JP2522830B2 - Quartz glass material for semiconductor heat treatment and manufacturing method thereof - Google Patents

Quartz glass material for semiconductor heat treatment and manufacturing method thereof

Info

Publication number
JP2522830B2
JP2522830B2 JP1168538A JP16853889A JP2522830B2 JP 2522830 B2 JP2522830 B2 JP 2522830B2 JP 1168538 A JP1168538 A JP 1168538A JP 16853889 A JP16853889 A JP 16853889A JP 2522830 B2 JP2522830 B2 JP 2522830B2
Authority
JP
Japan
Prior art keywords
quartz glass
heat treatment
glass material
ppm
semiconductor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1168538A
Other languages
Japanese (ja)
Other versions
JPH0334419A (en
Inventor
朗 藤ノ木
俊幸 加藤
裕幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP1168538A priority Critical patent/JP2522830B2/en
Publication of JPH0334419A publication Critical patent/JPH0334419A/en
Application granted granted Critical
Publication of JP2522830B2 publication Critical patent/JP2522830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウエハーの熱処理用炉心管等の形成
に有用な石英ガラス材料に関し、特に、加熱炉中での熱
処理工程において、ナトリウム等の金属不純物による汚
染を高度に抑制し得る半導体熱処理用石英ガラス材料及
びその効果的製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a quartz glass material useful for forming a furnace core tube for heat treatment of a semiconductor wafer, and particularly to a silica glass material such as sodium in a heat treatment step in a heating furnace. TECHNICAL FIELD The present invention relates to a quartz glass material for semiconductor heat treatment which can highly suppress contamination by metal impurities, and an effective manufacturing method thereof.

〔従来の技術〕[Conventional technology]

従来、半導体ウエハーの熱処理に使用される炉心管や
ウエハー治具類は、例えば、1000〜1300℃の高温領域で
変形することのない耐熱性が要求される。また、半導体
の集積度の向上に伴い、熱処理工程における金属、特に
アルカリ金属類による微量な汚染が大きな問題となって
きた。半導体ウエハーの熱処理工程における汚染は、石
英ガラス容器その他の治具類に含有されるそれらの金属
類や、炉壁から放出され石英ガラス容器を通して拡散さ
れる金属類に基づくものであって、特に拡散速度の早い
ナトリウムが注目されている。
Conventionally, furnace tubes and wafer jigs used for heat treatment of semiconductor wafers are required to have heat resistance that does not deform in a high temperature range of 1000 to 1300 ° C., for example. Further, as the degree of integration of semiconductors has been improved, a slight amount of metal, particularly alkali metals, in the heat treatment step has become a serious problem. Contamination in the heat treatment process of semiconductor wafers is due to those metals contained in quartz glass containers and other jigs and metals released from the furnace wall and diffused through the quartz glass containers. Attention has been paid to sodium, which has a high speed.

ナトリウム不純物の石英ガラス内での拡散速度は、含
有OH濃度が1000ppm以上の有水合成石英ガラスでは非常
に小さく、また、OH濃度が小さければ大きいことが知ら
れている。そのような有水合成石英ガラスは、一般に、
素材中の金属不純物が極めて少ないので、耐金属汚染性
に関するかぎり半導体熱処理用の炉心管等として望まし
いが、耐熱性が劣り、1000℃を超える熱処理においては
著しく変形するので、熱処理用部材としては実質的に使
用できない。また、熱処理条件下での耐熱性に着目すれ
ば、天然石英ガラスが望ましいが、各種金属不純物の含
有量が大きく、耐汚染性の点で採用できない。
It is known that the diffusion rate of sodium impurities in quartz glass is very small in water-containing synthetic quartz glass having an OH concentration of 1000 ppm or more, and is large when the OH concentration is small. Such hydrous synthetic quartz glass is generally
Since there are very few metal impurities in the material, it is desirable as a core tube for semiconductor heat treatment as far as metal contamination resistance is concerned, but it is inferior in heat resistance and it deforms significantly in heat treatment above 1000 ° C, so it is practically used as a heat treatment member Cannot be used. Further, if attention is paid to the heat resistance under heat treatment conditions, natural quartz glass is preferable, but it cannot be adopted from the viewpoint of contamination resistance due to the large content of various metal impurities.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従って、本発明の技術的課題は、半導体ウエハーの熱
処理温度において優れた耐熱性を有し、含有金属成分が
可及的に低減された高純度の石英ガラス材料を提供する
ことにある。また、本発明の他の課題は、炉からの金属
不純物の透過,拡散を高度に抑制し得る石英ガラス部材
を提供することにある。
Therefore, a technical object of the present invention is to provide a high-purity quartz glass material having excellent heat resistance at a heat treatment temperature of a semiconductor wafer and containing metal components reduced as much as possible. Another object of the present invention is to provide a quartz glass member capable of highly suppressing the permeation and diffusion of metal impurities from the furnace.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記課題を克服する合成石英ガラス材
料について多くの試作研究を重ねた結果、OH及び金属不
純物を実質的に含まず、しかも特定範囲量の塩素を含有
するガラス材料が、望ましい耐熱性を有し、炉から拡散
される特にナトリウムの拡散速度を効果的に低減させ、
耐汚染性に極めて有効であることを見出した。
As a result of many trials and studies on synthetic quartz glass materials that overcome the above problems, the present inventors prefer glass materials that do not substantially contain OH and metal impurities, and that contain chlorine in a specific range. It has heat resistance and effectively reduces the diffusion rate of sodium diffused from the furnace,
It has been found to be extremely effective in stain resistance.

