JPH0334419A - Quartz glass material for semiconductor heat treatment and manufacture thereof - Google Patents

Quartz glass material for semiconductor heat treatment and manufacture thereof

Info

Publication number
JPH0334419A
JPH0334419A JP16853889A JP16853889A JPH0334419A JP H0334419 A JPH0334419 A JP H0334419A JP 16853889 A JP16853889 A JP 16853889A JP 16853889 A JP16853889 A JP 16853889A JP H0334419 A JPH0334419 A JP H0334419A
Authority
JP
Japan
Prior art keywords
quartz glass
glass material
heat treatment
semiconductor
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16853889A
Other languages
Japanese (ja)
Other versions
JP2522830B2 (en
Inventor
Akira Fujinoki
朗 藤ノ木
Toshiyuki Kato
俊幸 加藤
Hiroyuki Nishimura
裕幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP1168538A priority Critical patent/JP2522830B2/en
Publication of JPH0334419A publication Critical patent/JPH0334419A/en
Application granted granted Critical
Publication of JP2522830B2 publication Critical patent/JP2522830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To realize high heat resistance and effective reduce the diffusion speed of, especially, sodium to be diffused, by using a quartz glass material containing a specified amount of chloride, and practically no OH or metallic impurity. CONSTITUTION:Soot type silica produced by hydrolyzing silicon halogenide in oxygen-hydrogen flame is deposited. By heat-treating the obtained porous quartz glass member material in atmosphere containing chlorinated agent, quartz glass material for semiconductor heat treatment is manufactured, wherein the content of OH is less than or equal to 10ppm, metal impurity is not practically contained, and the content of chloride is adjusted in the range of 500-4000ppm. Said glass material has high heat resistance, and can effectively restrain the contamination of semiconductor caused by metal and the like, and, especially, the contamination caused by sodium whose diffusion speed is large, so that high serviceability suitable also for repetition use is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウェハーの熱処理用炉心管等の形成に
有用な石英ガラス材料に関し、特に、加熱炉中での熱処
理工程において、ナトリウム等の金属不純物による汚染
を高度に抑制し得る半導体熱処理用石英ガラス用材料及
びその効果的製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a quartz glass material useful for forming a furnace tube for heat treatment of semiconductor wafers, and in particular, in a heat treatment process in a heating furnace, The present invention relates to a quartz glass material for semiconductor heat treatment that can highly suppress contamination by metal impurities, and an effective method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、半導体ウェハーの熱処理に使用される炉心管やウ
ェハー治具類は、例えば、1000〜1300’Cの高
温領域で変形することのむい耐熱性が要求される。また
、半導体の集積度の向上に伴い、熱処理工程における金
属、特にアルカリ金属類による微量な汚染が大きな問題
となってきた。半導体ウェハーの熱処理工程における汚
染は、石英ガラス容器その他の治具類に含有されるそれ
らの金属類や、炉壁から放出され石英ガラス容器を通し
て拡散される金属類に基づくものであって、特に拡散速
度の早いナトリウムが注目されている。
Conventionally, furnace tubes and wafer jigs used for heat treatment of semiconductor wafers are required to have heat resistance to prevent deformation in the high temperature range of, for example, 1000 to 1300'C. Furthermore, as the degree of integration of semiconductors increases, trace contamination by metals, especially alkali metals, during the heat treatment process has become a major problem. Contamination in the heat treatment process of semiconductor wafers is caused by metals contained in the quartz glass container and other jigs, and by metals released from the furnace wall and diffused through the quartz glass container. Sodium is attracting attention because of its high speed.

