH content in the obtained transparent quartz glass was 200 ppm. The molecular weight of dissolved hydrogen determined by Raman spectroscopy was 1 × 10 17 molecule / cm 3 or less. Further, the amount of released hydrogen molecules at 1000 ° C. in vacuum was 0.5 × 10 20 molecule / m 2 . A KrF excimer laser is added to this transparent quartz glass at 200 mJ /
The fluorescence emission intensity was measured while irradiating under conditions of cm 2 · pulse and 200 Hz. As shown in FIG. 1, it was revealed that this transparent quartz glass emits fluorescence at 650 nm, and hence an absorption band near 260 nm, as it is irradiated with a KrF excimer laser. Therefore, it was not suitable for a photomask substrate or an optical member using a KrF excimer laser as a light source.

【0047】[比較例3]実施例1と同様の方法で形成
させた直径8cm、長さ10cmの多孔質石英ガラス体
を常圧かつ室温で雰囲気制御可能な電気炉内に設置し
た。ついで、純水を80℃に加熱したバブラーを通過さ
せたHeガスを3リットル/minの条件で導入し、水
蒸気を含有した雰囲気とした。前記雰囲気中で多孔質石
英ガラス体を500℃/hrの条件で1500℃まで昇
温し、1500℃で3時間保持して透明ガラス化を行っ
た。
[Comparative Example 3] A porous quartz glass body having a diameter of 8 cm and a length of 10 cm formed by the same method as in Example 1 was placed in an electric furnace capable of controlling the atmosphere at atmospheric pressure and room temperature. Then, He gas, which was passed through a bubbler in which pure water was heated to 80 ° C., was introduced at a rate of 3 liter / min to create an atmosphere containing water vapor. In the atmosphere, the porous quartz glass body was heated to 1500 ° C. under the condition of 500 ° C./hr and kept at 1500 ° C. for 3 hours to carry out transparent vitrification.

【0048】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、3×3×4cmのブ
ロック形状に成形した。引き続き、電気炉内に成形ブロ
ックを設置したまま電気炉の温度を1200℃まで降温
させ、以後30℃/hrの冷却速度で徐冷を行い、炉内
温度が1000℃になったところで給電を停止し炉内放
冷した。
The transparent quartz glass thus obtained was placed in an electric furnace having a heating element made of carbon, and was heated to 175 or above the softening point.
It was heated to 0 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0049】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で100%水素ガスを導入し炉内雰
囲気を水素雰囲気とし、その温度で7時間保持して透明
石英ガラス中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours so that hydrogen molecules were contained in the transparent quartz glass.

【0050】得られた透明石英ガラス中のOH含有量は
1100ppmであった。また、ラマン分光法から求め
られる溶存水素分子量は、1×1017分子/cm3 以下
であった。さらに、真空中での1000℃における水素
分子放出量は0.9×020分子/m2 であった。この透
明石英ガラスにKrFエキシマレーザーを200mJ/
cm2 ・pulse、200Hzの条件で照射しなが
ら、蛍光発光強度を測定した。
The OH content in the obtained transparent quartz glass was 1100 ppm. The molecular weight of dissolved hydrogen determined by Raman spectroscopy was 1 × 10 17 molecule / cm 3 or less. Further, the amount of released hydrogen molecules at 1000 ° C. in vacuum was 0.9 × 0 20 molecule / m 2 . A KrF excimer laser is added to this transparent quartz glass at 200 mJ /
The fluorescence emission intensity was measured while irradiating under conditions of cm 2 · pulse and 200 Hz.

【0051】図1に示すように、この透明石英ガラス
は、KrFエキシマレーザーを照射するにしたがって、
650nm蛍光発光が最も生じやすく、したがって26
0nm近傍の吸収帯も生じやすいことが明らかとなっ
た。それゆえ、KrFエキシマレーザーを光源とするフ
ォトマスク用基板もしくは光学部材に最も不適切な透明
石英ガラスであった。
As shown in FIG. 1, this transparent quartz glass was irradiated with a KrF excimer laser,
650 nm fluorescence emission is most likely to occur, thus 26
It became clear that an absorption band near 0 nm is also likely to occur. Therefore, the transparent quartz glass is the most unsuitable for a photomask substrate or an optical member using a KrF excimer laser as a light source.

【0052】[実施例2]実施例1と同様の方法で形成
させた直径9cm、長さ10cmの多孔質石英ガラス体
を常圧かつ室温で黒鉛製発熱体を有する雰囲気制御可能
な電気炉内に設置した。ついで500℃/hrの昇温速
度で1200℃まで昇温した後、1%の塩素ガスを含有
させた窒素ガスを導入し、炉内雰囲気を塩素を含有する
雰囲気とした後、1250℃に4時間保持した。塩素雰
囲気内での脱水処理を行った後、さらに窒素雰囲気中で
4時間保持した。ついでHe100%のガスを導入し
て、雰囲気をHe雰囲気とした後、多孔質石英ガラス体
を500℃/hrの昇温速度で1500℃まで昇温し、
1500℃で3時間保持して透明ガラス化を行った。
[Embodiment 2] An electric furnace in which a porous quartz glass body having a diameter of 9 cm and a length of 10 cm formed by the same method as that of Embodiment 1 was heated at normal pressure and at room temperature and had a graphite heating element, and the atmosphere was controllable Installed in. Then, the temperature was raised to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 1% chlorine gas was introduced, and the atmosphere in the furnace was changed to an atmosphere containing chlorine. Held for hours. After performing dehydration treatment in a chlorine atmosphere, it was further held in a nitrogen atmosphere for 4 hours. Then, introducing a gas of 100% He and setting the atmosphere as a He atmosphere, the porous quartz glass body is heated to 1500 ° C. at a heating rate of 500 ° C./hr,
Transparent vitrification was carried out by holding at 1500 ° C. for 3 hours.