すなわち、本発明は、OHの含有量が10ppm以下で、実
質的に金属不純物を含まず、且つ塩素の含有量が500〜
4,000ppmの範囲に調整されて成る半導体熱処理用石英ガ
ラス材料、及びそのような材料の効果的製造方法、すな
わち、ハロゲンけい素を酸素・水素火炎中で加水分解し
て生成するすす状シリカを堆積させ、得られた多孔質石
英ガラス部材を塩素化剤を含む雰囲気中において熱処理
する上記半導体熱処理用石英ガラス材料の製造方法を提
供する。
That is, the present invention, the content of OH is 10ppm or less, substantially does not contain metal impurities, and the content of chlorine is 500 ~.
Quartz glass material for semiconductor heat treatment adjusted in the range of 4,000 ppm, and an effective method for producing such material, that is, deposition of soot-like silica produced by hydrolysis of silicon halogen in oxygen / hydrogen flame A method for producing a quartz glass material for semiconductor heat treatment is provided, in which the obtained porous quartz glass member is heat treated in an atmosphere containing a chlorinating agent.

本発明の半導体熱処理用石英ガラス材料は、そのガラ
ス中にOH及び金属不純物が実質的に含まれない合成石英
ガラスに、ナトリウムの拡散速度を低下し得る量の塩素
を含有させた点に新規材料としての特徴がある。
The quartz glass material for semiconductor heat treatment of the present invention is a novel material in that the synthetic quartz glass substantially free of OH and metal impurities in the glass contains chlorine in an amount capable of reducing the diffusion rate of sodium. There is a feature as.

本発明の石英ガラス材料中に含有されるOHが10ppmを
超えると、半導体熱処理用としての耐熱性が不足し、容
易に変形するので工業的に実用できない。好ましくは、
2ppm以下である。また、本発明において実質的に金属不
純物を含まないとは、熱処理において半導体ウエハーの
汚染が実質的に無視できる程度の少量を意味し、特に、
拡散係数の大きなナトリウムは、0.2ppm以下であること
が重要である。
If the OH content in the quartz glass material of the present invention exceeds 10 ppm, the heat resistance for heat treatment of semiconductors will be insufficient, and the silica glass will be easily deformed, which is not industrially practical. Preferably,
It is 2 ppm or less. Further, in the present invention, substantially free of metal impurities means that the amount of contamination of the semiconductor wafer during the heat treatment is substantially negligible, and particularly,
It is important that sodium having a large diffusion coefficient is 0.2 ppm or less.

更に、本発明のガラス材料中に含有させる塩素量は、
500ppm未満では、特にナトリウムの拡散速度に低減効果
が不充分であり、また、4,000ppmを超えると、耐熱性が
急激に低下するので採用できない。好ましい塩素含有量
は、800〜2,500ppmの範囲である。
Further, the amount of chlorine contained in the glass material of the present invention,
If it is less than 500 ppm, the effect of reducing the diffusion rate of sodium is insufficient, and if it exceeds 4,000 ppm, the heat resistance sharply decreases, and therefore it cannot be used. The preferred chlorine content is in the range of 800 to 2,500 ppm.