ナトリウム不純物の石英ガラス内での拡散速度は、含有
OH′a度が11000pp以上の有水合成石英ガラス
では非常に小さく、また、OH濃度が小さければ大きい
ことが知られている。そのような有水合成石英ガラスは
、一般に、素材中の金属不純物が極めて少ないので、耐
金属汚染性に関するかぎり半導体熱処理用の炉心管等と
して望ましいが、耐熱性が劣り、1000℃を超える熱
処理においては著しく変形するので、熱処理用部材とし
ては実質的に使用できない。また、熱処理条件下での耐
熱性に着目すれば、天然石英ガラスが望ましいが、各種
金属不純物の含有量が大きく、耐汚染性の点で採用でき
ない。
It is known that the diffusion rate of sodium impurities in quartz glass is very small in aqueous synthetic silica glass containing OH'a of 11,000 pp or more, and increases as the OH concentration is small. Such hydrous synthetic quartz glass generally has very little metal impurities in its material, so it is desirable as a furnace tube for semiconductor heat treatment as far as metal contamination resistance is concerned, but it has poor heat resistance and cannot be used in heat treatment above 1000°C. Because it is significantly deformed, it cannot be practically used as a heat treatment member. Furthermore, natural quartz glass is desirable in terms of heat resistance under heat treatment conditions, but it cannot be used because of its high content of various metal impurities.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って1本発明の技術的課題は、半導体ウェハーの熱処
理温度において優れた耐熱性を有し、含有金属成分が可
及的に低減された高純度の石英ガラス材料を提供するこ
とにある。また、本発明の他の課題は、炉からの金属不
純物の透過、拡散を高度に抑制し得る石英ガラス部材を
提供することにある。
Therefore, one technical object of the present invention is to provide a high-purity quartz glass material that has excellent heat resistance at the heat treatment temperature of semiconductor wafers and contains as few metal components as possible. Another object of the present invention is to provide a quartz glass member that can highly suppress the permeation and diffusion of metal impurities from the furnace.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記課題を克服する合成石英ガラス材料
について多くの試作研究を重ねた結果、OH及び金属不
純物を実質的に含まず、しかも特定範囲量の塩素を含有
するガラス材料が、望ましい耐熱性を有し、炉から拡散
される特にナトリウムの拡散速度を効果的に低減させ、
耐汚染性に極めて有効であることを見出した。
As a result of numerous trial production studies on synthetic silica glass materials that overcome the above-mentioned problems, the present inventors have found that it is desirable to have a glass material that is substantially free of OH and metal impurities and also contains a specific amount of chlorine. It has heat resistance and effectively reduces the diffusion rate especially of sodium diffused from the furnace.
It has been found that this method is extremely effective in improving stain resistance.

すなわち、本発明は、OHの含有量が10ppm以下で
、実質的に金属不純物を含まず、且つ塩素の含有量が5
00〜4,000 ppn+の範囲に調整されて成る半
導体熱処理用石英ガラス材料、及びそのような材料の効
果的製造方法、すなわち、ハロゲン化けい素を酸素・水
素火炎中で加水分解して生成するすす状シリカを堆積さ
せ、得られた多孔質石英ガラス部材を塩素化剤を含む雰
囲気中において熱処理する上記半導体熱処理用石英ガラ
ス材料の製造方法を提供する。
That is, the present invention has an OH content of 10 ppm or less, substantially no metal impurities, and a chlorine content of 5 ppm or less.
A quartz glass material for semiconductor heat treatment which is adjusted to a range of 00 to 4,000 ppn+, and an effective method for producing such a material, i.e., produced by hydrolyzing silicon halide in an oxygen/hydrogen flame. The present invention provides a method for producing the above-mentioned quartz glass material for semiconductor heat treatment, which comprises depositing soot-like silica and heat-treating the obtained porous quartz glass member in an atmosphere containing a chlorinating agent.

本発明の半導体熱処理用石英ガラス材料は、そのガラス
中にOH及び金属不純物が実質的に含まない合成石英ガ
ラスに、ナトリウムの拡散速度を低下し得る量の塩素を
含有させた点に新規材料としての特徴がある。
The quartz glass material for semiconductor heat treatment of the present invention is a novel material in that the synthetic quartz glass substantially free of OH and metal impurities contains chlorine in an amount that can reduce the diffusion rate of sodium. It has the characteristics of

本発明の石英ガラス材料中に含有されるOHが10pp
mを超えると、半導体熱処理用としての耐熱性が不足し
、容易に変形するので工業的に実用できない。好ましく
は、2 pp+a以下である。また、本発明において実
質的に金属不純物を含まないとは、熱処理において半導
体ウェハーの汚染が実質的に無視できる程度の少量を意
味し、特に、拡散係数の大きなナトリウムは、0.2p
pm以下であることが重要である。
OH contained in the quartz glass material of the present invention is 10pp
If it exceeds m, the heat resistance for semiconductor heat treatment will be insufficient and it will be easily deformed, so that it cannot be put to practical use industrially. Preferably, it is 2 pp+a or less. Furthermore, in the present invention, "substantially free of metal impurities" means such a small amount that contamination of semiconductor wafers during heat treatment can be substantially ignored.
It is important that it is below pm.