【0053】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、3×3×4cmのブ
ロック形状に成形した。引き続き、電気炉内に成形ブロ
ックを設置したまま電気炉の温度を1200℃まで降温
させ、以後30℃/hrの冷却速度で徐冷を行い、炉内
温度が1000℃になったところで給電を停止し炉内放
冷した。
The transparent quartz glass thus obtained was placed in an electric furnace having a heating element made of carbon, and the transparent quartz glass was heated to a temperature above the softening point of 175.
It was heated to 0 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0054】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、900℃まで3
00℃/hrの昇温速度で昇温した。900℃に到達し
た後、大気圧下で100%水素ガスを導入し炉内雰囲気
を水素雰囲気とし、その温度で7時間保持して透明石英
ガラス中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere, and kept at 900 ° C. for 3 hours.
The temperature was raised at a heating rate of 00 ° C./hr. After reaching 900 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the furnace atmosphere a hydrogen atmosphere, and the temperature was maintained for 7 hours to allow hydrogen molecules to be contained in the transparent quartz glass.

【0055】得られた透明石英ガラス中のOH含有量は
3ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は、440ppmであった。また真空中で1
000℃に昇温した際の水素分子放出量は0.3×10
20分子/m2 であった。この透明石英ガラスにKrFエ
キシマレーザーを200mJ/cm2 ・pulse、2
00Hzの条件で照射しながら、蛍光発光強度を測定し
た。この石英ガラスは、KrFエキシマレーザーを照射
するにしたがって650nm蛍光発光を全く生じないこ
とが判明したが、微弱な390nm蛍光発光が認められ
た。390nm蛍光強度は比較例1の650nm蛍光強
度に比較すると弱く、この透明石英ガラスをKrFエキ
シマレーザーを光源とするフォトマスク用基板もしくは
光学部材として用いてもなんら問題のないことが明らか
となった。
The OH content in the obtained transparent quartz glass was 3 ppm. On the other hand, the chlorine concentration contained in the transparent quartz glass was 440 ppm. Also in vacuum 1
The amount of released hydrogen molecules when heated to 000 ° C is 0.3 x 10
It was 20 molecules / m 2 . KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm 2 · pulse, 2
The fluorescence emission intensity was measured while irradiating under the condition of 00 Hz. It was found that this quartz glass did not emit 650 nm fluorescence at all as it was irradiated with the KrF excimer laser, but a weak 390 nm fluorescence was observed. The 390 nm fluorescence intensity was weaker than the 650 nm fluorescence intensity of Comparative Example 1, and it was revealed that there is no problem even if this transparent quartz glass is used as a photomask substrate or an optical member using a KrF excimer laser as a light source.

【0056】[比較例4]実施例1と同様の方法で形成
させた直径9cm、長さ10cmの多孔質石英ガラス体
を常圧かつ室温で黒鉛製発熱体を有する雰囲気制御可能
な電気炉内に設置した。ついで500℃/hrの昇温速
度で1200℃まで昇温した後、1%の塩素ガスを含有
させた窒素ガスを導入し、炉内雰囲気を塩素を含有する
雰囲気としたのち、1250℃に4時間保持した。塩素
雰囲気内での脱水処理を行った後、更に窒素雰囲気中で
8時間保持した。ついでHe100%のガスを導入し
て、雰囲気をHe雰囲気とした後、多孔質石英ガラス体
を500℃/hrの昇温速度で1500℃まで昇温し、
1500℃で3時間保持して透明ガラス化を行った。
[Comparative Example 4] A porous quartz glass body having a diameter of 9 cm and a length of 10 cm formed by the same method as in Example 1 was used in an electric furnace capable of controlling the atmosphere and having a graphite heating element at normal pressure and room temperature. Installed in. Then, the temperature was raised to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 1% chlorine gas was introduced, and the atmosphere in the furnace was changed to an atmosphere containing chlorine. Held for hours. After performing dehydration treatment in a chlorine atmosphere, it was further held in a nitrogen atmosphere for 8 hours. Then, introducing a gas of 100% He and setting the atmosphere as a He atmosphere, the porous quartz glass body is heated to 1500 ° C. at a heating rate of 500 ° C./hr,
Transparent vitrification was carried out by holding at 1500 ° C. for 3 hours.