かかる石英ガラス材料は、従来光ファイバの製造方法
として知られたスート法によって得られた多孔質石英ガ
ラス部材を塩素化剤雰囲気中で熱処理して効果的に提供
される合成石英ガラス材料で、ハロゲン化けい素を酸素
・水素火炎中で加水分解して生成するすす状シリカを堆
積させ、得られた多孔質石英ガラス材料を塩素化剤を含
む雰囲気中で熱処理することにより容易に得られる。こ
のようにして形成される多孔性合成石英ガラス材料は、
可及的高純度であることが要求され、従ってスート法に
適用される原料四塩化けい素は、通常知られた蒸留等の
精製手段によって高度に純化されたものが用いられる。
Such a quartz glass material is a synthetic quartz glass material effectively provided by heat-treating a porous quartz glass member obtained by a soot method conventionally known as a method for manufacturing an optical fiber in a chlorinating agent atmosphere, and a halogen It can be easily obtained by depositing soot-like silica produced by hydrolyzing silicon oxide in an oxygen / hydrogen flame and heat-treating the obtained porous quartz glass material in an atmosphere containing a chlorinating agent. The porous synthetic quartz glass material formed in this way is
It is required that the purity is as high as possible, and therefore, the raw material silicon tetrachloride used in the soot method is one that is highly purified by a generally known purification means such as distillation.

塩素の熱処理導入に用いられる塩素化剤は、塩素ガス
及び塩化チオニルが代表的に使用され、これらは単独で
用いてもよいし、組合せ使用することもできる。また、
それら塩素化剤は、炉内雰囲気中に、通常、3〜100容
量%の範囲濃度で導入されるが、その濃度調整は、主と
して不活性ガスにより行われる。また、塩素化を効率的
に行うために、700〜900℃程度の温度が一般に採用され
る。その塩素化処理時間は、塩素化剤の種類及びその雰
囲気濃度と処理温度とにより、また所望塩素含有量とに
関連して、当該技術分野の熟練者は簡単な実験によって
容易に決定することができる。
As the chlorinating agent used for introducing heat treatment of chlorine, chlorine gas and thionyl chloride are typically used, and these may be used alone or in combination. Also,
The chlorinating agent is usually introduced into the atmosphere in the furnace at a concentration in the range of 3 to 100% by volume, and the concentration is adjusted mainly by an inert gas. Moreover, in order to efficiently perform chlorination, a temperature of about 700 to 900 ° C. is generally adopted. The chlorination treatment time depends on the type of the chlorinating agent and its atmospheric concentration and the treatment temperature, and in connection with the desired chlorine content, a person skilled in the art can easily determine it by a simple experiment. it can.

このようにして得られた本発明のガラス材料は、不活
性ガス雰囲気下で多孔質ガラススートが溶融,融解する
温度、例えば、1,300〜1,500℃あるいはそれ以上の温度
に加熱して容易に透明ガラス化することができ、半導体
熱処理用に好適なガラス部材として提供される。
The glass material of the present invention thus obtained is a transparent glass which is easily heated by heating to a temperature at which the porous glass soot is melted under an inert gas atmosphere, for example, 1,300 to 1,500 ° C. or higher. And is provided as a glass member suitable for semiconductor heat treatment.

この透明化は、上記の塩素化工程に続けて、そのまま
の雰囲気状態で炉の温度を更に高めて行うことができる
が、この場合には、透明ガラス化と共に塩素化が進行す
るので、その前の塩素化処理時間はいくらか短縮される
ことになるであろう。
This clarification can be carried out following the above chlorination step by further raising the temperature of the furnace in the atmosphere as it is, but in this case, since chlorination progresses with transparent vitrification, The chlorination time will be somewhat reduced.

〔作 用〕[Work]

本発明の半導体熱処理用石英ガラス材料は、高い耐熱
性を有し、半導体の金属類による汚染、特に拡散速度の
大きいナトリウムによる汚染を効果的に抑制することが
でき、繰返しの使用にも好適な高い実用性を有する部材
を提供する。
INDUSTRIAL APPLICABILITY The quartz glass material for semiconductor heat treatment of the present invention has high heat resistance, can effectively suppress the contamination of semiconductors with metals, especially the contamination with sodium having a high diffusion rate, and is suitable for repeated use. A member having high practicality is provided.