更に、本発明のガラス材料中に含有させる塩素量は、5
00pp+n未満では、特にナトリウムの拡散速度に低
減効果が不充分であり、また、4 、000ppmを超
えると、耐熱性が急激に低下するので採用できない。好
ましい塩素含有量は、800〜2,500 ppmの範
囲である。
Furthermore, the amount of chlorine contained in the glass material of the present invention is 5
If it is less than 00 ppm, the effect of reducing the diffusion rate of sodium is insufficient, and if it exceeds 4,000 ppm, the heat resistance will drop sharply, so it cannot be used. Preferred chlorine content ranges from 800 to 2,500 ppm.

かかる石英ガラス材料は、従来光ファイバの製造方法と
して知られたスート法によって得られた多孔質石英ガラ
ス部材を塩素化側雰囲気中で熱処理して効果的に提供さ
れる合成石英ガラス材料で、ハロゲン化けい素を酸素・
水素火炎中で加水分解して生成するすす状シリカを堆積
させ、得られた多孔質石英ガラス材料を塩素化剤を含む
雰囲気中で熱処理することにより容易に得られる。この
ようにして形成される多孔性合成石英ガラス材料は、可
及的高純度であることが要求され、従ってスート法に適
用される原料四塩化けい素は、通常知られた蒸留等の精
製手段によって高度に純化されたものが用いられる。
This quartz glass material is a synthetic quartz glass material that is effectively provided by heat-treating a porous quartz glass member obtained by the soot method, which is conventionally known as a method for manufacturing optical fibers, in a chlorinated atmosphere. Oxygen and silicon
It can be easily obtained by depositing soot-like silica produced by hydrolysis in a hydrogen flame and heat-treating the resulting porous quartz glass material in an atmosphere containing a chlorinating agent. The porous synthetic quartz glass material formed in this way is required to have as high a purity as possible, and therefore the raw material silicon tetrachloride used in the soot method must be prepared by commonly known purification methods such as distillation. A highly purified product is used.

塩素の熱処理導入に用いられる塩素化剤は、塩素ガス及
び塩化チオニルが代表的に使用され、これらは単独で用
いてもよいし、組合せ使用することもできる。また、そ
れら塩素化剤は、炉内雰囲気中に、通常、3〜100容
量%の範囲濃度で導入されるが、その濃度yA整は、主
として不活性ガスにより行われる。また、塩素化を効率
的に行うために、700〜900℃程度の温度が一般に
採用される。
Chlorine gas and thionyl chloride are typically used as the chlorinating agent to introduce chlorine into the heat treatment, and these may be used alone or in combination. Further, these chlorinating agents are usually introduced into the furnace atmosphere at a concentration ranging from 3 to 100% by volume, and the adjustment of the concentration yA is mainly performed using an inert gas. Further, in order to efficiently perform chlorination, a temperature of about 700 to 900°C is generally employed.

その塩素化処理時間は、塩素化剤の種類及びその雰囲気
濃度と処理温度とにより、また所望塩素含有量とに関連
して、当該技術分野の熟練者は簡単な実験によって容易
に決定することができる。
The chlorination treatment time can be easily determined by a person skilled in the art by simple experiments depending on the type of chlorination agent, its atmospheric concentration, treatment temperature, and in relation to the desired chlorine content. can.

このようにして得られた本発明のガラス材料は、不活性
ガス雰囲気下で多孔質ガラススートがP3融。
In the glass material of the present invention thus obtained, the porous glass soot undergoes P3 melting under an inert gas atmosphere.