【0057】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、3×3×4cmのブ
ロック形状に成形した。引き続き、電気炉内に成形ブロ
ックを設置したまま電気炉の温度を1200℃まで降温
させ、以後30℃/hrの冷却速度で徐冷を行い、炉内
温度が1000℃になったところで給電を停止し炉内放
冷した。
The transparent quartz glass thus obtained was placed in an electric furnace having a heating element made of carbon and the temperature was 175 or above the softening point.
It was heated to 0 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0058】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で100%水素ガスを導入し炉内雰
囲気を水素雰囲気とし、その温度で7時間保持して透明
石英ガラス中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours so that hydrogen molecules were contained in the transparent quartz glass.

【0059】得られた透明石英ガラス中のOH含有量は
3ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は、360ppmであった。また真空中で1
000℃に昇温した際の水素分子放出量は0.4×10
20分子/m2 であった。この透明石英ガラスにKrFエ
キシマレーザーを200mJ/cm2 ・pulse、2
00Hzの条件で照射しながら、蛍光発光強度を測定し
た。この透明石英ガラスは、KrFエキシマレーザーを
照射するにしたがって650nm蛍光発光を全く生じな
いことが判明したが、強大な390nm蛍光発光が認め
られた。390nm蛍光強度は実施例2の390nm蛍
光強度に比較すると約2桁大きく、この透明石英ガラス
をKrFエキシマレーザーを光源とするフォトマスク用
基板もしくは光学部材として使用できないことが明らか
となった。
The OH content in the obtained transparent quartz glass was 3 ppm. On the other hand, the chlorine concentration contained in the transparent quartz glass was 360 ppm. Also in vacuum 1
The amount of released hydrogen molecules when heated to 000 ° C is 0.4 × 10
It was 20 molecules / m 2 . KrF excimer laser is applied to this transparent quartz glass at 200 mJ / cm 2 · pulse, 2
The fluorescence emission intensity was measured while irradiating under the condition of 00 Hz. It was found that this transparent quartz glass did not emit 650 nm fluorescence at all when irradiated with a KrF excimer laser, but a strong 390 nm fluorescence was observed. The 390 nm fluorescence intensity was about two orders of magnitude higher than the 390 nm fluorescence intensity of Example 2, and it was revealed that this transparent quartz glass cannot be used as a photomask substrate or an optical member using a KrF excimer laser as a light source.

【0060】[実施例3]実施例1と同様の方法で形成
させた直径9cm、長さ10cmの多孔質石英ガラス体
を常圧かつ室温で黒鉛製発熱体を有する雰囲気制御可能
な電気炉内に設置した。ついで500℃/hrの昇温速
度で1200℃まで昇温した後、1.5%濃度のCHF
3 を含有させた窒素ガスを導入し、炉内雰囲気をフッ素
を含有する雰囲気としたのち、1250℃で4時間保持
した。フッ素雰囲気内での脱水処理を行った後、He1
00%のガスを導入して、雰囲気をHe雰囲気とした
後、多孔質石英ガラス体を500℃/hrの昇温速度で
1500℃まで昇温し、1500℃で3時間保持して透
明ガラス化を行った。
[Embodiment 3] An electric furnace in which a porous quartz glass body having a diameter of 9 cm and a length of 10 cm formed by the same method as that of Embodiment 1 was heated under normal pressure and at room temperature and which had a heating element made of graphite and whose atmosphere could be controlled Installed in. Then, after heating up to 1200 ° C. at a heating rate of 500 ° C./hr, CHF of 1.5% concentration
Nitrogen gas containing 3 was introduced, the atmosphere in the furnace was changed to an atmosphere containing fluorine, and then the furnace was held at 1250 ° C. for 4 hours. After performing dehydration treatment in a fluorine atmosphere, He1
After introducing a gas of 00% and making the atmosphere He atmosphere, the temperature of the porous quartz glass body was raised to 1500 ° C. at a temperature rising rate of 500 ° C./hr, and the temperature was kept at 1500 ° C. for 3 hours to obtain transparent vitrification. I went.

【0061】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、3×3×4cmのブ
ロック形状に成形した。引き続き、電気炉内に成形ブロ
ックを設置したまま電気炉の温度を1200℃まで降温
させ、以後30℃/hrの冷却速度で徐冷を行い、炉内
温度が1000℃になったところで給電を停止し炉内放
冷した。
The transparent quartz glass thus obtained was placed in an electric furnace having a heating element made of carbon and was heated to 175 or above the softening point.
It was heated to 0 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0062】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で100%水素ガスを導入し炉内雰
囲気を水素雰囲気とし、その温度で7時間保持して透明
石英ガラス中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 100% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours so that hydrogen molecules were contained in the transparent quartz glass.