〔実 施 例〕〔Example〕

次に、具体例により本発明を更に詳細に説明する。な
お、具体例における試料のOH濃度は、赤外分光光度法で
測定したものであり、塩素濃度は、塩化銀の比濁法によ
り測定したものである。
Next, the present invention will be described in more detail with reference to specific examples. The OH concentration of the sample in the specific examples is measured by the infrared spectrophotometric method, and the chlorine concentration is measured by the turbidimetric method of silver chloride.

実施例 1 高純度四塩化けい素を、ゆるい酸素・水素火炎中に導
入して火炎加水分解させ、すす状のシリカ微粒子を層状
に堆積させて、多孔質石英ガラス母材を得た。
Example 1 High-purity silicon tetrachloride was introduced into a loose oxygen / hydrogen flame and flame-hydrolyzed, soot-like silica fine particles were deposited in layers to obtain a porous quartz glass base material.

このようにして形成された約700gの多孔質合成石英ガ
ラス母材を、塩素:ヘリウムの混合割合が、10:90の容
量比の混合ガスの雰囲気下の炉内において、800℃の温
度に2時間加熱して塩素化処理を行った。
About 700 g of the porous synthetic quartz glass base material thus formed was heated to a temperature of 800 ° C. in a furnace in a mixed gas atmosphere with a chlorine: helium mixing ratio of 10:90 by volume. Chlorination was performed by heating for an hour.

得られた塩素化ガラス材料の塩素含有量は、約850ppm
で、OH濃度は、0.1ppm以下であった。
The chlorine content of the obtained chlorinated glass material is about 850 ppm
The OH concentration was 0.1 ppm or less.

この塩素化ガラス材料(母材)を、塩素化剤を含まな
いヘリウム単独の雰囲気下の炉内において、1,500℃以
上の温度に加熱溶融し、透明なガラス部材を得た。
This chlorinated glass material (base material) was heated and melted at a temperature of 1,500 ° C. or higher in a furnace in an atmosphere of helium alone containing no chlorinating agent to obtain a transparent glass member.

実施例 2 実施例1における800℃の温度での炉内における塩素
化処理を2時間に替えて6時間行った以外は全く同様に
処理して塩素化石英ガラス材料を製造した。
Example 2 A chlorinated quartz glass material was produced in the same manner as in Example 1, except that the chlorination treatment in the furnace at a temperature of 800 ° C. was performed for 6 hours instead of 2 hours.

得られた塩素化ガラス材料の塩素含有量は、約2,400p
pmで、OH濃度は、0.1ppm以下であった。
The chlorine content of the obtained chlorinated glass material is about 2,400 p
At pm, the OH concentration was below 0.1 ppm.

得られた塩素化ガラス母材を、ヘリウムガス雰囲気の
炉内で、1,500℃以上の温度に加熱,溶融し、透明なガ
ラス部材を得た。
The obtained chlorinated glass base material was heated and melted at a temperature of 1,500 ° C. or higher in a furnace in a helium gas atmosphere to obtain a transparent glass member.

比較例 1 実施例1と同様にして作成された多孔質合成石英ガラ
ス母材約700gを塩素:ヘリウム=5:95容量比の混合ガス
雰囲気の炉内において、800℃の温度条件で2時間加熱
処理した。
Comparative Example 1 About 700 g of a porous synthetic quartz glass base material prepared in the same manner as in Example 1 was heated for 2 hours at a temperature of 800 ° C. in a furnace in a mixed gas atmosphere of chlorine: helium = 5: 95 volume ratio. Processed.

得られた塩素化処理ガラス材料の塩素含有量は、約35
0ppmであり、またOH濃度は、0.1ppm以下であった。
The chlorine content of the obtained chlorinated glass material was about 35.
It was 0 ppm, and the OH concentration was 0.1 ppm or less.

この塩素化ガラス母材を、ヘリウムガス雰囲気の炉内
において、1,500℃以上の温度に加熱,溶融し、透明な
ガラス部材を得た。
This chlorinated glass base material was heated and melted at a temperature of 1,500 ° C. or higher in a furnace in a helium gas atmosphere to obtain a transparent glass member.

比較例 2 実施例1において、2時間の塩素化処理を炉内で行っ
て得られたと同様の塩素化ガラス母材を、そのまゝの状
態で、炉温を1,500℃以上の温度に昇温させ、塩素化の
進行と同時に加熱,溶融して透明な合成石英ガラス部材
を作成した。
Comparative Example 2 In Example 1, the same chlorinated glass base material as that obtained by performing the chlorination treatment for 2 hours in the furnace was heated to 1,500 ° C. or higher in the furnace temperature in that state. Then, simultaneously with the progress of chlorination, it was heated and melted to form a transparent synthetic quartz glass member.