融解する温度1例えば、 1,300〜1,500℃あ
るいはそれ以上の温度に加熱して容易に透明ガラス化す
ることができ、半導体熱処理用に好適なガラス部材とし
て提供される。
It can be easily turned into transparent glass by heating to a melting temperature of, for example, 1,300 to 1,500°C or higher, and is provided as a glass member suitable for semiconductor heat treatment.

この透明化は、上記の塩素化工程に続けて、そのままの
雰囲気状態で炉の温度を更に高めて行うことができるが
、この場合には、透明ガラス化と共に塩素化が進行する
ので、その前の塩素化処理時間はいくらか短縮されるこ
とになるであろう。
This transparency can be achieved by further increasing the temperature of the furnace in the same atmosphere following the chlorination step described above, but in this case, the chlorination proceeds along with the transparent vitrification, so The chlorination treatment time would be somewhat reduced.

〔作用〕[Effect]

本発明の半導体熱処理用石英ガラス部材は、高い耐熱性
を有し、半導体の金属類による汚染、特に拡散速度の大
きいナトリウムによる汚染を効果的に抑制することがで
き、繰返しの使用にも好適な高い実用性を有する部材を
提供する。
The quartz glass member for semiconductor heat treatment of the present invention has high heat resistance, can effectively suppress contamination of semiconductors with metals, especially contamination with sodium, which has a high diffusion rate, and is suitable for repeated use. To provide members with high practicality.

〔実施例〕〔Example〕

次に、具体例により本発明を更に詳細に説明する。なお
、具体例における試料のOH濃度は、赤外分光光度法で
測定したものであり、塩素濃度は、塩化銀の比濁法によ
り測定したものである。
Next, the present invention will be explained in more detail using specific examples. In addition, the OH concentration of the sample in the specific example was measured by infrared spectrophotometry, and the chlorine concentration was measured by silver chloride turbidimetry.

実施例 1 高純度四塩化けい素を、ゆるい酸素・水素火炎中に導入
して火炎加水分解させ、すす状のシリカ微粒子を層状に
堆積させて、多孔質石英ガラス母材を得た。
Example 1 High-purity silicon tetrachloride was introduced into a gentle oxygen/hydrogen flame and flame-hydrolyzed, and soot-like silica fine particles were deposited in a layered manner to obtain a porous quartz glass base material.

このようにして形成された約700gの多孔質合成石英
ガラス母材を、塩素:ヘリウムの混合割合が、10 :
 90の容量比の混合ガスの雰囲気下の炉内において、
800℃の温度に2時間加熱して塩素化処理を行った。
Approximately 700 g of the porous synthetic quartz glass base material thus formed was mixed at a mixing ratio of chlorine:helium of 10:
In a furnace under a mixed gas atmosphere with a volume ratio of 90,
Chlorination treatment was carried out by heating at a temperature of 800° C. for 2 hours.

得られた塩素化ガラス材料の塩素含有量は、約850p
pmで、OH濃度は、0.1ppn+以下であった。
The chlorine content of the obtained chlorinated glass material is approximately 850p
pm, the OH concentration was below 0.1 ppn+.

この塩素化ガラス材料(母材)を、塩素化剤を含まない
ヘリウム単独の雰囲気下の炉内において、1.500℃
以上の温度に加熱溶融し、透明なガラス部材を得た。
This chlorinated glass material (base material) was heated to 1.500°C in a furnace under an atmosphere of helium alone without a chlorinating agent.
A transparent glass member was obtained by heating and melting at the above temperature.

実施例2 実施例1における800℃の温度での炉内における塩素
化処理を2時間に替えて6時間行った以外は全く同様に
処理して塩素化石英ガラス材料を製造した。
Example 2 A chlorinated quartz glass material was produced in exactly the same manner as in Example 1, except that the chlorination treatment in the furnace at a temperature of 800° C. was performed for 6 hours instead of 2 hours.

得られた塩素化ガラス材料の塩素含有量は、約2.40
0ppmで、OH濃度は、0.lppm以下であった。
The chlorine content of the obtained chlorinated glass material is approximately 2.40
At 0 ppm, the OH concentration is 0. It was less than lppm.