【0063】得られた透明石英ガラス中のOH含有量は
5ppmであった。一方、透明石英ガラス中に含有され
るフッ素濃度は、2500ppmであった。また、ラマ
ン分光法から求められる溶存水素分子量は、1×1017
分子/cm3 以下であった。さらに、真空中での100
0℃における水素分子放出量は0.4×1020分子/m
2 であった。この透明石英ガラスにKrFエキシマレー
ザーを200mJ/cm2 ・pulse、200Hzの
条件で照射しながら、蛍光発光強度を測定した。この透
明石英ガラスは、KrFエキシマレーザーを照射するに
したがって、650nm蛍光発光を全く生じず、したが
って260nm近傍の吸収帯も生じないことが明らかと
なった。それゆえ、KrFエキシマレーザーを光源とす
るフォトマスク用基板もしくは光学部材に最も適切な石
英ガラスであった。
The OH content in the obtained transparent quartz glass was 5 ppm. On the other hand, the concentration of fluorine contained in the transparent quartz glass was 2500 ppm. The molecular weight of dissolved hydrogen determined by Raman spectroscopy is 1 × 10 17
The molecule / cm 3 or less. Furthermore, 100 in vacuum
The amount of released hydrogen molecules at 0 ° C is 0.4 × 10 20 molecule / m
Was 2 . The fluorescence emission intensity was measured while irradiating this transparent quartz glass with a KrF excimer laser under the conditions of 200 mJ / cm 2 · pulse and 200 Hz. It was clarified that this transparent quartz glass did not generate fluorescence emission at 650 nm at all as it was irradiated with the KrF excimer laser, and therefore did not generate an absorption band near 260 nm. Therefore, it was the most suitable quartz glass for a photomask substrate or an optical member using a KrF excimer laser as a light source.

【0064】[実施例4]実施例1と同様の方法で形成
させた直径9cm、長さ10cmの多孔質石英ガラス体
を常圧かつ室温で黒鉛製発熱体を有する雰囲気制御可能
な電気炉内に設置した。ついで500℃/hrの昇温速
度で1200℃まで昇温した後、2%の塩素ガスを含有
させた窒素ガスを導入し、炉内雰囲気を塩素を含有する
雰囲気とした後、1250℃に5時間保持した。塩素雰
囲気内での脱水処理を行った後、He100%のガスを
導入して、雰囲気をHe雰囲気とした後、多孔質石英ガ
ラス体を500℃/hrの昇温速度で1500℃まで昇
温し、1500℃で3時間保持して透明ガラス化を行っ
た。
[Embodiment 4] An electric furnace in which a porous quartz glass body having a diameter of 9 cm and a length of 10 cm formed by the same method as that of Embodiment 1 is under atmospheric pressure and at room temperature and a graphite heating element is capable of controlling the atmosphere Installed in. Then, the temperature was raised to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 2% chlorine gas was introduced, and the furnace atmosphere was changed to an atmosphere containing chlorine. Held for hours. After performing a dehydration treatment in a chlorine atmosphere, introducing a 100% He gas to make the atmosphere a He atmosphere, the porous quartz glass body was heated to 1500 ° C. at a heating rate of 500 ° C./hr. It was kept at 1500 ° C. for 3 hours for transparent vitrification.

【0065】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、3×3×4cmのブ
ロック形状に成形した。引き続き、電気炉内に成形ブロ
ックを設置したまま電気炉の温度を1200℃まで降温
させ、以後30℃/hrの冷却速度で徐冷を行い、炉内
温度が1000℃になったところで給電を停止し炉内放
冷した。
The transparent quartz glass thus obtained was placed in an electric furnace having a heating element made of carbon and the temperature of the softening point was 175 or higher.
It was heated to 0 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0066】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で30%水素ガスを導入し炉内雰囲
気を水素雰囲気とし、その温度で7時間保持して透明石
英ガラス中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere, and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 30% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours to contain hydrogen molecules in the transparent quartz glass.

【0067】得られた透明石英ガラス中のOH含有量は
1ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は、1500ppmであった。また真空中で
1000℃に昇温した際の水素分子放出量は2×1018
分子/m2 であった。この石英ガラスにKrFエキシマ
レーザーを200mJ/cm2 ・pulse、200H
zの条件で照射しながら、蛍光発光強度を測定した。こ
の透明石英ガラスは、KrFエキシマレーザーを照射し
ても650nm蛍光発光を全く生じず、したがって26
0nm近傍の吸収帯も生じないことが明らかとなった。
それゆえ、KrFエキシマレーザーを光源とするフォト
マスク用基板もしくは光学部材に最も適切な石英ガラス
であった。
The OH content in the obtained transparent quartz glass was 1 ppm. On the other hand, the chlorine concentration contained in the transparent quartz glass was 1500 ppm. The amount of released hydrogen molecules when heated to 1000 ° C in vacuum is 2 × 10 18.
The molecule / m 2 . KrF excimer laser is applied to this quartz glass at 200 mJ / cm 2 · pulse, 200H
The fluorescence emission intensity was measured while irradiating under the condition of z. This transparent quartz glass does not produce 650 nm fluorescence emission at all when irradiated with a KrF excimer laser, and therefore 26
It became clear that an absorption band near 0 nm did not occur.
Therefore, it was the most suitable quartz glass for a photomask substrate or an optical member using a KrF excimer laser as a light source.