得られた塩素化透明石英ガラス部材の塩素含有量は、
約4,800ppmで、OH濃度は、0.1ppm以下であった。
The chlorine content of the obtained chlorinated transparent quartz glass member,
At about 4,800 ppm, the OH concentration was 0.1 ppm or less.

実施例 3 上記の試料について、半導体ウエハー熱処理用として
要求される耐熱性及び金属不純物の拡散抑防止性を、そ
れぞれ次の方法で測定し、評価した。
Example 3 With respect to the above samples, the heat resistance required for heat treatment of semiconductor wafers and the prevention of diffusion of metal impurities were measured and evaluated by the following methods.

耐熱性: Beam Bending法により、各試料の1,200℃における粘
度ηを測定する。
Heat resistance: The viscosity η of each sample at 1,200 ° C is measured by the Beam Bending method.

粘度ηの対数:Logηが、12.7以上であることが好まし
い。
The logarithm of viscosity η: Logη is preferably 12.7 or more.

拡散防止性: 平板状に切り出した試料上に、1%硝酸ナトリウム水
溶液を滴下した後、試料を1,150℃の温度に2時間加熱
し、次いでこれを急冷して、拡散プロファイルをLMA(L
ASER MICRO ANALYSYS)分析により求め、そのプロファ
イルより1,150℃におけるナトリウムの拡散係数(D Na
cm2/sec)を計算する。
Diffusion preventive property: After dropping a 1% sodium nitrate aqueous solution onto a sample cut into a flat plate, the sample was heated to a temperature of 1,150 ° C for 2 hours and then rapidly cooled to obtain a diffusion profile of LMA (L
ASER MICRO ANALYSYS) analysis, and from the profile, the sodium diffusion coefficient (D Na
cm 2 / sec) is calculated.

この値はできるだけ小さい方が望ましく、実用的見地
から、10-9のオーダ程度であれば極めて高く評価でき
る。
It is desirable that this value be as small as possible, and from a practical standpoint, it can be evaluated extremely high if it is on the order of 10 -9 .

各試料の測定結果を第1表に示す。 The measurement results of each sample are shown in Table 1.

なお、比較のために、市販されている有水合成石英ガ
ラスSUPRASIL−1(Heraeus社製;参考試料1)及び天
然石英ガラスHeralux(参考試料2)についてのそれら
を併記した。
For comparison, those of commercially available water-containing synthetic quartz glass SUPRASIL-1 (manufactured by Heraeus; reference sample 1) and natural quartz glass Heralux (reference sample 2) are also shown.

また、第2表に、原子吸光法により測定した各試料中
の金属不純物含有量を、OH濃度及び塩素濃度と共にまと
めて示した。ただし、実施例1及び2と比較例1及び2
の試料は、塩素含有量の差異による僅かな変動はある
が、実施例1と実質的に同一であり、実施例1について
の測定値で代表して示した。数値はすべてppmである。
In addition, Table 2 shows the content of metal impurities in each sample measured by the atomic absorption method together with the OH concentration and the chlorine concentration. However, Examples 1 and 2 and Comparative Examples 1 and 2
The sample was substantially the same as that of Example 1 with a slight variation due to the difference in chlorine content, and the measured value for Example 1 was shown as a representative. All numbers are in ppm.

上記より、本発明の石英ガラス材料は、半導体熱処理
用として充分な耐熱性を有し、含有金属不純物は極めて
少なく、しかも1,150℃におけるナトリウム拡散係数が
小さいく、ウエハーの熱処理工程における金属等による
汚染が高度に防止できることが明確に理解できる。
From the above, the quartz glass material of the present invention has sufficient heat resistance for semiconductor heat treatment, contains very few metal impurities, and has a small sodium diffusion coefficient at 1,150 ° C., and is contaminated by metals and the like in the wafer heat treatment step. Clearly understand that can be highly prevented.