得られた塩素化ガラス母材を、ヘリウムガス雰囲気の炉
内で、1 、500℃以上の温度に加熱、溶融し、透明
なガラス部材を得た。
The obtained chlorinated glass base material was heated and melted at a temperature of 1,500° C. or higher in a furnace with a helium gas atmosphere to obtain a transparent glass member.

比較例 1 実施例1と同様にして作成された多孔質合成石英ガラス
母材約700 gを塩素:ヘリウム=5:95容量比の
混合ガス雰囲気の炉内において、800℃の温度条件で
2時間加熱処理した。
Comparative Example 1 Approximately 700 g of a porous synthetic quartz glass base material prepared in the same manner as in Example 1 was heated at a temperature of 800°C for 2 hours in a furnace with a mixed gas atmosphere with a volume ratio of chlorine:helium = 5:95. Heat treated.

得られた塩素化処理ガラス材料の塩素含有量は、約35
0PPO1テあり、またOH濃度は、0.lppm以下
であった。
The chlorine content of the obtained chlorinated glass material was approximately 35
There is 0PPO1, and the OH concentration is 0. It was less than lppm.

この塩素化ガラス母材を、ヘリウムガス雰囲気の炉内に
おいて、1 、500℃以上の温度に加熱、溶融し、透
明なガラス部材を得た。
This chlorinated glass base material was heated and melted at a temperature of 1,500° C. or higher in a furnace with a helium gas atmosphere to obtain a transparent glass member.

比較例2 実施例1において、2時間の塩素化処理を炉内で行って
得られたと同様の塩素化ガラス母材を、そのま)の状態
で、炉温を1 、500℃以上の温度に昇温させ、塩素
化の進行と同時に加熱、溶融して透明な合成石英ガラス
部材を作成した。
Comparative Example 2 A chlorinated glass base material similar to that obtained in Example 1 by performing 2 hours of chlorination treatment in the furnace was heated to a temperature of 1.500°C or higher in the furnace as it was. The temperature was raised, and as chlorination progressed, the material was heated and melted to create a transparent synthetic quartz glass member.

得られた塩素化透明石英ガラス部材の塩素含有量は、約
4 、800ppmで、OHa度は、0.lppm以下
であった。
The chlorine content of the obtained chlorinated transparent quartz glass member was approximately 4,800 ppm, and the OHa degree was 0. It was less than lppm.

実施例3 上記の試料にって、半導体ウェハー熱処理用として要求
される耐熱性及び金属不純物の拡散抑防止性を、それぞ
れ次の方法で測定し、評価した。
Example 3 Using the above sample, the heat resistance required for semiconductor wafer heat treatment and the ability to inhibit diffusion of metal impurities were measured and evaluated using the following methods.

耐熱性: B eam B ending法により、各試料の1 
、200℃における粘度ηを測定する。
Heat resistance: 1 of each sample by Beam B ending method.
, the viscosity η at 200°C is measured.

粘度ηの対数;Log ηが、12.7以上であること
が好ましい。
It is preferable that the logarithm of the viscosity η; Log η is 12.7 or more.

拡散防止性: 平板状に切り出した試料上に、1%硝酸ナトリウム水溶
液を滴下した後、試料を1,150℃の温度に2時間加
熱し、次いでこれを急冷して、拡散プロファイルをLM
A (LASERMICROANALYSYS)分析に
より求め、そのプロファイルより1,150℃における
ナトリウムの拡散係数(DNa ad/5ee)を計算
する。
Diffusion prevention property: After dropping a 1% aqueous sodium nitrate solution onto a sample cut into a flat plate, the sample was heated to a temperature of 1,150°C for 2 hours, and then rapidly cooled to change the diffusion profile to LM.
A (LASERMICROANALYSYS) analysis is used to calculate the diffusion coefficient of sodium (DNa ad/5ee) at 1,150°C from the profile.

この値はできるだけ小さい方が望ましく、実用的見地か
ら、10−9のオーダ程度であれば極めて高く評価でき
る。
It is desirable that this value be as small as possible, and from a practical standpoint, a value on the order of 10-9 can be evaluated extremely highly.