【0068】[比較例5]実施例1と同様の方法で形成
させた直径9cm、長さ10cmの多孔質石英ガラス体
を常圧かつ室温で黒鉛製発熱体を有する雰囲気制御可能
な電気炉内に設置した。ついで500℃/hrの昇温速
度で1200℃まで昇温した後、1.5%の塩素ガスを
含有させた窒素ガスを導入し、炉内雰囲気を塩素を含有
する雰囲気とした後、1250℃に5時間保持した。塩
素雰囲気内での脱水処理を行った後、He100%のガ
スを導入して、雰囲気をHe雰囲気とした後、多孔質石
英ガラス体を500℃/hrの昇温速度で1500℃ま
で昇温し、1500℃で3時間保持して透明ガラス化を
行った。
[Comparative Example 5] A porous quartz glass body having a diameter of 9 cm and a length of 10 cm formed by the same method as in Example 1 was used in an electric furnace capable of controlling the atmosphere and having a graphite heating element at normal pressure and room temperature. Installed in. Then, the temperature was raised to 1200 ° C. at a heating rate of 500 ° C./hr, nitrogen gas containing 1.5% chlorine gas was introduced, and the atmosphere in the furnace was changed to an atmosphere containing chlorine. Hold for 5 hours. After performing a dehydration treatment in a chlorine atmosphere, introducing a 100% He gas to make the atmosphere a He atmosphere, the porous quartz glass body was heated to 1500 ° C. at a heating rate of 500 ° C./hr. It was kept at 1500 ° C. for 3 hours for transparent vitrification.

【0069】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、3×3×4cmのブ
ロック形状に成形した。引き続き、電気炉内に成形ブロ
ックを設置したまま電気炉の温度を1200℃まで降温
させ、以後30℃/hrの冷却速度で徐冷を行い、炉内
温度が1000℃になったところで給電を停止し炉内放
冷した。
The transparent quartz glass thus obtained was placed in an electric furnace having a heating element made of carbon and was heated to 175 or above the softening point.
It was heated to 0 ° C. to be deformed by its own weight and molded into a block shape of 3 × 3 × 4 cm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C while the forming block was installed in the electric furnace, and then gradually cooled at a cooling rate of 30 ° C / hr, and power supply was stopped when the temperature in the furnace reached 1000 ° C. Then, it was left to cool in the furnace.

【0070】こうして得られた透明石英ガラスブロック
を雰囲気制御可能な電気炉内に挿入し、1000℃まで
300℃/hrの昇温速度で昇温した。1000℃に到
達した後、大気圧下で10%水素ガスを導入し炉内雰囲
気を水素雰囲気とし、その温度で7時間保持して透明石
英ガラス中に水素分子を含有させた。
The transparent quartz glass block thus obtained was inserted into an electric furnace capable of controlling the atmosphere and heated up to 1000 ° C. at a heating rate of 300 ° C./hr. After reaching 1000 ° C., 10% hydrogen gas was introduced under atmospheric pressure to make the atmosphere in the furnace a hydrogen atmosphere, and the temperature was maintained for 7 hours to allow hydrogen molecules to be contained in the transparent quartz glass.

【0071】得られた透明石英ガラス中のOH含有量は
2ppmであった。一方、透明石英ガラス中に含有され
る塩素濃度は、900ppmであった。また真空中で1
000℃に昇温した際の水素分子放出量は5×1017
子/m2 であった。この石英ガラスにKrFエキシマレ
ーザーを200mJ/cm2 ・pulse、200Hz
の条件で照射しながら、蛍光発光強度を測定した。この
透明石英ガラスは、KrFエキシマレーザーを照射する
と285nmと460nmに蛍光発光が認められた。さ
らに照射を続けると、650nm蛍光発光が認められる
ようになり、照射にしたがって強度が増大し、したがっ
て260nm近傍の吸収帯も生じることが明らかとなっ
た。それゆえ、KrFエキシマレーザーを光源とするフ
ォトマスク用基板もしくは光学部材には使用できない石
英ガラスであった。
The OH content in the obtained transparent quartz glass was 2 ppm. On the other hand, the chlorine concentration contained in the transparent quartz glass was 900 ppm. Also in vacuum 1
The amount of released hydrogen molecules when the temperature was raised to 000 ° C. was 5 × 10 17 molecules / m 2 . KrF excimer laser is applied to this quartz glass at 200 mJ / cm 2 pulse, 200 Hz.
The fluorescence emission intensity was measured while irradiating under the conditions. When this transparent quartz glass was irradiated with a KrF excimer laser, fluorescence emission was observed at 285 nm and 460 nm. When irradiation was further continued, it became clear that fluorescence emission of 650 nm was observed, the intensity increased with irradiation, and therefore an absorption band near 260 nm was also generated. Therefore, the quartz glass cannot be used as a photomask substrate or an optical member using a KrF excimer laser as a light source.

【0072】[0072]

【発明の効果】本発明の透明石英ガラスは、エキシマレ
ーザーの照射に対して構造欠陥による吸収帯あるいは蛍
光発光のない、優れたエキシマレーザー耐性を有する。
The transparent quartz glass of the present invention has excellent excimer laser resistance against irradiation of excimer laser without absorption bands or fluorescence emission due to structural defects.

【0073】また本発明によれば、透明石英ガラス中に
含有されるOH量を低減しかつ水素を含有させるように
したので、エキシマレーザーの照射に対して生成する6
50nm蛍光発光中心並びに260nm吸収帯の前駆帯
であるOH基、酸素過剰型欠陥および溶存酸素分子の絶
対量を低減させることができ、エキシマレーザーの照射
に対して実質的に耐性を有する透明石英ガラスとする効
果を有する。
Further, according to the present invention, since the amount of OH contained in the transparent quartz glass is reduced and hydrogen is contained, it is generated by the irradiation of the excimer laser.
A transparent quartz glass that can reduce the absolute amount of OH groups, oxygen-excessive defects, and dissolved oxygen molecules that are the precursor bands of the 50 nm fluorescence emission center and the 260 nm absorption band, and that is substantially resistant to excimer laser irradiation. And has the effect.