〔発明の効果〕 本発明の石英ガラス材料は、これを半導体熱処理用ガ
ラス部材として使用するとき、高温熱処理工程における
変形が少なく、特にアルカリ金属等の不純物を拡散によ
るウエハーへの汚染が効果的に抑制防止されるので工業
的に高い価値を有する。
[Effects of the Invention] The quartz glass material of the present invention, when used as a glass member for semiconductor heat treatment, is less likely to be deformed in the high temperature heat treatment step, and in particular, contamination of the wafer by diffusion of impurities such as alkali metal is effectively It has a high industrial value because it is prevented from being suppressed.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】OHの含有量が10ppm以下で、実質的に金属
不純物を含まず、且つ塩素の含有量が500〜4,000ppmの
範囲に調整されて成る半導体熱処理用石英ガラス材料。
1. A quartz glass material for semiconductor heat treatment, which has an OH content of 10 ppm or less, contains substantially no metal impurities, and has a chlorine content adjusted to a range of 500 to 4,000 ppm.
【請求項2】ハロゲン化けい素を酸素・水素火炎中で加
水分解して生成するすす状シリカを堆積させ、得られた
多孔質石英ガラス部材を塩素化剤を含む雰囲気中におい
て熱処理することを特徴とする請求項1記載の半導体熱
処理用石英ガラス材料の製造方法。
2. A method of depositing soot-like silica produced by hydrolyzing a silicon halide in an oxygen / hydrogen flame, and heat-treating the obtained porous quartz glass member in an atmosphere containing a chlorinating agent. The method for manufacturing a quartz glass material for semiconductor heat treatment according to claim 1, which is characterized in that.
JP1168538A 1989-06-30 1989-06-30 Quartz glass material for semiconductor heat treatment and manufacturing method thereof Expired - Lifetime JP2522830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1168538A JP2522830B2 (en) 1989-06-30 1989-06-30 Quartz glass material for semiconductor heat treatment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1168538A JP2522830B2 (en) 1989-06-30 1989-06-30 Quartz glass material for semiconductor heat treatment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0334419A JPH0334419A (en) 1991-02-14
JP2522830B2 true JP2522830B2 (en) 1996-08-07

Family

ID=15869874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1168538A Expired - Lifetime JP2522830B2 (en) 1989-06-30 1989-06-30 Quartz glass material for semiconductor heat treatment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2522830B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364433A (en) * 1991-06-29 1994-11-15 Shin-Etsu Quartz Products Company Limited Optical member of synthetic quartz glass for excimer lasers and method for producing same
JP3368932B2 (en) * 1992-02-07 2003-01-20 旭硝子株式会社 Transparent quartz glass and its manufacturing method
JP2006219309A (en) * 2005-02-08 2006-08-24 Asahi Glass Co Ltd Method and apparatus for producing porous quartz glass preform
JP4929457B2 (en) * 2006-07-28 2012-05-09 独立行政法人国立高等専門学校機構 Silica glass material
JP5706623B2 (en) * 2010-03-04 2015-04-22 信越石英株式会社 Synthetic silica glass and method for producing the same
CN103043898B (en) * 2012-12-06 2015-04-15 东海县金孚石英制品有限公司 Quartz glass material capable of improving mechanical strength thereof and production method thereof

Also Published As

Publication number Publication date
JPH0334419A (en) 1991-02-14

Similar Documents

Publication Publication Date Title
EP2070883B1 (en) Fused quartz glass and process for producing the same
US7452518B2 (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
US8017536B2 (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
US4107388A (en) Method for the surface treatment of glass by leaching
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
EP1471039B1 (en) Method for producing a quartz glass jig
JP3393063B2 (en) Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same
JP3268049B2 (en) Quartz glass material and its manufacturing method
EP1894896A1 (en) Mixed powder and a method for producing quartz glass using the powder
JPH08183621A (en) Production of high-purity highly heat resistant silica glass
JP3687872B2 (en) Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment
JP2000026125A (en) Transparent quartz glass and its production
JP2722573B2 (en) Manufacturing method of high purity quartz glass
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
EP1386890A2 (en) Quartz glass jig and method for producing the same
JPH085683B2 (en) Method for producing synthetic quartz glass member having excellent heat resistance and processability
JPS60239339A (en) Preparation of parent material for optical fiber
JP2840164B2 (en) Quartz glass boat and its manufacturing method
JPH05279049A (en) Production of synthetic quartz glass
JP3294356B2 (en) Quartz glass furnace core tube for semiconductor wafer processing
JP2878916B2 (en) Silica glass member for semiconductor heat treatment and method for producing the same
JP3407961B2 (en) Semiconductor heat treatment materials
JPH05301733A (en) Silica glass and its production
JPH06128100A (en) Silica glass tube for heat treatment of semiconductor and it production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14