各試料の測定結果を第1表に示す。Table 1 shows the measurement results for each sample.

なお、比較のために、市販されている有水合成石英ガラ
ス5UPRASIL−1(Heraeus社製;参考試
料1)及び天然石英ガラスHeralux (参考試料
2)についてのそれらを併記した。
For comparison, those of commercially available hydrous synthetic quartz glass 5UPRASIL-1 (manufactured by Heraeus; reference sample 1) and natural quartz glass Heralux (reference sample 2) are also listed.

第   1   表 #は、1,150℃におけるナトリウムの拡散係数であ
る。
Table 1 # is the diffusion coefficient of sodium at 1,150°C.

木は、文献に示された測定値で、DNaを”Naラジオ
アイソトープ法で求めたものである。
The tree is the measured value shown in the literature, which was determined by the "Na radioisotope method" for DNA.

また、第2表に、原子吸光法により測定した各試料中の
金属不純物含有量を、0Hfi度及び塩素濃度と共にま
とめて示した。ただし、実施例1及び2と比較例1及び
2の試料は、塩素含有量の差異による僅かな変動はある
が:実施例1と実質的に同一であり、実施例1について
の測定値で代表して示した。数値はすべてppmである
Table 2 also shows the metal impurity content in each sample measured by atomic absorption spectrometry together with the 0Hfi degree and chlorine concentration. However, the samples of Examples 1 and 2 and Comparative Examples 1 and 2 are substantially the same as Example 1, with slight variations due to differences in chlorine content, and the measured values for Example 1 are representative. and showed. All numbers are in ppm.

第   2   表 参考試料1 <0.2 <0.2 <0.2 <0.3
 <0.2 <5  <0.2 <0.11200 6
0#   2 0.81.0 1.0 1.0 0.5
 20 0.8<0.1上記より、本発明の石英ガラス
材料は、半導体熱処理用として充分な耐熱性を有し、含
有金属不純物は極めて少なく、シかも1,150℃にお
けるナトリウム拡散係数が小さいく、ウェハーの熱処理
工程における金属等による汚染が高度に防止できること
が明確に理解できる。
Table 2 Reference sample 1 <0.2 <0.2 <0.2 <0.3
<0.2 <5 <0.2 <0.11200 6
0# 2 0.81.0 1.0 1.0 0.5
20 0.8 < 0.1 From the above, the quartz glass material of the present invention has sufficient heat resistance for semiconductor heat treatment, contains extremely few metal impurities, and has a small sodium diffusion coefficient at 1,150°C. It can be clearly understood that contamination by metals and the like during the wafer heat treatment process can be highly prevented.

〔発明の効果〕〔Effect of the invention〕

本発明の石英ガラス材料は、これを半導体熱処理用ガラ
ス部材として使用するとき、高温熱処理工程における変
形が少なく、特にアルカリ金属等の不純物の拡散による
ウェハーへの汚染が効果的に抑制防止されるので工業的
に高い価値を有する。
When the quartz glass material of the present invention is used as a glass member for semiconductor heat treatment, there is little deformation during the high temperature heat treatment process, and in particular, contamination of the wafer due to diffusion of impurities such as alkali metals is effectively suppressed and prevented. It has high industrial value.

Claims (1)

【特許請求の範囲】 1、OHの含有量が10ppm以下で、実質的に金属不
純物を含まず、且つ塩素の含有量が500〜4,000
ppmの範囲に調整されて成る半導体熱処理用石英ガラ
ス材料。 2、ハロゲン化けい素を酸素・水素火炎中で加水分解し
て生成するすす状シリカを堆積させ、得られた多孔質石
英ガラス部材を塩素化剤を含む雰囲気中において熱処理
することを特徴とする請求項1記載の半導体熱処理用石
英ガラス材料の製造方法。
[Claims] 1. The OH content is 10 ppm or less, substantially free of metal impurities, and the chlorine content is 500 to 4,000.
A quartz glass material for semiconductor heat treatment which is adjusted to a ppm range. 2. It is characterized by depositing soot-like silica produced by hydrolyzing silicon halide in an oxygen/hydrogen flame, and heat-treating the obtained porous quartz glass member in an atmosphere containing a chlorinating agent. A method for producing a quartz glass material for semiconductor heat treatment according to claim 1.
JP1168538A 1989-06-30 1989-06-30 Quartz glass material for semiconductor heat treatment and manufacturing method thereof Expired - Lifetime JP2522830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1168538A JP2522830B2 (en) 1989-06-30 1989-06-30 Quartz glass material for semiconductor heat treatment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1168538A JP2522830B2 (en) 1989-06-30 1989-06-30 Quartz glass material for semiconductor heat treatment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0334419A true JPH0334419A (en) 1991-02-14
JP2522830B2 JP2522830B2 (en) 1996-08-07