【0074】またハロゲンによる脱水操作を行った透明
石英ガラスに水素分子を含有させた場合には、ハロゲン
脱水によって生成する285nm、390nm、460
nm傾向発光中心を除去する効果も有している。さら
に、ハロゲン脱水によってよって生成する、250n
m、163nm近傍の吸収帯も、水素分子を含有させる
ことによって除去するという優れた効果も有する。
When hydrogen molecules are contained in transparent quartz glass which has been dehydrated by halogen, it is produced by halogen dehydration at 285 nm, 390 nm and 460.
It also has an effect of removing the luminescence center having a nm tendency. In addition, 250n produced by halogen dehydration
The absorption band in the vicinity of m and 163 nm also has an excellent effect of removing by including hydrogen molecules.

【図面の簡単な説明】[Brief description of drawings]

【図1】透明石英ガラスにKrFエキシマレーザーを照
射したときの照射時間と650nm蛍光強度の関係を示
すグラフ。
FIG. 1 is a graph showing the relationship between irradiation time and 650 nm fluorescence intensity when a transparent quartz glass is irradiated with a KrF excimer laser.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // G03F 1/14 B 7369−2H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // G03F 1/14 B 7369-2H

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ガラス形成原料を火炎加水分解させて得ら
れる石英ガラス微粒子を基材に堆積・成長させて形成さ
れた多孔質石英ガラス体を加熱して得られる透明石英ガ
ラスにおいて、該透明石英ガラス中のOH含有量が10
ppm以下であって、ハロゲンを400ppm以上含有
し、かつ水素を含有することを特徴とする透明石英ガラ
ス。
1. A transparent quartz glass obtained by heating a porous quartz glass body formed by depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material on a substrate, wherein the transparent quartz glass is obtained. OH content in glass is 10
A transparent quartz glass containing less than ppm, containing 400 ppm or more of halogen, and containing hydrogen.
【請求項2】前記透明石英ガラスに含有されるハロゲン
が、塩素であることを特徴とする請求項1記載の透明石
英ガラス。
2. The transparent quartz glass according to claim 1, wherein the halogen contained in the transparent quartz glass is chlorine.
【請求項3】前記透明石英ガラスに含有されるハロゲン
が、フッ素であることを特徴とする請求項1記載の透明
石英ガラス。
3. The transparent quartz glass according to claim 1, wherein the halogen contained in the transparent quartz glass is fluorine.
【請求項4】前記透明石英ガラスを、真空中1000℃
に昇温したときの水素分子放出量が、1×1018〜1×
1020分子/m2 の範囲であることを特徴とする請求項
1記載の透明石英ガラス。
4. The transparent quartz glass is heated to 1000 ° C. in vacuum.
The amount of released hydrogen molecules when the temperature is raised to 1 × 10 18 to 1 ×
The transparent quartz glass according to claim 1, which has a range of 10 20 molecules / m 2 .
【請求項5】(1)ガラス形成原料を火炎加水分解して
形成される石英ガラス微粒子を基材に堆積・成長させて
多孔質石英ガラス体を形成する工程、 (2)該多孔質石英ガラス体を透明ガラス化温度以下の
温度域で保持し、多孔質石英ガラス体の脱水を行う工
程、 (3)透明ガラス化温度以下の温度域で保持して脱水し
た多孔質石英ガラス体を、透明ガラス化温度まで昇温・
透明ガラス化して透明石英ガラス体を得る工程、 (4)該透明石英ガラス体を軟化点以上の温度に加熱し
て所望の形状に成形し、成形石英ガラス体とする工程、
および (5)該成形石英ガラス体に水素を含有する雰囲気で熱
処理を施す工程、とからなる工程で製造されることを特
徴とする、透明石英ガラス中のOH含有量が10ppm
以下であって、ハロゲンを400ppm以上含有し、か
つ水素を含有させた透明石英ガラスの製造方法。
5. A step of (1) depositing and growing fine quartz glass particles formed by flame hydrolysis of a glass forming raw material on a substrate to form a porous quartz glass body, (2) the porous quartz glass. A step of dehydrating the porous quartz glass body by holding the body in a temperature range below the transparent vitrification temperature, (3) holding the body in the temperature range below the transparent vitrification temperature and dehydrating the transparent quartz glass body, Raise to vitrification temperature
A step of obtaining a transparent quartz glass body by subjecting it to a transparent vitrification, (4) a step of heating the transparent quartz glass body to a temperature equal to or higher than a softening point and shaping it into a desired shape to obtain a shaped quartz glass body,
And (5) a step of subjecting the formed quartz glass body to a heat treatment in an atmosphere containing hydrogen, and an OH content in the transparent quartz glass of 10 ppm.
The following is a method for producing transparent quartz glass containing 400 ppm or more of halogen and hydrogen.
【請求項6】前記(2)の透明ガラス化温度以下の温度
域で脱水を行う工程における雰囲気が塩素雰囲気であっ
て、該雰囲気中に含まれる塩素濃度が容積で0.01〜
5%であることを特徴とする請求項5記載の透明石英ガ
ラスの製造方法。
6. The atmosphere in the step (2) of dehydrating in the temperature range below the transparent vitrification temperature is a chlorine atmosphere, and the chlorine concentration contained in the atmosphere is 0.01-by volume.
It is 5%, The manufacturing method of the transparent quartz glass of Claim 5 characterized by the above-mentioned.
【請求項7】前記(2)の透明ガラス化温度以下の温度
域で脱水を行う工程における雰囲気がフッ素雰囲気であ
って、該雰囲気中に含まれるフッ素濃度が容積で0.0
1〜5%であることを特徴とする請求項5記載の透明石
英ガラスの製造方法。
7. The atmosphere in the step (2) of dehydrating in the temperature range below the transparent vitrification temperature is a fluorine atmosphere, and the fluorine concentration contained in the atmosphere is 0.0 by volume.
It is 1-5%, The manufacturing method of the transparent quartz glass of Claim 5 characterized by the above-mentioned.
【請求項8】前記(2)の透明ガラス化温度以下の温度
域で脱水を行う工程における温度域が800〜1250
℃の範囲であることを特徴とする請求項5記載の透明石
英ガラスの製造方法。
8. The temperature range in the step of dehydrating in the temperature range below the transparent vitrification temperature of (2) above is 800 to 1250.
The method for producing transparent quartz glass according to claim 5, wherein the temperature is in the range of ° C.
【請求項9】前記(5)の工程における成形石英ガラス
体を水素を含有する雰囲気で熱処理する温度域が500
〜1100℃であることを特徴とする請求項5記載の透
明石英ガラスの製造方法。
9. A temperature range in which the molded quartz glass body in the step (5) is heat treated in an atmosphere containing hydrogen is 500.
The temperature is ˜1100 ° C. 6. The method for producing transparent quartz glass according to claim 5, wherein
JP04225293A 1992-02-07 1993-02-05 Transparent quartz glass and its manufacturing method Expired - Fee Related JP3368932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04225293A JP3368932B2 (en) 1992-02-07 1993-02-05 Transparent quartz glass and its manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5677492 1992-02-07
JP4-56774 1992-12-09
JP35209592 1992-12-09
JP4-352095 1992-12-09
JP04225293A JP3368932B2 (en) 1992-02-07 1993-02-05 Transparent quartz glass and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11543599A Division JP3671732B2 (en) 1992-02-07 1999-04-22 ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate

Publications (2)

Publication Number Publication Date
JPH06227827A true JPH06227827A (en) 1994-08-16
JP3368932B2 JP3368932B2 (en) 2003-01-20

Family

ID=27291136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04225293A Expired - Fee Related JP3368932B2 (en) 1992-02-07 1993-02-05 Transparent quartz glass and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3368932B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024869A1 (en) * 1997-11-11 1999-05-20 Nikon Corporation Photomask, aberration correcting plate, exposure device and method of producing microdevice
EP1094040A2 (en) 1999-10-19 2001-04-25 Heraeus Quarzglas GmbH Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
JP2002012441A (en) * 2000-06-27 2002-01-15 Sumitomo Metal Ind Ltd Synthetic quartz glass and its manufacturing method
US6473227B1 (en) 1999-11-24 2002-10-29 Heraeus Quarzglas Gmbh & Co. Kg Silica glass optical material for projection lens to be utilized in vacuum ultraviolet radiation lithography, method for producing the same, and projection lens
US7022633B2 (en) 1998-10-28 2006-04-04 Asahi Glass Company, Limited Synthetic quartz glass and process for producing it
JP2011063457A (en) * 2009-09-15 2011-03-31 Sumitomo Electric Ind Ltd Synthetic quartz glass and method for producing the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191544A (en) * 1985-02-15 1986-08-26 Furukawa Electric Co Ltd:The Quartz base optical fiber
JPS6283333A (en) * 1985-10-03 1987-04-16 Fujikura Ltd Optical fiber
JPS63139028A (en) * 1986-12-01 1988-06-10 Sumitomo Electric Ind Ltd Production of optical fiber glass base material
JPH0264028A (en) * 1988-08-30 1990-03-05 Shin Etsu Chem Co Ltd Synthetic silica glass for resisting ultraviolet light and production thereof
JPH0334419A (en) * 1989-06-30 1991-02-14 Shinetsu Sekiei Kk Quartz glass material for semiconductor heat treatment and manufacture thereof
JPH03109233A (en) * 1989-06-14 1991-05-09 Shinetsu Sekiei Kk Synthetic silica glass optical body for ultraviolet laser beam and its production
JPH03279238A (en) * 1990-03-28 1991-12-10 Mitsubishi Materials Corp Quartz glass for light transmission and production thereof
JPH0421540A (en) * 1990-05-14 1992-01-24 Nippon Sekiei Glass Kk Synthetic silica glass and production thereof
JPH0532432A (en) * 1991-07-31 1993-02-09 Shinetsu Quartz Prod Co Ltd Optical member for high-power laser
JPH0543267A (en) * 1990-11-26 1993-02-23 Shinetsu Quartz Prod Co Ltd Optical member consisting of transparent synthetic silica glass, production of the optical member and device using this optical member
JPH05254859A (en) * 1992-03-12 1993-10-05 Toshiba Ceramics Co Ltd Tool for heat-treatment of semiconductor wafer and its production
JPH05319848A (en) * 1992-05-18 1993-12-03 Tosoh Corp Production of quartz glass
JPH0616449A (en) * 1992-06-29 1994-01-25 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass optical member for excimer laser and its production
JPH06166528A (en) * 1992-11-30 1994-06-14 Shinetsu Quartz Prod Co Ltd Production of ultraviolet-laser resistant optical member