Family

ID=15869874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1168538A Expired - Lifetime JP2522830B2 (en) 1989-06-30 1989-06-30 Quartz glass material for semiconductor heat treatment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2522830B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227827A (en) * 1992-02-07 1994-08-16 Asahi Glass Co Ltd Transparent silica glass and its production
US5523266A (en) * 1991-06-29 1996-06-04 Shin-Etsu Quartz Products Company Limited Optical member of synthetic quartz glass for excimer lasers and method for producing same
JP2008030988A (en) * 2006-07-28 2008-02-14 Institute Of National Colleges Of Technology Japan Silica glass material
US7810356B2 (en) * 2005-02-08 2010-10-12 Asahi Glass Company, Limited Process and apparatus for producing porous quartz glass base
JP2011184210A (en) * 2010-03-04 2011-09-22 Shinetsu Quartz Prod Co Ltd Synthetic silica glass and method for producing the same
CN103043898A (en) * 2012-12-06 2013-04-17 东海县金孚石英制品有限公司 Quartz glass material capable of improving mechanical strength thereof and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523266A (en) * 1991-06-29 1996-06-04 Shin-Etsu Quartz Products Company Limited Optical member of synthetic quartz glass for excimer lasers and method for producing same
JPH06227827A (en) * 1992-02-07 1994-08-16 Asahi Glass Co Ltd Transparent silica glass and its production
US7810356B2 (en) * 2005-02-08 2010-10-12 Asahi Glass Company, Limited Process and apparatus for producing porous quartz glass base
JP2008030988A (en) * 2006-07-28 2008-02-14 Institute Of National Colleges Of Technology Japan Silica glass material
JP2011184210A (en) * 2010-03-04 2011-09-22 Shinetsu Quartz Prod Co Ltd Synthetic silica glass and method for producing the same
CN103043898A (en) * 2012-12-06 2013-04-17 东海县金孚石英制品有限公司 Quartz glass material capable of improving mechanical strength thereof and production method thereof

Also Published As

Publication number Publication date
JP2522830B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US5326729A (en) Transparent quartz glass and process for its production
US8211817B2 (en) Fused silica glass and process for producing the same
US7452518B2 (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
TWI393689B (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
JP3043032B2 (en) Manufacturing method of opaque quartz glass
US4107388A (en) Method for the surface treatment of glass by leaching
EP1471039B1 (en) Method for producing a quartz glass jig
JPH0334419A (en) Quartz glass material for semiconductor heat treatment and manufacture thereof
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
JP3368547B2 (en) Opaque quartz glass and method for producing the same
WO2002063076A1 (en) Method for reducing oxygen component and carbon component in fluoride
JPH08183621A (en) Production of high-purity highly heat resistant silica glass
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP2722573B2 (en) Manufacturing method of high purity quartz glass
JP2000026125A (en) Transparent quartz glass and its production
JPH0383833A (en) Synthetic quartz glass member having excellent heat resistance
JPS6230632A (en) Production of high-purity quartz glass
JP3687872B2 (en) Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment
JP3156733B2 (en) Black quartz glass, method for producing the same, and jig using the same
JP2822854B2 (en) Synthetic quartz glass optical member and method of manufacturing the same
JPS60239339A (en) Preparation of parent material for optical fiber
JPH085683B2 (en) Method for producing synthetic quartz glass member having excellent heat resistance and processability
EP1386890A2 (en) Quartz glass jig and method for producing the same
JPH05301733A (en) Silica glass and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14