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191544A (en) * 1985-02-15 1986-08-26 Furukawa Electric Co Ltd:The Quartz base optical fiber
JPS6283333A (en) * 1985-10-03 1987-04-16 Fujikura Ltd Optical fiber
JPS63139028A (en) * 1986-12-01 1988-06-10 Sumitomo Electric Ind Ltd Production of optical fiber glass base material
JPH0264028A (en) * 1988-08-30 1990-03-05 Shin Etsu Chem Co Ltd Synthetic silica glass for resisting ultraviolet light and production thereof
JPH03109233A (en) * 1989-06-14 1991-05-09 Shinetsu Sekiei Kk Synthetic silica glass optical body for ultraviolet laser beam and its production
JPH0334419A (en) * 1989-06-30 1991-02-14 Shinetsu Sekiei Kk Quartz glass material for semiconductor heat treatment and manufacture thereof
JPH03279238A (en) * 1990-03-28 1991-12-10 Mitsubishi Materials Corp Quartz glass for light transmission and production thereof
JPH0421540A (en) * 1990-05-14 1992-01-24 Nippon Sekiei Glass Kk Synthetic silica glass and production thereof
JPH0543267A (en) * 1990-11-26 1993-02-23 Shinetsu Quartz Prod Co Ltd Optical member consisting of transparent synthetic silica glass, production of the optical member and device using this optical member
JPH0532432A (en) * 1991-07-31 1993-02-09 Shinetsu Quartz Prod Co Ltd Optical member for high-power laser
JPH05254859A (en) * 1992-03-12 1993-10-05 Toshiba Ceramics Co Ltd Tool for heat-treatment of semiconductor wafer and its production
JPH05319848A (en) * 1992-05-18 1993-12-03 Tosoh Corp Production of quartz glass
JPH0616449A (en) * 1992-06-29 1994-01-25 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass optical member for excimer laser and its production
JPH06166528A (en) * 1992-11-30 1994-06-14 Shinetsu Quartz Prod Co Ltd Production of ultraviolet-laser resistant optical member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024869A1 (en) * 1997-11-11 1999-05-20 Nikon Corporation Photomask, aberration correcting plate, exposure device and method of producing microdevice
US6653024B1 (en) 1997-11-11 2003-11-25 Nikon Corporation Photomask, aberration correction plate, exposure apparatus, and process of production of microdevice
US7022633B2 (en) 1998-10-28 2006-04-04 Asahi Glass Company, Limited Synthetic quartz glass and process for producing it
EP1094040A2 (en) 1999-10-19 2001-04-25 Heraeus Quarzglas GmbH Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
US6473227B1 (en) 1999-11-24 2002-10-29 Heraeus Quarzglas Gmbh & Co. Kg Silica glass optical material for projection lens to be utilized in vacuum ultraviolet radiation lithography, method for producing the same, and projection lens
JP2002012441A (en) * 2000-06-27 2002-01-15 Sumitomo Metal Ind Ltd Synthetic quartz glass and its manufacturing method
JP2011063457A (en) * 2009-09-15 2011-03-31 Sumitomo Electric Ind Ltd Synthetic quartz glass and method for producing the same

Also Published As

Publication number Publication date
JP3368932B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US5326729A (en) Transparent quartz glass and process for its production
TWI399347B (en) Quartz glass jig for processing semiconductor wafers and method for producing the jig
US5364433A (en) Optical member of synthetic quartz glass for excimer lasers and method for producing same
US7022633B2 (en) Synthetic quartz glass and process for producing it
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
EP1125897B1 (en) Synthetic quartz glass and method for preparing the same
KR20010039472A (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP2001089170A (en) Optical silica glass member for f2 excimer laser transmission and method for producing the same
JP2001019450A (en) Synthetic quartz glass and its production
KR101634394B1 (en) Method of producing synthetic quartz glass for excimer laser
JPH111331A (en) Production of quartz glass optical member
JP2001146434A (en) Optical material for ultraviolet ray and method for producing the material
JP2003081654A (en) Synthetic quartz glass, and production method therefor
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP2008189547A (en) Synthetic quartz glass and its production method
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JPH11302025A (en) Synthetic quartz glass optical member and its production
JP2000007349A (en) Synthetic silica glass optical member and its production
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP3519426B2 (en) Stabilization method of synthetic quartz glass for optics
JP2000239031A (en) Synthetic quartz glass and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees